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1 Introduction

Historically, Galois theory was motivated by the study of solutions to polynomial
equations, with the end goal of making solving them “easy”. Here, “easy”1 could
be taken to mean something along the lines of

• Writing down exact formulas for the solutions,

• Reduction of the equation to a simpler one,

• Saying literally anything about a number α other than α is a number such
that f(α) = 0.

We aim to provide this information by using symmetries of the solutions.
Just as complex solutions to polynomials with real coefficients come in complex
conjugate pairs (symmetry), the roots of a general polynomial will satisfy some
symmetry constraints relative to the field in which its coefficients are defined.
For example, if f(x) ∈ Q[x] and

√
2 is a root of f(x), then so is −

√
2. These

are the types of symmetries that Galois theory aims to exploit to say something
about solutions to equations.

Before we can make much progress into Galois theory, we need to do a fair
bit of field theory first, and so, rather than dive into a refresher on rings, we will
first briefly discuss one of the most famous results of Galois theory, and why it
is maybe surprising (or not): the insolubility of the quintic.

Theorem 1.1. There does not exist a general formula, expressible in terms of
radicals (square roots, cube roots, etc) describing the roots of a quintic equation

x5 + ax4 + bx3 + cx2 + dx+ e = 0
1To quote Dotsenko: “One cannot find quotation marks large enough to emphasize the

futility of that notion”
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1.1 Solving polynomial equations

Linear equations

Given a (monic) linear equation

x+ b = 0

we can easily find the solution x = −b.

Quadratic equations

Given a quadratic equation

x2 + bx+ c = 0

we can easily solve this, if b = 0. However, by completing the square, we obtain
an equivalent equation (

x+
b

2

)2

+ c− b2

4
= 0

which implies

x+
b

2
= ±

√
b2 − 4c

2

and hence

x =
−b±

√
b2 − 4c

2

giving the familiar formula with a = 1.

Cubic equations

Given a cubic equation
x3 + ax2 + bx+ c = 0

we can really only solve this if a = b = 0. Completing the cube and letting
y = x+ a

3 gives us a simpler equation

y3 + py + q = 0, p = b− a3

3
, q = c− ab

3

but still not one we can easily solve. However, we can employ a very clever trick
due to the Italian mathematicians Tartaglia and Cardano, and reduce this to
a quadratic equation. Suppose we have a solution of the form y = z1 + z2 for
some complex z1, z2. Then

(z1 + z2)
3 + p(z1 + z2) + q = 0

which we can rearrange as

(z31 + z32 + q) + (z1 + z2)(3z1z2 + p) = 0.
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Hence, if we could find z1, z2 such that

z31 + z32 = −q, and 3z1z2 = −p

we would have a solution! Trying to solve these equations simultaneously is
possible, but it is easier to try and solve

z31 + z32 = −q, and z31z
2
2 =

−p3

27

for z31 and z32 . Indeed, doing so gives that z
3
1 , z

3
2 are the solutions to the quadratic

t2 + qt− p3

27
= 0.

Solving this for z31 , and considering the three complex cube roots, we can de-
termine three possible pairs (z1, z2), as

z2 =
−p
3z1

.

Hence, we get three values for z1 + z2, corresponding exactly to the three roots
of our original equation.

Remark 1.2. While this does give solutions in terms of cube and square roots, it
is usually awful. Even the real root of a cubic equation will usually be expressing
in terms of a sum of cube roots of complex numbers.

Quartic equations

To solve the quartic, we can try a similar game: introduce three new quantities
that we can write our roots in terms of, and try to find a cubic equation that
they are roots of. By letting y = x+ a

4 , we can always reduce solving

x4 + ax3 + bx2 + cx+ d = 0

to solving an equation of the form

y4 + py2 + qy + r = 0

for some p, q, r. Suppose this equation has solutions y1, y2, y3, y4. Then, fac-
torising our polynomial, we must have

(y − y1)(y − y2)(y − y3)(y − y4) = y4 + py2 + qy + r

and hence, by comparing coefficients

0 = y1 + y2 + y3 + y4, (1)

p = y1y2 + y1y3 + y1y4 + y2y3 + y2y4 + y3y4, (2)

