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Answers are due for Monday November 3'¢, 2pm.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Fermat primes, elite primes, and Pépin’s test (100
pts)
We define the Fermat numbers by

F,=2%"+1.

Prime Fermat numbers are closely related to constructability of polygons, and
are useful for pseudo-random number generation. However, it is conjectured
that only

Fy=3, Fy, =5, F, =17, F3 = 257, F, = 65537
are prime. The goal of this problem is provide a remarkably efficient test
for determining the primality of F},, that has only been successfully executed
about 8 times.

1. (20pts) Let p be prime. By considering the multiplicative order of p,
show that if

Fn—1

pz =-1 (mod F,)

then F), is prime.


https://www.maths.tcd.ie/~keilthya/teaching/2025/NT/nt.html

2. (20pts) Show that if F), is prime and n > 1, then

n—_ Fn
pF2 F = (—) (mod F},)
p

3. (10pts)Suppose that F,, is not a square modulo p, and conclude that
F, is prime if and only if

pz =-1 (mod F,).

4. (25pts) Hence conclude Pépin’s test:

Fp—1

F,isprime < 3z =-1 (modF),)

for all n > 1. Hence show that Fj3 is prime.

. on 2n71 2
Hint: 0 = (a )

If we are willing to restrict to sufficient large n, we can choose a prime
other than 3. Specifically, we call a prime p an elite prime if F), is
a square modulo p for finitely many n. We have actually shown a
generalised Pépin’s criterion: if p is an elite prime and n is sufficiently
large, then Fj, is prime if and only if

Fp—1

pz =-1 (mod F,).

5. (25pts) Show that 5 is an elite prime, but that 11 is not. Explain why
F, is a square modulo 11 infinitely often.

Hint: Recall that a sequence defined by x,.1 = f(x,,) for some function
on a finite set is eventually periodic

6. (Optional) Use Pépins test to show that Fj is prime.

7. (Optional) The Mersenne primes M; = 3, and M, = 5 are elite. M3 =
9 is not prime. Show that no Mersenne prime M, = 2" 4+ 1 can be an
elite prime for n > 3.



Solution 1

i)

ii)

iii)

iv)

Clearly if
Fp—1

p 2z =-1 (modF,)

then pf»~! = 1 (mod F,). Thus the multiplicative order of p divides
F, — 1. As 2 is the only prime factor of F,, — 1 and

Fp—1

p 2z #1 (modF,)

we must have that F,, — 1 is the multiplicative order of p. The multi-
plicative order of p divides ¢(F,), and so F,, — 1 < ¢(F,) < F,,. Thus
¢(F,) = F, — 1, which is only possible if F}, is prime.

(Fﬁ) =p""  (mod F,)

if F, is prime. By quadratic reciprocity

(2) - (5)- (2)

as fo— = 2"l is even for all n > 1.

We know that

We know that if
Fp—1

pz =-1 (mod F,)

then F), is prime. Conversely, if F), is prime, and F), is not a square
modulo p and so % = —1 and hence

Fp—1 Fn
pz = <?) =—-1 (mod F,)

The sequence 22" (mod 3) can be computed by repeated squaring:
n n—1 2
22" = (22 ) (mod 3)

As 22 =1 (mod 3), this sequence is constantly 1 for all n > 1. Thus,
for all n > 1, we have that

F,=2"4+1=1+1=2 (mod 3)
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vi)

which is not a square modulo 3. Hence, for n > 1, F,, is prime if and
K Fp—1
only if 372 = —1 (mod F,).

To see that F3 = 257 is prime, it therefore suffices to show that
231 7
3 =3 =-1 (mod 257)
which we can compute by repeated squaring in Z/257Z:
3—+9—81—136— —8— 64— —16 — —1
Hence Fj is prime.

Similarly to the case of p = 3, note that F, — 1 = 1 (mod 5), and so
F,—1=1 (mod 5) for all n > 2. Thus F,, = 2 (mod 5), which is not
a square modulo 5. Hence 5 is an elite prime, and can be used to test
primality of F;, for all n > 2.

