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These problems are just for practice, to help you warm up for the
homework, and get more familiar with the material. I strongly encourage
you to give them a try, as the best way to learn maths is through practice.
They are arranged by theme, and roughly in order of difficulty within each
theme, with the first few working as good warm-ups, and the remainder
being of similar difficulty to the main exercise. You are welcome to email
me if you have any questions about them. The solutions will be made

available alongside the problems

Exercise 1 Galois extensions of a quadratic field

Find the splitting fieldK of x3−7 overQ(
√
3) and the Galois group Gal(K/Q(

√
3).

Using the Galois correspondence, determine all intermediate subfieldsQ(
√
3) ⊂

F ⊂ K along with the degrees

[F : Q(
√
3)], [K : F ].

Hint: Gal(K/Q) must permute the roots of x3 − 7, so embeds into S3

Solution 1

Let ω = e2πi/3 be a complex root of x3 − 1. I claim K = Q(
√
3, 3
√
7, ω) is

the splitting field of x3 − 7 over Q(
√
3). It is easy to see that x3 − 7 splits

in this field. Any splitting field must contain 3
√
7 and 3

√
7ω, and hence must
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contain ω =
3√7ω
3√7

. Thus, this must be the splitting field. While we could

stop here, it is worth noting that this is basically the simplest presentation.
As [Q( 3

√
7) : Q] = 3, 3

√
7 cannot be an element of the quadratic extension

Q(
√
3) of Q, and ω is complex, so cannot be an element of the real field

Q(
√
3, 3
√
7). As such, x3 − 7 is irreducible over Q(

√
3) and the minimal

polynomial x2 + x+ 1 of ω is irreducible over Q(
√
3, 3
√
7). This implies that

[K : Q(
√
3)] = [K : Q(

√
3,

3
√
7)][Q(

√
3,

3
√
7) : Q(

√
3)] = 2× 3 = 6.

As Q(
√
3) has characteristic 0, every splitting field is a Galois exten-

sion, so G = Gal(K/Q(
√
3)) is an order 6 group and is therefore equal to

S3. Considering the various permutations of 3
√
7, 3

√
7ω and 3

√
7ω2, we find 6

automorphisms

σe :

{
3
√
7 7→ 3

√
7

ω 7→ ω
, σ(12) :

{
3
√
7 7→ 3

√
7ω

ω 7→ ω2

σ(23) :

{
3
√
7 7→ 3

√
7

ω 7→ ω2
, σ(13) :

{
3
√
7 7→ 3

√
7ω2

ω 7→ ω2

σ(123) :

{
3
√
7 7→ 3

√
7ω

ω 7→ ω
, σ(132) :

{
3
√
7 7→ 3

√
7ω2

ω 7→ ω

where we compute

σ•(ω) = σ•

(
3
√
7ω

3
√
7

)
=

σ•(
3
√
7ω)

σ•(
3
√
7)

for each permutation of the roots.
The symmetric group has 4 non-trivial subgroups - 3 subgroups of order

2 and one subgroup of order 3:

⟨σ(12)⟩, ⟨σ(23)⟩, ⟨σ(13)⟩, ⟨σ(123)⟩,

Thus there are 4 proper intermediate subfields, corresponding to the fixed
subfields of each of these groups. We can write a generic element of K in the
form

a+ b
3
√
7 + c

3
√
49 + dω + e

3
√
7ω + f

3
√
49ω
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where a, b, c, d, e, f ∈ Q(
√
3). By explicitly computing elements fixed by the

generators of each subgroup, we find the intermediate subfields

K⟨σ(12)⟩ = Q(
√
3,

3
√
7ω2)

K⟨σ(23)⟩ = Q(
√
3,

3
√
7)

K⟨σ(13)⟩ = Q(
√
3,

3
√
7ω)

K⟨σ(123)⟩ = Q(
√
3, ω)

and Galois correspondence tells us the degrees are

[K : K⟨σ(12)⟩] = |⟨σ(12)⟩| = 2, [K⟨σ(12)⟩ : Q(
√
3)] =

|S3|
|⟨σ(12)⟩|

= 3

[K : K⟨σ(23)⟩] = |⟨σ(23)⟩| = 2, [K⟨σ(23)⟩ : Q(
√
3)] =

|S3|
|⟨σ(23)⟩|

= 3

[K : K⟨σ(13)⟩] = |⟨σ(13)⟩| = 2, [K⟨σ(13)⟩ : Q(
√
3)] =

|S3|
|⟨σ(13)⟩|

= 3

[K : K⟨σ(123)⟩] = |⟨σ(123)⟩| = 3, [K⟨σ(123)⟩ : Q(
√
3)] =

|S3|
|⟨σ(123)⟩|

= 2

Exercise 2 Calculus in an algebra course?!?