−q = y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4, (3)

r = y1y2y3y4. (4)
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We introduce 3 new quantities

u := y1 + y2 = −y3 − y4, (5)

v := y1 + y3 = −y2 − y4, (6)

w := y1 + y4 = −y2 − y3. (7)

Using the first equality from Equations 1, we can recover the roots from u, v, w:

y1 =
u+ v + w

2
, (8)

y2 =
u− v − w

2
, (9)

y3 =
−u+ v − w

2
, (10)

y4 =
−u− v + w

2
. (11)

Using Equations 5 and 1, we find that

u2 + v2 + w2 = −2p,

u2v2 + u2w2 + v2w2 = p2 − 4r,

uvw = −q

and hence u2, v2, w2 are the roots of the polynomial

(t− u2)(t− v2)(t− w2) = t3 + 2pt2 + (p2 − 4r)t− q2

which we know how to solve! Thus, by solving this for u2, v2, w2, and picking
square roots such that uvw = −q, we can find the solutions y1, y2, y3, y4 to our
original quartic

Remark 1.3. You might wonder if there are analogues of Equations 5 and 8
in the cubic case, and there are! If y1, y2, y3 are the roots of

y3 + py + q = 0

then they are related to z1, z2 by
y1 = z1 + z2, z1 = y1+ωy2+ω2y3

2 ,

y2 = ω2z1 + ωz2, and

y3 = ωz1 + ω2z2, z2 = y1+ω2y2+ωy3

2

where ω = e
2πi
3 is a complex root of x3 − 1.

So what happens with the quintic? Why can’t we find clever combinations
of the roots that let us reduce to solving a quartic? Well, that is why we will
try to figure out.
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2 Preliminaries

2.1 First reminders

The following is a crash course in fields and rings, that should mostly in theory
be familiar to you. Any additional results that we need from the through of
field rings and modules will be added to Appendix A as we use them. If it turns
out this review is comprehensive, Appendix A will be removed.

Definition 2.1. A (commutative) ring R is a set R equipped with two binary
operations + and · (addition and multiplication), and two distinguished elements
0R and 1R such that:

• (R,+) forms an abelian group with identity element 0R,

• (R, ·) form a (commutative) monoid with identity element 1R,

• Addition distributes over multiplication:

(a+ b) · c = a · c+ b · c
a · (b+ c) = a · b+ a · c

We denote by R× the set of elements with multiplicative inverses

R× = {r ∈ R | there exists s ∈ R such that rs = 1R}

This forms a group under multiplication.

In this course, we will exclusively deal with commutative rings, i.e. rings
for which rs = sr, and so will be lazy and just use the term “ring” to mean
“commutative ring”. Furthermore, we will just write 0 and 1 for 0R and 1R if
there is no risk of confusion.

Definition 2.2. A (commutative) ring is called and integral domain if ab = 0
implies that a = 0 or b = 0.

Of particular relevance for us are rings in which every non-zero element is
invertible. Every such ring is an example of an integral domain.

Definition 2.3. A field is a commutative ring K in which 0 ̸= 1 and K× =
K \ {0}.

Definition 2.4. An ideal of a (commutative) ring R is a subset I ⊂ R such
that

• If a, b ∈ I, then a+ b ∈ I,

• If a ∈ R and b ∈ I, then ab ∈ I.

An ideal is called a prime ideal if ab ∈ I implies a ∈ I or b ∈ I. An ideal is
called maximal if it is not contained in any larger proper ideal

I ⊊ J ⊊ R
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Remark 2.5. Recall that given an ideal I of a ring R, we can define the quotient
ring R/I in terms of the cosets of I. An ideal I is prime if and only if R/I is
an integral domain, and an ideal I is maximal if and only if R/I is a field.

A number of important results about rings of polynomials rely on informa-
tion about the structure of their ideals, specifically that they are generated by
a single element.

Definition 2.6. An ideal I is called principal if it is of the form

I = (r) = rR = {rs | s ∈ R}

for some r ∈ R. An integral domain R is called a PID (principal ideal domain)
if every ideal is principal.

