
MAU34106 - Galois Theory

Practice Sheet 1

Trinity College Dublin

Course homepage

These problems are just for practice, to help you warm up for the
homework, and get more familiar with the material. I strongly encourage
you to give them a try, as the best way to learn maths is through practice.
They are arranged by theme, and roughly in order of difficulty within each
theme, with the first few working as good warm-ups, and the remainder
being of similar difficulty to the main exercise. You are welcome to email
me if you have any questions about them. The solutions will be made

available alongside the problems

Exercise 1 Irreducible polynomials of low degree

1. Let K be a field. Show that a polynomial of degree 2 or 3 is irreducible
in K[x] if and only if does not have a root in K.

2. Pick a field K and give an example of a degree 4 polynomial that is
not irreducible, but does not have a root in K.

3. Show that x2 + x+ 1 is irreducible in F2[x].

4. Show that x2 + 1 is irreducible in F3[x].

5. Show that x3 − 2x− 2 is irreducible in Q[x]

Hint: Recall Gauss’ Lemma: a polynomial with integer coefficients is
irreducible in Q[x] if and only if it is irreducible in Z[x]
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Solution 1

1. If a polynomial f(x) of degree greater than 1 has a root a ∈ K, then
f(x) = (x−a)g(x), so f(x) is not irreducible. If f(x) is not irreducible,
then f(x) = g(x)h(x) for some non-constant g(x), h(x) ∈ K[x] with

deg(f) = deg(g) + deg(h)

In particular, if deg(f) = 2, then we must have deg(g) = deg(h) =
1, as they are both non-zero integers. If deg(f) = 3 then one of
deg(g), deg(h) is 1 and the other is 2. In either case, f(x) has a linear
factor (x− a) ∈ K[x] for some a ∈ K, and so

f(a) = (a− a)h(a) = 0.

2. Lets take K = Q. We know that x2 + 1 has no roots in Q, so the
polynomial

f(x) = (x2 + 1)2 = x4 + 2x2 + 1

is a reducible polynomial of degree 4, which has no roots in Q.

3. As it is degree 2, it suffices to show that it has no roots in F2:

02 + 0 + 1 = 1 ̸= 0, 12 + 1 + 1 = 1 ̸= 0

Hence, the polynomial is irreducible.

4. As it is degree 2, it suffices to check that it has no roots in F3:

02 + 1 = 1 ̸= 0, 12 + 1 = 2 = −1 ̸= 0, (−1)2 + 1 = 2 = −1 ̸= 0.

Hence, the polynomial is irreducible.

5. As it is degree 3, it is reducible if and only if it has a root in Q. By
Gauss’ Lemma, it suffices to check for roots in Z. Any such root must
divide the constant term, so we just need to check ±1, ±2. Letting

f(x) = x3 − 2x− 2

we see that

f(−2) = −6, f(−1) = −1, f(1) = −3, f(2) = 2

and so f(x) is irreducible.
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Exercise 2 Factorisation in finite fields

Recall the finite field of order 2 F2 = {0, 1}. Write down every polynomial
of degree exactly 4 as a product of irreducibles.

Remark: Although we will not present this method in the solution, it is
arguably faster to write down every irreducible polynomial of degree at most
3, and consider all possible products of these of degree 4. All polynomials not
in this list of products will be irreducible

Solution 2

As mentioned in the remark, actually factorising the polynomials is the worst
way to go about this. We will show a couple of examples of how it can be
done though, just for sake of illustration

There are 16 such polynomials. They factorise as follows:

x4 = x4,

x4 + 1 = (x+ 1)4,

x4 + x = x(x+ 1)(x2 + x+ 1),

x4 + x2 = x2(x+ 1)2,

x4 + x3 = x3(x+ 1),

x4 + x+ 1 = x4 + x+ 1,

x4 + x2 + 1 = (x2 + x+ 1)2,

x4 + x3 + 1 = x4 + x3 + 1,

x4 + x2 + x = x(x3 + x+ 1),

x4 + x3 + x = x(x3 + x2 + 1),

x4 + x3 + x2 = x2(x2 + x+ 1),

x4 + x2 + x+ 1 = (x+ 1)(x3 + x2 + 1),

x4 + x3 + x+ 1 = (x+ 1)2(x2 + x+ 1),

x4 + x3 + x2 + 1 = (x+ 1)(x3 + x+ 1),

x4 + x3 + x2 + x = x(x+ 1)3,

x4 + x3 + x2 + x+ 1 = x4 + x3 + x2 + x+ 1.