In contrast, 11 is not an elite prime. To see this, consider the sequence
z, = 22" in Z/11Z. We have that z,,; = 22, and so the sequence is

eventually periodic. The first few terms of the sequence are

all n > 2, the residue class F,, = x,, + 1 cycles through (5,6,4,10). In
particular,

and will cycle through (4,5,3,9) from there. Hence, we have that, for
S

F,=4 (mod 11)

infinitely often, and 4 is a square modulo 11.
To see that Fy = 65537 is prime, it therefore suffices to show that
a_
327 =3 =_1 (mod 65537)
which we can compute by repeated squaring in Z/65537Z:

3—+9— 81 — 6561 — —11008 — —3668 — 19139 — - --
<o — 15028 — 282 — 13987 — 8224 — —8 — 64 — 4096 — —256 — —1

Hence F} is prime



vii) Let p =2" + 1 be a prime for some n > 2. As a primitive root exists in
Z/pZ, we can compute the multiplicative order of 2 to be

p—1 p—1

As such,

p

22" = 9" =1 (mod p) = 2> =1 (mod p)

for all N > n — 1. Thus Fy =2 (mod p) for all N > n. But

2
(—) =1ifp=+1 (mod 8)
p

and p = 2"+ 1 =1 (mod 8) for all n > 3. Thus p cannot be elite, as
Fy is a square infinitely often.

This was the only exercise that you must submit before the
deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises marked with a star are the exercises I will try to
talk about in the tutorial lecture. If there are any exercises would
would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.

Exercise 2 Computing roots %

i) Knowing that 127 is prime, how many elements a € Z/127Z satisfy
@3 = 2?7 Compute them.

ii) How many elements satisfy a* = 27

ot
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Solution 2

i)

ii)

Clearly 0 # 2, so it suffices to determine how many elements of
(ZJ1277)* satisfy the given condition. We know that the map @ — @°3
is ged(53,126)-to-1. This greatest common divisor is ged(53,126) = 1,
as H3 is prime and does not divide 126. Hence there is a unique @ such
that @ = 2, and it must be given by 2° for some s € Z such that
535 =1 in Z/1267.

To determine s, we apply Euclid’s algorithm:

126 = 2(53) + 20,
53 = 2(20) + 13,

20 =13 +7,
13="7+6,
=641,

and so
1 =8(126) — 19(53)

which implies that

1 J— J—

53 =-19=10
in Z/126Z and hence
= _ 5\3/5 _ 5107
Noting that 2" =128 =T in ZJ127Z, we find that

5107 _ §7><15 . §2 _ Z

The map @ — a® is ged(3,126) = 3-to-1, so there are either 3 or 0 such
@, which we will not attempt to find all of, but we will need to check for
one. The ea51est thing to do is to note that 127 = 125 +2 = 5% + 2, so
2=-5 =5, Hence, there are exactly three such a.

Exercise 3 Finding the floor

Prove the following properties of the floor function:

i)

For any z, y € R, |x +y]| > |z| + |y],



ii) Forn € Nand z € R

iii) For any n € N and z € R,

ij+[x+%J+-~-+[x+ ;1 = |nz].

Solution 3

i) We first note that
In+x] =n+|x]

for any integer n. Thus, writing
v=lz]+a y=1[ylp
for o, B € [0,1), we see that
eyl =Llz] + vl +a+ 8] =lz]+ ]+ la+ 8] = [z] + [y].
ii) Let x = |z| + a with a € [0,1), and let

lz] =gn+r, 0<r<n-1

so that ¢ = L%J Then x = gn+7r+ «, so%zq%—’”*Ta. Butr<n-1
and a <1,s0 7+ a <n. Thus =% <1 and £ < ¢+ 1, so

-1

Alternatively, note that for x > 0, both side count the number of positive
integers divisible by n, but not exceeding x, and hence must be equal.
A similar interpretation exists for negative x.

iii) Let x = |z] + o, with 0 < a < 1. We must have that, for some
0<k<n-1,

k k+1
—<a< +
n n



Thus
R TN
Hence the sum on the left hand side is equal to
nlx] + k.
On the other side
nlz] +k <nz=nlz|+ne<nlz]+k+1

so we must have n|z| + k = n|z], from which the claim follows.