Theorem 2.7. Every PID is a UFD (unique factorisation domain). This means
that their elements can be uniquely factored into irreducibles, up to reordering.
In particular, the greatest common divisor (gcd) and least common multiplie
(lcm) are defined in a PID.

Theorem 2.8 (Bezout’s identity). In a PID R, given r, s ∈ R, there exist
u, v ∈ R such that

ur + vs = gcd(r, s).

Theorem 2.9. Let K be a field. Then the polynomial ring K[x] is a Eu-
clidean domain: given f(x), g(x) ∈ K[x], with g(x) ̸= 0, there exists a unique
q(x), r(x) ∈ K[x] with deg(r) < deg(g) such that

f(x) = g(x)q(x) + r(x).

Corollary 2.10. K[x] is a PID and hence a UFD.

Corollary 2.11. Non-zero prime ideal of K[x] are maximal and of the form
(f(x)) for an irreducible polynomial f(x) ∈ K[x].

Finally, we recall the notion of ring and field homomorphisms.

Definition 2.12. A ring homomorphism f : R→ S is a map such that

f(x+ y) = f(x) + f(y), and f(xy) = f(x)f(y)

for all x, y ∈ R and such that

f(1R) = 1S , f(0R) = 0S .

A field homomorphism is a ring homomorphism between two fields.

Field homomorphisms are very structured, and are therefore quite limited.
For many pairs of “nice” fields, there are only finitely many field homomorphism
between them!
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Proposition 2.13. Let f : K → L be a field homomorphism. Then

1. For all x, y ∈ K with y ̸= 0, f
(

x
y

)
= f(x)

f(y) ,

2. The map f is injective,

3. The image of f is a subfield of L.

Proof. To prove the first point, note that

f

(
x

y

)
f(y) = f(

x

y
· y) = f(x)

and hence (
x

y

)
=
f(x)

f(y)
.

The easiest argument to prove the second is to note that ker f is an ideal of
K, and that the only ideals of a field are {0} and K. Since f(1) = 1, the kernel
cannot be K and must therefore be the zero ideal. Hence f is injective.

We can also prove this more directly, as if x ̸= y, then x − y ̸= 0, and so it
is invertible. Thus

f(x− y)f(
1

x− y
) = f(1) = 1

and so f(x− y) is invertible and therefore non-zero. Thus f(x)− f(y) = f(x−
y) ̸= 0 and so f(x) ̸= f(y).

To see the final point, we either check the axioms of a field directly, or use
the first isomorphism theorem which says that given a ring homomorphism

ϕ : R→ S

we have that imϕ ∼= R/ kerϕ. In the case of f : K → L, the kernel is {0} and
so we get that im f ∼= K must be a field.

2.2 Polynomials and Symmetric Polynomials

Throughout this section, we fix a field K. We start by recalling a basic fact
about polynomials.

Proposition 2.14. Given a polynomial f(x) ∈ K[x], the remainder on division
by (x−a) is f(a). In particular, a is a root of f(x), if and only if (x−a) divides
f(x)

Proof. As K[x] is a Euclidean domain, there exist q(x), r(x) ∈ K[x] such that

f(x) = (x− a)q(x) + r(x).

Furthermore, as deg r < deg x−a = 1, we must have that r(x) = c is a constant.
Evaluating both sides of the equality at x = a, we find

f(a) = (a− a)q(a) + c = c

as claimed.
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Corollary 2.15. If α1, . . . , αk are distinct roots of a polynomial f(x) ∈ K[x],
then

f(x) = (x− α1)(x− α2) · · · (x− αk)g(x)

for some polynomial g(x) ∈ K[x]. In particular, a polynomial of degree n has
at most n roots.

Recall that not every polynomial inK[x] has a root inK: x2+1 does not have
a root in R. However, the fundamental theorem of algebra tells us that every
polynomial with real coefficients has a root in the larger field C. Throughout
the following, we will often assume that, given a polynomial f(x) ∈ K[x], we
can find a larger field L ⊃ K such that f(x) has a root in L.

We will eventually prove that such an L exists, but for now we will treat it
as a given.