Let f(x) = x3+4x+1 be an irreducible polynomial, and letK = Q[x]/(f(x)).
Is K a separable extension of Q? A normal extension? A Galois extension?

Hint: How many real roots does f(x) have? Can it split if we adjoint one
root to Q?

Solution 2

As Q has characteristic 0, K/Q is separable.
As f(x) is a cubic, it has at least one real root. As f ′(x) = 3x2 + 4 > 0,

f(x) is strictly increasing, and so has exactly one real root α. We have that
K ∼= Q(α), which cannot contain the two complex roots, so f(x) cannot split
as a product of linear factors in K. Hence K/Q is not normal, or Galois.
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Exercise 3 Linear independence of square roots

Let K = Q(
√
10,

√
38).

1. Show that K/Q is a Galois extension.

2. Show that [K : Q] = 4.

3. Describe explicitly the elements of Gal(K/Q). To which group is
Gal(K/Q) isomorphic.

4. Sketch the diagram showing all intermediate subfields Q ⊂ F ⊂ K,
ordered by inclusion. Clearly indicate to which subgroup they corre-
spond.

5. Using your knowledge of the intermediate subfields, determine whether√
15 ∈ K.

Solution 3

1. K is the splitting field of f(x) = (x2 − 10)(x2 − 38), and is therefore
normal over Q. Over a field of characteristic 0, this implies K/Q is
Galois.

2. As 38
10

= 17
5

is not a square in Q, x2 − 10 is irreducible over Q(
√
38).

Thus

[Q(
√
10,

√
38) : Q] = [Q(

√
10,

√
38) : Q(

√
38)][Q(

√
38) : Q] = 2×2 = 4.

3. As K/Q is a Galois extension G = Gal(K/Q) is a group of order 4.
Knowing that elements of G must send roots of x2 − 10 to roots of
x2 − 10 and roots of x2 − 38 to roots of x2 − 38, there are exactly 4
possible automorphisms, and so the Galois group must consist of

id :

{√
10 7→

√
10√

38 7→
√
38

, σ :

{√
10 7→ −

√
10√

38 7→
√
38

τ :

{√
10 7→

√
10√

38 7→ −
√
38

, µ :

{√
10 7→ −

√
10√

38 7→ −
√
38

and is clearly isomorphic to (Z/2Z)2.
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4. The Galois group has 3 non-trivial subgroups, and so there are exactly
3 non-trivial intermediate subfields, shown in the diagram below, where

Q(
√
38) = Kσ, Q(

√
85) = Kµ, Q(

√
38) = Kτ

which we can find by computing fixed elements of each subfield explic-
itly by looking at the action on an arbitrary element of K:

a+ b
√
10 + c

√
38 + d

√
85.

5. If
√
15 ∈ K, then Q(

√
15) is an intermediate subfield. As it is a

quadratic extension, it must be equal to one of Q(
√
10), Q(

√
38),

Q(
√
85). But x2 − 15 is irreducible over each of these fields, as 15

10
,

15
38
, and 15

85
are not squares over Q.

Q(
√
10,

√
38)

Q(
√
38) Q(

√
85) Q(

√
10)

Q

Exercise 4 Have I mentioned pentagons enough yet?

Let ζ = e2πi/5 be a primitive root of unity, and let K = Q(ζ). This is a
Galois extension of Q, and we let G = Gal(K/Q). Also define

c =
ζ + ζ

2
=

ζ + ζ−1

2
= cos(2π/5).

1. We know that the minimal polynomial of ζ is the cyclotomic polynomial
Φ5(x). Use the recursion to determine Φ5(x).

2. We have seen that G is a cyclic group. Determine its order and find an
explicit generator of G.

3. Hence or otherwise show that c ̸∈ Q.

Hint: Elements of Q are fixed by G. Do some numerics on the orbit of
c.
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4. Using the Galois correspondence, determine all intermediate subfields
Q ⊂ F ⊂ K.