Exercise 4 Computing Legendre symbols %
Compute the following Legendre symbols:

0(3) o (3) w () ()
(v) (ﬁ?ﬁ) (vi) (%) (vii) (%) (viii) (%)

Solution 4
i)

B-Q-cr0)

) (2) @) @)
-y



)
(10(2)07) (10207)

-6\ [ -1
10007 ) \ 10007
10007

— (1P - ()

-10\ [ -1
1009/ \ 1009




Exercise 5 Fuactorials and floors

Let n € N and let p € N be prime. Show that

vp(n!) = ZL}%J-

Hint: How many multiples of p* can we find in the product n!?. Also,
note that this is actually a finite sum/.

Solution 5

To compute the power of p dividing n, note that we get a factor of p from
every multiple of p less than or equal to n. We get an additional factor of
p from every multiple of p?, having already counted them once among the
multiples of p. We get an additional factor of p from every multiple of p?,
having already counted them once among the multiples of p and once among
them multiples of p?. Repeating this argument, it becomes clear that

o) =S #(1 < m < n | pFlm)
k=1

The number of multiples of p¥ less than or equal to n is equal to the largest
non-negative ¢ € Z such that ¢p* < n. This is precisely the definition of
[ %], from which the claim follows.

Exercise 6 Sums of Legendre symbols

Let p € N be an odd prime.

i) Compute 37~/ (“)

a=0 \ p

ii) Compute
1

bS]
|

v

Hint: For all non-zero a, write a(a

N———

Il
o

a

10



Solution 6
i) We know that (g) = 0, and we showed that, among 1,...,p — 1, there

—1 ~1
are exactly %5~ squares and 5= non squares. As such

1 p-1
(;): D D il

p—1
a=0 a a square a a non-square

ii) For a = 0, the corresponding term is 0, so we can omit it. Otherwise,
considering the Legendre symbol as a function on (Z/pZ)*, we have that

() -(57) -0 (5)-(5)

1

The map @ — @ is a bijection
(Z/pZ)* — (Z/pZ)"

and so the map

(Z/pZ)* — %/pZ

as image (Z/pZ)* + 1, i.e

Thus

)
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Exercise 7 Primes of the form 6k + 1 %
Let p > 3 be a prime.

i) Prove that —3 is a square in Z/pZ if and only if p=1 (mod 6).

ii) Using the identity 2*> — 1 = (z — 1)(2* — = + 1), determine the number
of solutions of 3 — 1 =0 in Z/pZ in terms of p (mod 6).

iii) Suppose there are finitely many primes pi,...,p, such that p; = 1
(mod 6). By considering

N=12(p1...pr)* +1

derive a contradiction to conclude there are infinitely many such primes.

Solution 7
i) If p > 3, then p = 6k £ 1 for some k. We then have that

5)-G)G)

If p =6k + 1, then we have that

(20) ()~ (5) - ()

If p=6k—1, then

() () (57)

Thus, the claim follows.

Il
7N
el |

[
~_

Il

|

—_

ii) Clearly T is a solution. Thus, if & # 1 is a distinct solution, it is a
solution of 22 — x +1 = 0. The number of solutions of this depends on
whether —3 is a square modulo p. Based on the previous part of the
question, we get that we have 3 solutions if p = 1 (mod 6) and just 1
solution otherwise, for p > 3.

12



iii) N is an integer and must have a prime factor p. As N is not divisible
by any of 2,3,py,...,pk, p must be of the form 6t — 1. But since p|N,
that means that

12(p1...pe)* = —1 (mod p)
and so
(6p1...pk)° =36(p1...px)° = -3 (mod p).

But that means —3 is a square modulo p, which cannot occur if p = —1
(mod 6). This gives a contradiction, and so we must have infinitely
many primes congruent to 1 modulo 6.