With this in mind, Corollary 2.15 has an immediate application for us in the
Vièta formulas.

Theorem 2.16 (Vièta). If a polynomial f(x) ∈ K[x]

f(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an

has exactly n (possibly repeating) roots α1, . . . , αn (possibly in some larger field
containing K), then

a1 = −
∑

1≤i1≤n

αi1

a2 =
∑

1≤i1<i2≤n

αi1αi2

...

ak = (−1)k
∑

1≤i1<i2<···<ik≤n

αi1αi2 . . . αik

...

an = (−1)nα1α2 . . . αn

Proof. We must have that

f(x) = (x− α1)(x− α2) . . . (x− αn).

Expanding this out and comparing coefficients gives the desired result.

These expressions are of particular importance and are called the elementary
symmetric polynomials in α1, . . . , αn.

Definition 2.17. A polynomial P (x1, . . . , xn) ∈ K[x1, . . . , xn] is called sym-
metric if it is invariant under any permutation of its variables:

P (x1, . . . , xn) = P (xσ(1), . . . , xσ(n))

9



for all σ ∈ Sn.
The elementary symmetric polynomials in x1, . . . , xn are

e1 =
∑

1≤i1≤n

xi1

e2 =
∑

1≤i1<i2≤n

xi1xi2

...

ek =
∑

1≤i1<i2<···<ik≤n

xi1xi2 . . . xik

...

en = x1x2 . . . xn

Example 2.18. The elementary symmetric polynomials in x1, x2, x3 are

e1 = x1 + x2 + x3,

e2 = x1x2 + x1x3 + x2x3,

e3 = x1x2x3

Theorem 2.19. Every symmetric polynomial P (x1, . . . , xn) ∈ K[x1, . . . , xn]
can be written as a K-linear combination of products of elementary symmetric
polynomials.

Proof. We will try to prove this by a Gram-Schmidt like argument. We will
introduce an order on monomials, show that we can always find a product of
elementary symmetric polynomials with a given smallest monomial, and then
subtract off the product corresponding to the smallest monomial in a given sym-
metric polynomial, and repeat this process until we get the desired combination.

First we note that in any symmetric polynomial P (x1, . . . , xn), the monomial
xa1
1 x

a2
2 . . . xan

n must appear with the same coefficient as

xa1

σ(1)x
a2

σ(2) . . . x
an

σ(n) = x
aσ−1(1)

1 x
aσ−1(2)

2 . . . x
aσ−1(n)
n .

Next we define an order on monomials by setting

xa1
1 x

a2
2 . . . xan

n ≺ xb11 x
b2
2 . . . xbnn

if ak < bk for the largest k for which they are not equal. More explicitly, if
an < bn, or an = bn and an−1 < bn−1, or an = bn and an−1 = bn−1 and
an−2 < bn−2, ...

For example, in K[x1, x2, x3], we have that

1 ≺ x1 ≺ x21 ≺ x31 ≺ x2 ≺ x1x2 ≺ x21x2 ≺ x22 ≺ x1x
2
2 ≺ x1x2x3 ≺ x33 ≺ · · ·
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Given any polynomial P (x1, . . . , xn), we call the smallest monomial with
respect to this order the lowest term. If P (x1, . . . , xn) is a symmetric polynomial,
the lowest term xa1

1 . . . xan
n must have that

a1 ≥ a2 ≥ · · · ≥ an

For elementary symmetric polynomials ek(x1, . . . , xn), the lowest term is x1x2 . . . xk.
Furthermore, this order is multiplicative: if

xa1
1 x

a2
2 . . . xan

n ≺ xb11 x
b2
2 . . . xbnn and xc11 x

c2
2 . . . xcnn ≺ xd1

1 x
d2
2 . . . xdn

n

then
xa1+c1
1 xa2+c2

2 . . . xan+cn
n ≺ xb1+d1

1 xb2+d2
2 . . . xbn+dn

n .