5. Determine the minimal polynomial of c over Q. Hence determine c
exactly.

Hint: Recall Corollary 5.15

6. Use the Galois correspondence to determine Gal(Q(ζ)/Q(c)), and hence
determine the minimal polynomial of ζ over Q(c). Use this to give an
exact expression for ζ.

Solution 4

1. Since 5 is prime

x5 − 1 = Φ5(x)Φ1(x) = Φ5(x)(x− 1)

and hence

Φ5(x) =
x5 − 1

x− 1
= x4 + x3 + x2 + x+ 1

2. Since K/Q is Galois, |G| = [K : Q] = 4. Every element of G is
determined by its action on ζ, and must act transitively on the set of
roots of Φ5(x). Hence, there is an automorphism σ such that σ(ζ) = ζ2.
We can check that

σ2(ζ) = σ(ζ2) = (σ(ζ))2 = ζ4,

σ3(ζ) = σ(σ2(ζ)) = σ(ζ4) = (ζ2)4 = ζ8 = ζ3

and σ4(ζ) = ζ. This gives all four automorphisms, and so σ is a
generator.

3. According to the Galois correspondence, c ∈ Q if and only if c is fixed
by G, in particular if c is fixed by σ. We can check

σ(c) =
σ(ζ) + σ(ζ−1)

2
=

ζ2 + ζ−2

2
= cos(4π/5) ≈ −0.8

while c ≈ 0.3, so c is not fixed by the Galois group and is therefore not
rational.
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4. There is only one possible non-trivial intermediate subfield, as G ∼=
Z/4Z has only one non-trivial subgroup, generated by σ2. Writing
elements of K in the form

a+ bζ + cζ2 + dζ3

we see that elements fixed by σ2 are those such that

a+ bζ + cζ2 + dζ3 = σ2(a+ bζ + cζ2 + dζ3)

= a+ bζ4 + cζ3 + dζ

= a+ b(−1− ζ − ζ2 − ζ3 − ζ) + cζ3 + dζ2

as
ζ4 + ζ3 + ζ2 + ζ + 1 = 0.

Comparing coefficients, we must have

b = 0, c = d

and so the only intermediate subfield is

Q(ζ2 + ζ3) = Q(cos(4π/5)).

Since

c+ cos(4π/5) =
ζ + ζ2 + ζ3 + ζ4

2
=

−1

2

we must also have
Q(cos(4π/5)) = Q(c).

Alternatively we could also conclude this by noting that Q(c) ̸= Q and
Q(ζ) ̸= Q(c), so Q(c) must be the unique intermediate subfield.

5. Corollary 5.15 tells us that the minimal polynomial of c is∏
β∈G·c

(x− β)

where
G · c = {g(c) | g ∈ G}.

We compute
{c, σ(c), σ2(c), σ3(c)} = {c, σ(c)}
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as sets, and so the minimal polynomial of c is

(x− c)(x− σ(c)) =

(
x− ζ + ζ4

2

)(
x− ζ2 + ζ3

2

)
= x2 − ζ + ζ2 + ζ3 + ζ4

2
x+

(ζ + ζ4)(ζ2 + ζ3)

4

= x2 − (−1)

2
x+

ζ3 + ζ4 + ζ6 + ζ7

4

= x2 +
1

2
x− 1

4
.

Hence

c =
−1±

√
5

2
.

As c > 0, we must have c = −1+
√
5

2
.

6. As Q(c) is fixed by the subgroup generated by σ2, Gal(Q(ζ)/Q(c)) =
⟨σ2⟩. The orbit of ζ under the action of this group is the set

{ζ, σ2(ζ)} = {ζ, ζ4}

and hence the minimal polynomial of ζ over Q(c) is

(x− ζ)(x− ζ4) = x− 2c+ 1.

Hence ζ is one of
2c±

√
4c2 − 4

2
which is more explicitly

−1 +
√
5± i

√
10 + 2

√
5

4
.

As sin(2π/5) > 0, ζ has positive imaginary part and hence

ζ =
−1 +

√
5 + i

√
10 + 2

√
5

4
.

