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These problems are just for practice, to help you warm up for the
homework, and get more familiar with the material. I strongly encourage
you to give them a try, as the best way to learn maths is through practice.
They are arranged by theme, and roughly in order of difficulty within each
theme, with the first few working as good warm-ups, and the remainder
being of similar difficulty to the main exercise. You are welcome to email
me if you have any questions about them. The solutions will be made

available alongside the problems

Exercise 1 Abstract computations

1. Show that x3 − 2x− 2 is irreducible over Q

2. Denote by α a root of of the polynomial. Express each of

1

α
,

1

1 + α
,

1

1 + α2

in the form
a+ bα + cα2, a, b, c ∈ Q.

Solution 1

1. This is irreducible by Eisenstein’s criterion for p = 2.
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2. We first want to find a, b, c such that

(a+ bα + cα2)α = 1

or equivalently

1 = aα + bα2 + cα3 = aα + bα2 + c(2α + 2)

as α3 = 2α + 2. As 1, α, α2 form a basis, we can compare coefficients
to find

1 = 2c

0 = a+ 2c

0 = b

and hence

a = −1, b = 0, c =
1

2
⇒ 1

α
= −1 +

α2

2
.

We similarly can find a, b, c ∈ Q such that

(a+ bα + cα2)(1 + α) = 1

and hence

a+ 2c = 1

b+ a+ 2c = 0

b+ c = 0

which implies that
1

1 + α
= −1− α + α2.

Finally, we can find a, b, c ∈ Q such that

(a+ bα + cα2)(1 + α2) = 1

and hence, using α4 = 2α2 + 2α, we must have

a+ 2b = 1

3b+ 2c = 0

a+ 2c = 0

which implies that

1

1 + α2
=

3

5
+

α

5
− 3α2

10
?
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Exercise 2 Finding splitting fields

1. Compute the degree of the splitting field of x4 − 6 over Q and give a
nice Q-basis for the splitting field.

2. Compute the degree of the splitting field of x12 − 1 over Q and give a
nice Q-basis.

3. Show that the splitting fields of x12 − 1 and (x4 − 1)(x3 − 1) coincide.

Solution 2

The solution to both of these problems is essentially to add elements to Q
until we obtain a field in which the polynomial splits, and then verify that
this field is minimal. The easiest place to start is, if possible, solving the
equation in C.

1. We can easily check that in C

x4 − 6 = (x− 4
√
6)(x+

4
√
6)(x− 4

√
6i)(x+

4
√
6i)

and so x4 − 6 splits in

Q(
4
√
6,

4
√
6i) = Q(

4
√
6, i)

To see that it is minimal, note that the splitting field (viewed as a

subfield of C) must contain 4
√
6 and

4√6i
4√6

= i, so Q( 4
√
6, i) is a subfield

of the splitting field. Hence Q( 4
√
6, i) is the splitting field.

To compute the degree, we apply tower law

[Q(
4
√
6, i) : Q] = [Q(

4
√
6, i),Q(

4
√
6)][Q(

4
√
6) : Q].

As x4 − 6 is the minimal polynomial of 4
√
6 over Q, we must have that

[Q(
4
√
6) : Q] = 4

Similarly, x2 +1 is the minimal polynomial of i over Q( 4
√
6), as Q( 4

√
6)

is a subfield of the reals and x2 + 1 has no real roots. Hence

[Q(
4
√
6, i),Q(

4
√
6)] = 2
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and so
[Q(

4
√
6, i),Q] = 8

with a basis given by

{1, 4
√
6,
√
6,
√
6

4
√
6, i,

4
√
6i,

√
6i,

√
6

4
√
6i}

2. First, we note that the roots of x12 − 1 in C are

{ζk | 0 ≤ k < 12

where ζ = e
2πi
12 = e

πi
6 . Thus, x12 − 1 splits in Q(ζ), and this is clearly

minimal, as the splitting field must contain ζ. Thus, we just need to
compute the degree of this extension, which will be the degree of the
minimal polynomial of ζ. Note that

ζ6 = eπi = −1

and so ζ is a root of x6 + 1. This splits further as

x6 + 1 = (x2 + 1)(x4 − x2 + 1)

The roots of x2+1 are ±i, so ζ is a root of x4−x2+1. This has no real
roots, and we can check that there is no quadratic factorisation over
the rationals

x4 − x2 + 1 = (x2 + ax+ b)(x2 + cx+ d)

It is therefore the minimal polynomial, so

[Q(ζ) : Q] = 4

with a basis given by
{1, ζ, ζ2, ζ3}.