In particular, this implies that the lowest term of a product is the product of
the lowest terms and hence the lowest term of

er11 e
r2
2 . . . ernn

is
xr1+r2+···+rn
1 xr2+r3+···+rn

2 . . . xrnn

Thus, if P (x1, . . . , xn) is a symmetric polynomial of total degree N , with
lowest term xa1

1 . . . xan
n , then the product

ea1−a2
1 ea2−a3

2 . . . ean
n

has the same lowest term. Hence, for some c ∈ K, the symmetric polynomial

P (x1, . . . , xn)− cea1−a2
1 ea2−a3

2 . . . ean
n

has degree at most N with a larger lowest term. As there are only finitely
many monomials of degree at most N , we can repeat this process until there
are no monomial left, giving P (x1, . . . , xn) in terms of elementary symmetric
polynomials.

Example 2.20. The polynomial x21 + x22 + x23 is symmetric, with lowest term
x21x

0
2x

0
3. The corresponding product of elementary symmetric polynomials is

e2−0
1 e0−0

2 e0−0
3 = e21 = (x1 + x2 + x3)

2.

Subtracting this off, we have that

x21 + x22 + x23 − e21 = −2(x1x2 + x1x3 + x2x3) = −2e2

Hence
x21 + x22 + x23 = e21 − 2e2.
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Example 2.21. The polynomial

f(x1, x2, x3) = x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x22x3 + x2x

2
3

is symmetric with lowest term x21x2x
0
3. This corresponds to

e2−1
1 e1−0

2 e03 = e1e2

We find that

f(x1, x2, x3)− e1e2 =x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x22x3 + x2x

2
3

− (x1 + x2 + x3)(x1x2 + x2x3 + x1x3)

=− 3x1x2x3 = −3e3

and so f(x1, x2, x3) = e1e2 − 3e3.

Example 2.22. The polynomial

f(y1, y2, y3, y4) = (y1 + y2)(y3 + y4) + (y1 + y3)(y2 + y4) + (y1 + y4)(y2 + y4)

corresponding to u2 + v2 + w2 in our solution of the quartic is symmetric, we
have that

f(y1, y2, y3, y4) = 2e2

Corollary 2.23. Let f(x) ∈ K[x] and let α1, . . . , αn be the roots of f (pos-
sibly repeating, possibly in a larger field containing K). Then any symmetric
polynomial in α1, . . . , αn is an element of K, even if α1, . . . , αn are not.

Proof. Any symmetric polynomial can be written in terms of elementary sym-
metric polynomials, and by the Vièta formulas, elementary symmetric polyno-
mials evaluated at α1, . . . , αn are equal (up to a sign) to the coefficients of f(x),
which are elements of K. Hence, any symmetric polynomial in α1, . . . , αn can
be written in terms of the coefficients of f and in particular is an element of
K.

Example 2.24. If α1, . . . , α4 are the roots of

y4 + py2 + qy + r

then u2 + v2 + w2 = 2e2(y1, . . . , y4) = 2p.
If α1, . . . , α4 are the roots of

x4 + 2x3 − x2 + 5x+ 3

then we have that

α2
1 + α2

2 + α2
3 + α2

4 = e21 − 2e2

= (−2)2 − 2(−1) = 6 ∈ Q

12



2.3 Resultants and Discriminants

Suppose we have polynomials A(x), B(x) ∈ K[x], and let α1, . . . , αm be the
roots of A(x) (possibly with repetition and in some large field containing K).
Then the product

∏m
j=1B(αj) is symmetric in α1, . . . , αm, and hence can be

expressed in terms of the coefficients of A(x). In particular, it is an element of
K. Via objects called resultants, we can give an explicit formula for it.

Definition 2.25. Let

A(x) = a0x
m + a1x

m−1 + · · ·+ am,

B(x) = b0x
n + b1x

n−1 + · · ·+ bn

be two polynomials in K[x]. We define the resultant of A and B to be the
(m+ n)× (m+ n) determinant

Res(A,B) = det



a0 0 0 · · · 0 b0 0 0 · · · 0

a1 a0 0 · · · 0 b1 b0 0 · · · 0
... a1 a0

. . .
...

... b1 b0
. . .

...

am
...

. . .
. . . 0

...
. . .

. . .
. . .

...