Exercise 5 Our favourite form of extension

Let L/K be a Galois extension with Galois group G = {g1, . . . , gn}. Let
a ∈ K, and show that L = K(a) if and only if g1(a), g2(a),..., gn(a) are
distinct elements of L.
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Solution 5

Suppose L = K(a). Then

n = |G| = [L : K] = [K(a) : K] = degK(a)

and so the minimal polynomial f(x) of a over K has degree n. As L/K is
Galois, it is separable, and so the minimal polynomial of a has n distinct
roots. The Galois group acts transitively on the roots of f(x), and so

|{g1(a), g2(a), . . . , gn(a)}| = n

as the set must contain every root of f(x). Thus g1(a),...,gn(a) are all distinct
elements of L.

Conversely, if g1(a),...,gn(a) are all distinct elements of L, and so the
minimal polynomial of a over K is

f(x) =
n∏

j=1

(x− gj(a)).

In particular, a is algebraic of degree n, and so [K(a) : K] = n. But since
L/K is Galois, [L : K] = |G| = n, we have that

[L : K(a)] =
[L : K]

[K(a) : K]
= 1

and so L = K(a).

Exercise 6 A past exam question

Let f(x) = x4 − 5x2 + 1. This is irreducible over Q, and has a root α ∈ C.
Let K = Q(α). You should not need to compute α explicitly in any of the
following.

1. Express the 4 roots of f(x) in terms of α

Hint: Consider 1
α

2. Show that K/Q is a Galois extension

3. Show that Gal(K/Q) ∼= (Z/2Z)2 and explicitly describe its action on
α
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4. Draw a diagram showing all intermediate subfields Q ⊂ F ⊂ K, and
give an explicit form for each such subfield.

5. Show that K = Q(
√
3,
√
7)

Solution 6

1. As f(−x) = f(x), −α is also a root of f(x). Since the product of the
roots is 1, α ̸= 0, so −α ̸= 0. We also have that f(x−1) = x−4f(x), and
so α−1 is also a root of f(x). As f(1) ̸= 0 and f(−1) ̸= 0, neither ±1
are roots. As such α ̸= α−1. We can similarly check that α−1 ̸= −α, as
neither ±i are roots of f(x). This gives a third root of f(x). A similar
argument shows that the fourth root is −α−1.

2. Clearly K contains all the roots of f(x), so K is the splitting field of
f(x) over Q. As Q has characteristic 0, this implies that K/Q is Galois.

3. We must have that
[K : Q] = deg f(x) = 4

and since it is Galois, the Galois group is of order 4. As the Galois group
acts transitively on the roots of f(x), and is completely determined by
its action on α, we find that the 4 elements of the Galois group must
be

id : α 7→ α, σ : α 7→ −α

τ : α 7→ α−1, µ : α 7→ −α−1.

As each of these has order 2, we must have that

Gal(K/Q) ∼= (Z/2Z)2.

4. The inclusion diagram is given below, showing the three non-trivial
intermediate subfields, corresponding to the subgroups generated by σ,
τ , and µ respectively. As each of these is of order and index 2, we must
have that

[Kσ : Q] = [Kτ : Q] = [Kµ : Q] = 2

and so to describe them, it suffices to find a single irrational element
of K fixed by the appropriate automorphism.
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We note that
σ(α2) = (σ(α))2 = (−α2) = α2.

As α2 is not rational, we therefore have

Kσ = Q(α2).

Furthermore, α2 is a root of f(
√
x) = x2 − 5x+ 1, so we can compute

α2 =
5±

√
21

2

and so Q(
√
21) ⊂ Kσ. As both of these are of degree 2, we therefore

have
Kσ = Q(

√
21).

We next note that
τ(α + α−1) = α−1 + α

and cannot be rational (as otherwise α would satisfy a quadratic equa-
tion), we have that

Kτ = Q(α + α−1).

We must have that α + α−1 satisfies a quadratic, so considering

(α + α−1)2 = α2 + 2 + α−2 =
α4 + 2α2 + 1

α2
=

5α−1 + 2α2 + 1

α2
= 7.