We’ll look at three of these computations in detail: 1 is a root of x4 +
x2 + x+ 1, and so it is divisible by (x− 1) = (x+ 1). Thus, we must have

x4+x2+x+1 = (x+1)(x3+ax2+bx+1) = x4+(a+1)x3+(a+b)x2+(b+1)x+1.
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Comparing coefficients, we can check

a+ 1 = 0, a+ b = 1, b+ 1 = 1

which implies
a = −1 = 1, b = 0.

Finally, we check that x3 + x2 + 1 has no roots in F2, and is therefore irre-
ducible.

For x4 + x2 + 1, we know it cannot have a linear factor, as it does not
have a root. If it has a quadratic factor, then there exist a, b, c, d ∈ F2 such
that

x4+x2+1 = (x2+ax+b)(x2+cx+d) = x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd.

Comparing coefficients, we must have that

b = d = 1, a = c, ac = 1, a = c = 1.

Finally, to see that x4 + x3 + x2 + x+1 is irreducible, we note that it has
no roots in F2 and hence no linear factors. If it has a quadratic factor, then,
as in the last case, we can find a, b, c, d,∈ F2 such that

a+ c = 1, b+ d+ ac = 1, ad+ bd = 1, bd = 1.

The last equality implies b = d = 1. a+ c = 1 implies one of a or c is 0, and
hence ac = 0. But then b+ d+ ac = 1+1+0 = 0 ̸= 1. So no such quadratic
factors can exist.

The others can be worked out similarly, but honestly, just work out the
irreducibles in lower degree and consider their products.

Exercise 3 Square roots and simple extensions

1. Let K be a field of characteristic other than 2 and let L be an extension
of degree 2. Show that L = K(

√
α) for some α ∈ K.

Hint: Pick a K-basis {1, β} of L, and note that the quadratic formula

ax2 + bx+ c ⇒ x =
−b±

√
b2 − 4ac

2a

works in any field of characteristic other than 2.
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2. We say that c ∈ K is a square if there exists d ∈ K such that c = d2.
Choose non-zero a, b ∈ K, and pick square roots

√
a,
√
b in some field

extension of K. Show that K(
√
a) = K(

√
b) if and only if a

b
is a square

in K.

Solution 3

1. We pick a basis 1, β of L over K. Since dimK(L) = 2, we must have
that {1, β, β2} is a linearly dependent set, and so there exist a, b, c ∈ K,
not all 0 such that

aβ2 + bβ + c = 0.

Furthermore, we can assume a ̸= 0, as β and 1 are linearly independent.
Thus β is a root of

ax2 + bx+ c

and so

β =
−b±

√
b2 − 4ac

2a

Without loss of generality, we assume it is the positive square root. Let
α = b2 − 4ac. Then

√
α = 2aβ + b ∈ L is an element of L. It suffices

to show that we can write every element of L in the form A+B
√
α for

some A,B ∈ K.

Take an element C +Dβ ∈ L, where C,D ∈ K. This is equal to

C +Dβ =

(
C − Db

2a

)
+

D

2a

√
α

and so taking A =
(
C − Db

2a

)
and B = D

2a
gives the result.

2. If K(
√
a) = K(

√
b) = K, then both square roots are in K. Hence both

a and b are squares in K, and so a
b
is a square in K.

If K(
√
a) = K(

√
b) ̸= K, then neither square root is in K. Since the

fields are equal, there exist α, β ∈ K such that

√
a = α + β

√
b.

As
√
a ̸∈ K, we must have β ̸= 0.
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Squaring both sides, we get

a = (α2 + bβ2) + 2αβ
√
b

Since {1,
√
a} is a basis, we must have

α2 + bβ2 = a, 2αβ = 0.

Since β ̸= 0, and K has characteristic different to 2, this implies that
α = 0 and so

a = bβ2 ⇒ a

b
= β2.

So a
b
is a square in K.

Conversely, if a
b
= β2 is a square in K, then a = β2b and and

√
a =

±
√
b, which clearly generates the same field extension as

√
b.