0 am
. . .

. . . a0 bn
. . .

. . .
. . . b0

0 0 am
. . . a1 0 bn

. . .
. . . b1

... 0
. . .

. . .
... 0 0 bn

. . . b2
...

. . .
...

...
. . .

...

0 · · · am 0 · · · bn


where there are n columns with coefficients from A and m columns with coeffi-
cients from B

Example 2.26. Let A(x) = x2 + 2x+ 2, B(x) = x3 + 3x2 + 4x+ 8. Then the
resultant of A and B is

Res(A,B) = det



1 0 0 1 0

2 1 0 3 1

2 2 1 4 3

0 2 2 8 4

0 0 2 0 8


= 36

The properties of the resultant are neatly summarised here. We will not
prove this result, though a proof will be given in Appendix B

13



Proposition 2.27. Let A(x), B(x) ∈ K[x]. Then:

1. Res(A,B) ∈ K. If A,B have coefficients in some subring R ⊂ K, then
Res(A,B) ∈ R, e.g. integer coefficients gives an integer resultant.

2. If, in some sufficiently larger field,

A(x) = a

m∏
j=1

(x− αj) and B(x) = b

n∏
k=1

(x− βk)

then

Res(A,B) = anbm
m∏
j=1

n∏
k=1

(αj − βk) = an
m∏
j=1

B(αj)

= (−1)mnbm
n∏

k=1

A(βk) = (−1)mn Res(B,A)

3. Res(A,B) = 0 if and only if A and B have a common root in some large
enough field.

Example 2.28. If K = Q, A(x) = x2 + 2 and B(x) = x2 − 3, then we can
compute the resultant (which must be an integer) as the determinant

Res(A,B) = det


1 0 1 0

0 1 0 1

2 0 −3 0

0 2 0 −3


but in this case it is actually easier to use our knowledge of the roots to compute
the determinant. Since B(x) has roots ±

√
3, we must have that

Res(A,B) = (−1)4A(
√
3)A(−

√
3) = 52 = 25.

Definition 2.29. Let A(x) ∈ K[x] have degree n > 0, and leading coefficient
a¿ Then we define the discriminant of A to be

∆(A) = disc(A) =
(−1)

n(n−1)
2

a
Res(A,A′)

Theorem 2.30. Let A(x) ∈ K[x] has roots α1, . . . , αn (possibly in some larger
field). Then

disc(A) = (−1)
n(n−1)

2 an−2
n∏

j=1

A′(αj)

= a2n−2
∏

1≤j<k≤n

(αj − αk)
2

14



Proof. The first equality follows immediately from Proposition 2.27. In order
to see the second equality, note that is

A(x) = a

n∏
k=1

(x− αk)

then

A′(x) = a

n∑
j=1

∏
1≤k≤n
k ̸=j

(x− αk)

and so
A′(αj) = a

∏
k ̸=j

(αj − αk).

Thus

n∏
j=1

A′(αj) = an
∏

1≤j,k≤n
k ̸=j

(αj − αk)

= an
∏

1≤j<k≤n

(αj − αk)
∏

1≤k<j≤n

(αj − αk)

= (−1)
n(n−1)

2 an
∏

1≤j<k≤n

(αj − αk)
∏

1≤k<j≤n

(αk − αj).

Relabelling j ↔ k in the last product, we get

n∏
j=1

A′(αj) = (−1)
n(n−1)

2 an
∏

1≤j<k≤n

(αj − αk)
2

from which the claim follows.

Corollary 2.31. A polynomial A(x) ∈ K[x] has repeated roots if and only if
disc(A) = 0.

Example 2.32. Let A(x) = ax2 + bx+ c. Then

disc(A) =
−1

a
Res(ax2 + bx+ c, 2ax+ b)

=
−1

a
det


a 2a 0

b b 2a

c 0 b


=

−1

a
(ab2 + 4a2c− 2ab2) = b2 − 4ac

which should look very familiar. Indeed, we know that the number of roots of a
quadratic equation, and the field in which they lie, is completely determined by
this expression.