Thus, Q(
√
7) ⊂ Kτ . These are both extensions of degree 2 of Q, and

so we must have
Kτ = Q(

√
7)

Finally,
µ(α− α−1) = −α−1 + α

is fixed by µ, and irrational. Thus

Kµ = Q(α− α−1)

Similarly to the last paragraph

(α− α−1)2 =
5α2 − 1− 2α2 + 1

α2
= 3

and so Q(
√
3) ⊂ Kµ. For reasons of degree

Kµ = Q(
√
3).
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5. Since Q(
√
3) and Q(

√
7) are subfields of K, Q(

√
3,
√
7) is a subfield

of K. As the only field in the diagram containing both Q(
√
3) and

Q(
√
7) is K, the Galois correspondence tells us that we must have

K = Q(
√
3,
√
7).

K

Kσ Kτ Kµ

Q

Exercise 7 Algebra in a calculus course?!?

This exercise is not representative of an exam question, and is essentially
entirely plagiarised from Nicolas Mascot’s version of this course, but is really
neat. Over the course of your calculus courses, you likely developed an im-
plicit intuition for simple cases of Bioche’s rules, which give guidelines for
substitutions to make in order to reduce the integral of a rational function of
trigonometic functions to an integral of a rational function of a variable u.
Here, we attempt to give a Galois-theoretic motivation for these rules.

Let s := sin(x) and c := cos(x) throughout, and consider the field of
rational trigonometric functions C(s, c) over the complex numbers, which
include expressions like

s3c+ is− 3

s+ c+ 17
=

sin3(x) cos(x) + i sin(x)− 3

sin(x) + cos(x) + 17
.

This has two distinguished subfields C(c) and C(s) consisting of rational
functions in cos(x) and sin(x) respectively. We let K = C(c) ∩ C(s) be the
intersection, which contains elements such as 1 and

cos(2x) = 2c2 − 1 = 1− 2s2.

We define two automorphisms of C(s, c) by

µ : f(x) 7→ f(−x), τ : f(x) 7→ f(x+ π)

1. Show that µ and τ generate a group isomorphic to (Z/2Z)2.
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2. Show that the four inclusions

K ⊂ C(c), K ⊂ C(s), C(c) ⊂ C(s, c), C(s) ⊂ C(s, c)

are strict inclusions.

3. Show that each of these four extensions is an algebraic extension of
degree 2.

4. Show that K = C(c2), where c2 = cos(2x).

5. Show that C(s, c)/K is Galois, and show that its Galois group is gen-
erated by µ and τ .

6. Determine the minimal polynomials of t = tan(x) = s
c
and s2 =

sin(2x) = 2sc over K.

7. Using the Galois correspondence, determine all intermediate subfields
K ⊂ F ⊂ C(s, c) and draw an inclusion diagram

8. Determine where the fields C(t), C(s2, c2), and C(s2) lie in this diagram

9. Ponder how this suggests Bioche’s rules

Solution 7

1. This is a direct calculation:

µ2 = τ 2 = e

where e denote the identity automorphism. We also have that

µτ = τµ

and so we have an abelian group generated by two elements of order 2.
The only such group is (Z/2Z)2.

2. If C(c) = K, then C(c) ⊂ C(s), and so we can write

c = f(s)
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for some rational function f(z) ∈ C(z). This is a statement about
functions:

cos(x) = f(sin(x))

and this must hold for all x ∈ C. By taking x = 0,x = π, we must have
f(0) = 1 and f(0) = −1, so this cannot hold. Similarly, if C(s) = K,
then C(s) ⊂ C(c), and the same argument holds.

To see that C(s) ̸= C(s, c), we note that if these are equal, then
cos(x) = f(sin(x)) for some rational function f(z) ∈ C(z), and the
same arguments again shows that this cannot hold. Similarly C(c) ̸=
C(s, c).
Alternatively, note that every element of C(c) is an even function, and
s is an odd function, so cannot be an element of C(c), and similarly
C(s) cannot contain c (or c2).

3. As 2c2 − 1 ∈ K, [C(c) : K] ≤ 2. It cannot be 1, as the inclusions are
strict, so it must be 2. Similarly, 2s2 − 1 ∈ K, and the same argument
shows [C(s) : K] = 2.

Finally, as s2 + c2 = 1, we must have that

[C(s, c) : C(s)] ≤ 2 ≥ [C(s, c) : C(c)].

In fact, we must have equality, as the inclusions are strict.

4. We know that C(c2) ⊂ K, and so by tower law

[K : C(c2)] =
[C(c) : C(c2)]
[C(c) : K]

=
[C(c) : C(c2)]

2
.