Exercise 4 Degree calculations and minimal polynomials

1. Show that
[Q(

√
2,
√
3) : Q] = 4

2. Show that
[Q(

√
2,
√
3,
√
6) : Q] < 8

3. Determine the minimal polynomial of
√
2 +

√
3 over Q. Be sure to

justify minimality.

Solution 4

1. It is easy to check, either by direct inspection and Gauss’ lemma, or by
Eisenstein’s criterion, that x2 − 2 is irreducible over Q and is therefore
the minimal polynomial of

√
2. This implies that

[Q(
√
2) : Q] = 2.

If we can show that x2 − 3 is irreducible over Q(
√
2), then tower law

implies that

[Q(
√
2,
√
3) : Q] = [Q(

√
2)(

√
3) : Q]

= [Q(
√
2)(

√
3) : Q(

√
2)][Q(

√
2 : Q] = 4
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Unfortunately, we cannot just apply Eisenstein’s criterion. We will have
to show x2−3 is irreducible directly. Suppose it is not irreducible. Then√
3 ∈ Q(

√
2) and so √

3 = a+ b
√
2

with a, b ∈ Q, b ̸= 0 (as
√
3 is irrational). Squaring both sides we find

3 = a2 + 2b2 + 2ab
√
2.

We must have a = 0, as {1,
√
2} are a basis over Q, and so there must

exist b ∈ Q such that
3 = 2b2.

The argument is then concluded by giving your favourite proof of the

irrationality of
√

3
2
. My choice today is to note that, by letting b = r

s

for some integers r, s ∈ Z, we have that

3s2 = 2r2.

The power of 2 in the prime factorisation of the left hand side is even,
while the power of 2 on the right hand side is odd. This is impossible,
so no such b can exist.

2. Note that
√
6 =

√
2
√
3 ∈ Q(

√
2,
√
3), and so

Q(
√
2,
√
3,
√
6) = Q(

√
2,
√
3)

is of degree 4 < 8.

3. We give two approaches. The first involves computing a polynomial
with

√
2 +

√
3 via resultants

C(x) = Resy(y
2 − 2, (y − x)2 − 3) = det


1 0 1 0
0 1 −2x 1
−2 0 x2 − 3 −2x
0− 2 0 x2 − 3


which we can compute to be

C(x) = x4 − 10x2 + 1
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I claim this is irreducible. By Gauss’ lemma, if it has a rational root,
it has an integer root, which must divide 1. Checking x = ±1, we see
neither of these are roots.

So suppose we can factorise it into quadratics:

x4 − 10x2 + 1 = (x2 + ax+ b)(x2 + cx+ d)

= x4 + (a+ c)x3 + (b+ d+ ac)x2 + (ad+ bc)x+ bd

Comparing coefficients, we must have

a+ c = 0, b+ d+ ac = −10, ad+ bc = 0, bd = 1

By Gauss Lemma, we have a, b, c, d ∈ Z, so b = d = ±1. From this, as
a = −c, we must have that

−a2 = ac = −10− b− d =

{
−12 if b = 1

−8 if b = −1

Neither of these have integer solutions, so no such factorisation exists.
Thus, the minimal polynomial of

√
2 +

√
3 is x4 − 10x2 + 1.

Alternatively, we can try the method of optimism and squaring: Let
x =

√
2 +

√
3. Then

x2 = 2 + 3 + 2
√
6 = 5 + 2

√
6.

Therefore
(x2 − 5)2 = (4

√
6)2 = 24

and so
x4 − 10x2 + 1 = 0.

This gives that
√
2 +

√
3 is a root of x4 − 10x2 + 1, which we have

previously shown to be irreducible. This means that it is the minimal
polynomial.

Remark 1. This is an example of an irreducible polynomial to which we
cannot apply Eisenstein’s criterion, even with a shift in variable!

Exercise 5 Classified

Using the results of Exercise 3, classify all degree 2 extensions of R.
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Solution 5

From Exercise 3, every quadratic extension is of the form R(
√
a) for some

non-zero non-square a ∈ R (i.e. a < 0), and

R(
√
a) = R(

√
b)

if and only if a
b
is a square (i.e. non-negative/positive since a ̸= 0). This

means two quadratic extensions R(
√
a) and R(

√
b) are equal if a

b
> 0. This

occurs if and only if a and b have the same sign. As such, every negative num-
ber a gives the same extension. Thus, there is a unique quadratic extension
of R given by R(

√
−1).