Exercise 8 Primitive roots and Legendre symbols

Let p be an odd prime, and let g € (Z/pZ)* be a primitive root. Show that
(-
p

Solution 8

As g # 0, we must have that (%) =41 If (%) =1, then g = 7” for some
h € (Z/pZ)*, and hence

p—1

gz =h" R
by Fermat’s little theorem. But this implies that

p-1=Mo() <=

which is nonsense. Thus (%) = —1.

Exercise 9 When Euler doesn’t apply

Define t,, = 2" in Z/40Z. As ged(2,40) = 2 # 1, Euler’s theorem does not
apply, so we do not immediately get periodicity. However, we must get that
the sequence is ultimately periodic. We want to compute the period and the
length of the tail.

i) Give a formula for ¢, = 2" in Z/5Z in terms of n (mod 4).
2"

ii) Give a formula for ¢, = 2" in Z/8Z.

13



iii) Deduce a formula for t,, = 2" in Z/40Z. What is the period? What is
the length of the initial tail?

Solution 9

i) From Fermat’s Little Theorem,
25 =2 (mod 5)

so t, (mod 5) is periodic with period 4. Specifically, we have that in
Z7./57

2ifn=1 (mod 4),
L 4ifn=2 (mod 4),
" 13ifn=3 (mod4),
Tifn=0 (mod4)
ii) Clearly in Z/87Z
lifn=0,
L _)2ifn=1,
4if n =2,

0 otherwise.

iii) We use the Chinese remainder theorem to compute that in Z/40Z

'Tifnzo,
2ifn =1,
4if n =2,

th=<8ifn>3andn=3 (mod 4),
16ifn>3andn=0 (mod 4),
32ifn>3andn=1 (mod 4),
(24ifn>3andn =2 (mod 4).

Thus ¢, is ultimately periodic with period 4 in Z/40Z, and there is a
tail of length 3 (if we count ¢y).

14



Exercise 10 A test for higher powers %

Let p € N be prime, k£ € N be a positive integer, g = ged(k,p — 1), and

s = =%, Finally, let @ € (Z/pZ)*.

i) Prove that @ is a k' power if any only if a®* =1 (mod p),

111

)

ii) Is 9 a cube in Z/19Z? What about 77
) Show that @* is a solution of 29—1 in Z/pZ for any element a € (Z/pZ)*.
)

iv) Choose a primitive root 7 € (Z/pZ)*, and define a pseudo-Legendre

symbol by
(a) _Joifa= 0,
P/ o ezpﬂislt ifa =7s.

Show that this is well defined, and that

()= GLLG) = ()0

This type of map is often called a character. In order to perform any
useful computations with this pseudo-Legendre symbol though, we would
need a reciprocity law. Such a reciprocity law exists, coming from the
much more general Artin reciprocity law, which arguably spawned a huge
area of modern number theory and is hopelessly beyond the scope of this
course.

Solution 10
) Ifa=10", then

=0 =0"=1

Thus, every k' power is a root of #° — 1. We know there are at most s
such roots, and that there are exactly

p—1

gedk,p—1 -0

k™ powers in (Z/pZ)*. Hence they make up all the roots, from which
the claim follows.
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ii) First note that ged(3,18) = 3, so @ is a cube if and only if a® = 1. We
can quickly check that

so 7 is a cube.

iii)

iv) To see that this is well defined, it suffices to show that if 7> = 7, then

27sb 27sc

er—1 = er»-1. The former occurs if and only if b = ¢ (mod p — 1). The
latter occurs if and only if p—1|(sb—sc), which is clearly true if p—1|b—c.
The first remaining property follow by easily by noting that if @ = 7
and b =7, then

(ab) 2mwis(utv) 2misu  27Wisv <a) ( b)
—_— =e p-1 —=er-legpr-1 = | — —
P/ P/ \P/k

and a similar calulation holds if @ = 0 or b = 0. The final result holds

because for a primitive root 7, —1 =72 , so

Exercise 11 FEasy square roots

i) Let p = 4k — 1 be prime. Show that for non-zero @ € Z/pZ, exactly one
of @ and —a can be a square.

ii) Let p = 4k — 1 be prime, and let @ € Z/pZ be a non-zero quadratic

residue (i.e. <%> = 1). Show that @" is a square root of @, that is to say

a* =a.

iii) Use this result to explicitly solve the equation of the first part of Exercise

13 in Z /437 and Z/ATZ.