Since 2c2 − 1 = c2, [C(c) : C(c2)] ≤ 2, and so

[K : C(c2)] ≤ 1 ⇒ [K : C(c2)] = 1.

Thus, they are equal.

5. By tower law

[C(s, c) : K] = [C(s, c) : C(c)][C(c) : K] = 2× 2 = 4

and so
|Gal(C(s, c)/K)| ≤ 4.
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We have 4 automorphisms of C(s, c) in e, µ, τ and µτ , each of which
fix K = C(c2):

µ(cos(2x)) = cos(−2x) = cos(2x), τ(cos(2x)) = cos(2x+2π) = cos(2x).

Hence these are all elements of Gal(C(s, c)/K), and so

|Gal(C(s, c)/K)| ≥ 4.

Therefore the Galois group has order 4, and so the extension is Galois.
(Recall that an extension is Galois if and only if the order of the Galois
group is equal to the degree of the extension.)

6. The Galois orbit of t is

{t, µ(t), τ(t), µτ(t)} = {t,−t, t,−t}

and so the minimal polynomial is

(x− t)(x+ t) = x2 − t2 = x2 − s2

c2
=

1− c2
1 + c2

.

Similarly, the Galois orbit of s2 = 2sc is

{s2,−s2, s2,−s2}

and so the minimal polynomial is

x2 − s22 = x2 − (1− c22).

7. The only non-trivial subgroups of the Galois group are ⟨µ⟩, ⟨τ⟩, and
⟨µτ⟩, and so we have three non-trivial intermediate subfields, with in-
clusions as shown in the diagram below. The fixed subfields are com-
puted as follows.

We know that, for each subgroup H,

[C(s, c)H : K] =
|(Z/2Z)2|

|H|
=

4

2
= 2.

The element c is fixed by µ and so C(c) ⊂ C(s, c)µ, and must be equal
for reasons of degree.
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Similarly, , the element s is fixed by µτ , and so C(s, c)µτ = C(s).
Finally, we have seen that t is fixed by τ . As c2 = 1

1+t2
, K ⊂ C(t),

so it is an intermediate subfield fixed by τ . Hence C(t) ⊂ C(s, c)τ .
Since µ(t) ̸= t, t cannot be an element of K, and so we must have that
C(t) = C(s, c)τ .
We also have that s2 is fixed by τ , but not µ, so we must actually have

C(t) = C(s, c)τ = K(s2) = C(s2, c2).

(We cannot take C(s2), as it does not contain K = C(c2), so it is not
an intermediate subfield.)

8. We have already done this as part of the previous part! There was a
bit of a trap here, as C(s2) does not appear in the diagram, since it
does not contain K.

9. Suppose f(x) ∈ C(s, c). If f(−x) = −f(x), then

g(x) :=
−f(x)

sin(x)

is invariant under µ and so g(x) ∈ C(c). Thus there exists a rational
function r(z) such that g(x) = r(cos(x)). Letting u = cos(x), then

f(x)dx = r(cos(x))(− sin(x))dx = r(cos(x))d cos(x) = r(u)du.

Similarly, if f(π − x) = −f(x), then

g(x) :=
f(x)

cos(x)

is invariant under µτ and so g(x) ∈ C(s). Thus, there exists a rational
function r(z) ∈ C(z) such that g(x) = r(sin(x)). Letting u = sin(x),
we find

f(x)dx = r(sin(x)) cos(x)dx = r(sin(x))d sin(x) = r(u)du.

If f(x+ π) = −f(x), then

g(x) := cos2(x)f(x)
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is invariant under τ and so g(x) ∈ C(t). Thus, there exists a rational
function r(z) ∈ C(z) such that g(x) = r(tan(x)). Letting u = tan(x),
we find

f(x)dx = r(tan(x)) sec2(x)dxr(tan(x))d tan(x) = r(u)du.

If two of the above properties hold, then

g(x) :=
−f(x)

2 sin(2x)

is invariant under the entire Galois group, and so g(x) ∈ K. Thus,
there exists a rational function r(z) ∈ C(z) such that g(x) = r(cos(2x)).
Letting u = cos(2x), we find

f(x)dx = −2r(cos(2x)) sin(2x)dx = r(cos(2x)d cos(2x) = r(u)du

This explains 4 of the 5 Bioche rules!

C(s, c)

C(c) C(t) = C(s2, c2) C(s)

K
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