Exercise 6 Eisenstein won’t help you here

Show that f(x) = x105 − 9 is irreducible over Z.
Hint: The roots of f(x) are 105

√
9e

2πik
105 for k = 0, 1, . . . , 104. Suppose

we can factorise f(x) = g(x)h(x) into polynomials with integer coefficients.
What must those coefficients look like?

Solution 6

Suppose we can factorise f(x) = g(x)h(x) into a product of polynomials of
degrees deg(g), deg(h), deg(g) + deg(h) = 105. Exactly one of these degrees
must be even. Without loss of generality, take it to be deg(g). The constant
coefficient of g, up to a sign, is the product of all the roots of g(x). Each

of these roots is of the form 105
√
9e

2πik
105 for some k, and so has absolute value

105
√
9. Therefore the constant coefficient of g(x) is

9
2ℓ
105 = 3

4ℓ
105

for some ℓ > 0, with
2ℓ = deg(g) < 105

This can only be an integer if 4ℓ
105

is an integer, which requires that 105|ℓ. But
0 < ℓ < 105, so no such ℓ exists. Thus, g(x) cannot have integer coefficients.
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Exercise 7 Hungry for power?

Consider the first three symmetric power sums in Q[x1, x2, x3]:

h1(x1, x2, x3) = x1 + x2 + x3,

h2(x1, x2, x3) = x2
1 + x2

2 + x2
3,

h3(x1, x2, x3) = x3
1 + x3

2 + x3
3.

1. Write h1, h2, h3 in terms of the elementary symmetric polynomials

e1(x1, x2, x3) = x1 + x2 + x3,

e2(x1, x2, x3) = x1x2 + x1x3 + x2x3,

e3(x1, x2, x3) = x1x2x3.

2. Let α1, α2, α3 be the roots of

x3 − 6x2 + 21x+ 15.

Determine α3
1 + α3

2 + α3
3.

3. Determine a polynomial

x3 + ax2 + bx+ c

with roots β1, β2, β3 such that

β1 + β2 + β3 = 2,

β2
1 + β2

2 + β2
3 = 42,

β3
1 + β3

2 + β3
3 = 62.

Hint: Try writing ek in terms of hℓ.

4. Hence or otherwise solve

β1 + β2 + β3 = 2,

β2
1 + β2

2 + β2
3 = 42,

β3
1 + β3

2 + β3
3 = 62.
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Solution 7

1. The easy one is h1 = e1. The second power sum h2 is degree 2, so it is
a linear combination of

e21 = x2
1 + x+

2 x
2
3 + 2(x1x2 + x1x3 + x2x3)

and e2. Comparing coefficients, it is easy to see

h2 = e21 − 2e2.

Similarly, h3 must be a linear combination of e31, e1e2 and e3. Expanding
these out and comparing coefficients, we find

h3 = e31 − 3e1e2 + 3e3

2. This is
h3(α1, α3, α3) = e31 − 3e1e2 + 3e3.

From the Vieta formulas, we know that

e1 = 6, e2 = 21, e3 = −15

so
h3 = 216− 378− 45 = −207.

3. We have that e1 = h1, and

h2 = e21 − 2e2 = h2
1 − 2e2 ⇒ e2 =

1

2
(h2

1 − h2).

Similarly, we find

e3 =
1

6
h3
1 −

1

2
h1h2 +

1

3
h3.

Evaluating these on β1, β2, β3, we therefore have

e1 = 2, e2 = −19, e3 = −20

which means, via the Vieta formulas, that β1, β2, β3 are the roots of

x3 − 2x2 − 19x+ 20.
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4. We know that β1, β2, β3 are roots of

x3 − 2x2 − 19x+ 20.

which we know can be solved in radicals, but we can try and find a
rational root. It is not too hard to see that x = 1 is a root, and so we
compute

x3 − 2x2 − 19x+ 20 = (x− 1)(x2 − x− 20) = (x− 1)(x+ 4)(x− 5).

Thus, up to reordering

β1 = 1, β2 = −4, β3 = 5.
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