3. Denote by ω = e
2πi
3 and i two of the complex roots of (x3 − 1)(x4 − 1).

It is easy to check that this polynomial splits as a product of linear
factors in Q(ω, i). Furthermore, note that

ω = ζ4, i = ζ3
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and so
Q(ω, i) = Q(ζ).

We claim that (x3−1)(x4−1) cannot split in any smaller field. Indeed,
the splitting field of this polynomial must contain

ω

i
= e

2πi
3

−πi
2 = e

πi
6
=ζ

and hence must contain Q(ζ). Therefore, the splitting field of (x3 −
1)(x4 − 1) is Q(ζ).

Exercise 3 Modelling F8

Let K = F2[x]/(x
3 + x2 + 1) and L = F2[y]/(y

3 + y + 1).

1. Show that both K and L are fields.

2. Determine the number of elements of K and L.

3. By giving an explicit map, show that K ∼= L

Hint: What is the minimal polynomial of x+ 1 over F2.

Solution 3

1. Recall that the maximal ideal of F2[x] correspond to irreducible poly-
nomials. As the quotient of a ring by a maximal ideal is a field, it
suffices to show that x3 + x2 + 1 and x3 + x + 1 are irreducible over
F2. If they were not irreducible, they would have a root, as there are
degree 3, and it is easy to check that neither 0 nor 1 are roots. Hence,
they are both irreducible, and K and L are fields.

2. In both K and L, 1, x, x2 forms a basis over F2, and so there are 23 = 8
elements.

3. Let y = x+1. I claim that if x3 + x2 +1 = y3 + y+1 = 0. And this is
easy to check

(x+ 1)3 + (x+ 1) + 1 = x3 + x2 + x+ 1 + x+ 1 + 1 = x3 + x2 + 1
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Hence the ring homomorphism

F2[x] → F2[y]

x 7→ y − 1

takes the ideal (x3 + x2 + 1) to the ideal (y3 + y + 1). Hence, this
induces a homomorphism of the quotient rings K → L. This is a
field homomorphism, and is therefore an injective map between two
sets of the same cardinality. It is therefore a bijection and hence an
isomorphism.

Exercise 4 More splitting fields

Let f(x) ∈ K[x] be a polynomial of degree n, and let L/K be its splitting
field. Show that

[L : K] ≤ n!

Solution 4

We proceed by induction on the degree of f(x). Clearly this is true if f(x)
is linear. Otherwise, we can consider the field K1 = K[x]/(f(x)). Denoting
by α the image of x in this field, we have that

f(x) = (x− α)f1(x)

in K1[x]. The splitting field of f(x) over K will be the splitting field of f1(x)
over K1, which, by induction has degree at most

[L : K1] ≤ (deg f1)! = (n− 1)!

as deg f1 = n− 1. Furthermore, as deg f = n, we have that

[K1 : K] ≤ n

Thus
[L : K] = [L : K1][K1 : K] ≤ (n− 1)!× n = n!
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Exercise 5 Complexity

Let f(x) = x3+x+1 ∈ Q[x]. You may assume freely that this is irreducible,
and let K be the field Q[x]/(f(x))

1. Is K/Q a separable extension? Why?

2. Is K/Q a normal extension? Why

Hint: f(x) is strictly increasing. Given any root α ∈ C, K ∼= Q(α).
So?

3. Is K/Q a Galois extension? Why?

Solution 5

1. Yes, as we are working over a field of characteristic 0.

2. No. f(x) is strictly increasing over R, which implies it has exactly
1 real root. Hence K is isomorphic to a subfield of R, which cannot
contain the complex roots of f(x). Thus f(x) doesn’t split in K, and
so K is not normal.

3. No, as every Galois extension is normal and K is not

Exercise 6 The real Galois group

Determine Gal(C/R) (by which I mean tell me what group it is isomorphic
to).

Solution 6

As C = R(i), any R-automorphism of C is entirely determined by where i is
mapped to. We must map i to another root of its minimal polynomial x2+1,
so either

i 7→ i or i 7→ −i

The first of these is the identity map, while the second satisfies φ(φ(a+bi)) =
a+ bi, and so squares to the identity. Thus Gal(C/R) ∼= Z/2Z.

7