16



Solution 11
i) Note that

0)-()E)-07(3)--)

and so the two symbols cannot simultaneously be 1 or —1. They must
have opposite signs, and so exactly one of @ and —a is a square.

ii) Note that

in Z/pZ.
iii) In Z/437Z, the square root of 17 is given by
(I = (=12)*-—12-17=10-11 =24
The inverse of 2 is 22. Thus, the solutions are given by
x =22 (5 +24)

which work out as

The inverse of 2 is 24. Thus, the solutions are given by
r =24 (5 + §)

which work out as

r=30 or x=22.
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Exercise 12 Wilson’s theorem

Show that for p a prime number

(p—1!=-1 (mod p).

Hint: Try to pair 1,2, ..., p—1 up with their multiplicative inverse modulo
p. Consider p = 2 separately.

Solution 12

Ilfp=2(p—1)=1= -1 (mod 2). If p > 2, then consider the product
Ix2x---x(p—1)

in Z/pZ. Every term of the product is invertible, and every invertible element

appears in this product. Thus, for every factor k, there is a corresponding

factor & . If these are distinct, they will multiply to give 1, so we only need
to consider those factors which are their own multiplicative inverse.

If k = E_l, then &~ = 1, and so k =1 or k = —1. Thus, every factor in
Ix2x---x(p—1)

will cancel with its multiplicative inverse except for 1 and —1 = p — 1 and
so we have that

Ix2x-x(p—1)=1Ix(p—1)=-1
and hence (p — 1)! = —1 (mod p).

Exercise 13 2021 was a better year for number theory (100 pts)

Oh to be teaching in a year with fewer factors.
i) Determine the number of solutions to the equation
2 —5r+2=0
in
a) Z/43Z,
b) Z/ATZ,
c) Z/20217

Hint: 2021 = 43 x 47, and both 43 and 47 are prime, and in particular
coprime.
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Solution 13

i) Solving this equation sounds hard, so we will use the fact that the num-
ber of roots is determined by the Legendre symbol for the discriminant

A=25-8=17

modulo the various primes.

a) We want to compute (g) Via our various properties, we find that

17 43
) =(=1 21x8 [ =%
()= ()
43 9
pu— _— = _— = 1
() - ()
as 9 = 3? (mod 17). Thus, there are two solutions to the quadratic

equation in Z/43Z.

b) Here, we want to compute (%) Using the various properties, we find
that

(B)-cr()
3)-(
()

Thus, there are two solutions to the quadratic equation in Z/47Z.

c) As ged(43,47) = 1, the Chinese remainder theorem gives a bijection
between
7)2021Z = (Z/43Z) x (Z/ATZ)

that I claim restricts to a bijection between solutions to 22 — 5z +8 =
0 in Z/20217Z and pairs of solutions to the equation in (Z/437Z) x
(Z/ATZ). Clearly, if

2021|(k* — 5k +8)

for some k € Z, then

43|(k* — 5k +8) and 47|(k* — 5k + 8)
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so the map takes solutions in Z /20217 to pairs of solutions in (Z/437) x
(Z/ATZ). And since ged(43,47) = 1, if

43|(k* — 5k +8) and 47|(k* — 5k + 8)

then
2021|(k* — 5k + 8)

so every pair of solutions in (Z/43Z) x (Z/ATZ) gives a solution in
7./2021Z.

Thus, the number of solutions in Z/20217Z is the number of pairs of
solutions in (Z/43Z) x (Z/ATZ), which is 2 x 2 = 4.
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