15



3 Field Extensions and splitting fields

3.1 Field extensions and algebraic numbers

Definition 3.1. Let K and L be fields such that K ⊂ L. Then K is a subfield
of L and L is an extension of K. We usually write L/K for L an extension of
K.

Given a (necessarily injective) field homomorphism ι : K → L, we sometimes
identify K with its image and call K a subfield of L, but this is generally bad
practice.

Definition 3.2. Given a field extension L/K and elements α1, . . . , αn ∈ L, we
write K(α1, . . . , αn) for the smallest subfield of L containing K and α1, . . . , αn.

Similarly, given a subring R ⊂ L and α1, . . . , αn ∈ L, we write

R[α1, . . . , αn] = {f(α1, . . . , αn) | f(x1, . . . , xn) ∈ R[x1, . . . , xn]}

for the smallest subring of L containing R and α1, . . . , αn.

Example 3.3. Viewing C as an extension of R, we have that C = R(i).
The field Q(π) can be identified with the field of rational functions in π:

Q(π) = {f(π)
g(π)

| f(x), g(x) ∈ Q[x], g(π) ̸= 0}

The ring Z[
√
2] is equal to the set

Z[
√
2] = {a+ b

√
2 | a, b ∈ Z}

Definition 3.4. Given a field extension L/K and an element α ∈ L, we say that
α is algebraic over K if there exists non-zero f(x) ∈ K[x] such that f(α) = 0
in L. Otherwise we say α is transcendental over K. If K = Q, we usually just
refer to numbers as being algebraic or transcendental.

For algebraic α, the set

Vα = {f(x) ∈ K[x] | f(α) = 0}

forms a non-zero ideal in K[x]. Since K[x] is a PID, there exists a non-zero
(monic) polynomial mα(x) ∈ K[x] such that

Vα = (mα(x))

We call this the minimal polynomial of α. It is the unique monic polynomial of
minimal degree of which α is a root. If it is of degree n, we call α algebraic of
degree n over K.

Remark 3.5. Recall that minimal polynomials are irreducible!

Definition 3.6. If L/K is a field extension such that every α ∈ L is algebraic
over K, we call L an algebraic extension of K.

16



Theorem 3.7. Let L/K be a field extension and suppose α ∈ L is algebraic of
degree n over K. Then

K[α] = K(α)

and K[α] is a vector space of dimension n over K.

Proof. We first show that K[α] is an n-dimensional K-vector space. It is clearly
a vector space over K. We claim that

{1, α, α2, . . . , αn−1}

forms a basis of K[α].
To see that they are linearly independent, suppose there exist constants

cn−1, . . . , c0 ∈ K, not all 0, such that

c0 + c1α+ · · ·+ cn−1α
n−1 = 0.

Then α is a root of the polynomial

f(x) = cn−1x
n−1 + · · ·+ c1x+ c0 ∈ K[x]

which has degree at most n− 1. But this is a contradiction, as α is algebraic of
degree n, and so the minimal polynomial of α has degree n > deg f . Hence, we
must have f(x) = 0, and so c0 = c1 = · · · = cn−1 = 0.

To see that they span K[α], we note that we can write every element of K[α]
in the form g(α) for some g(x) ∈ K[x]. We can divide g(x) by the minimal
polynomial mα(x) of α to get

g(x) = mα(x)q(x) + r(x)

for some r(x) ∈ K[x] with deg(r) < deg(mα) = n. Letting x = α, we see that

g(α) = mα(α)q(α) + r(α) = 0 + r(α) = r(α)

and so there exist r0, r1, . . . , rn−1 ∈ K such that

g(α) = r0 + r1α+ · · ·+ rn−1α
n−1.

HenceK[α] is a vector space of dimension n overK with basis 1, α, . . . , αn−1.
Finally to show that K[α] = K(α), we note that it suffices to show that K[α]
is a field. Clearly

K[α] ⊂ K(α)

and K(α) is the minimal such field, so if K[α] is a field, it must equal K(α).
Thus, all we need to do is show that any non-zero element β ∈ K[α] is invertible
in K[α].

Since 1, α, . . . , αn−1 span K[α], there exists a polynomial h(x) ∈ K[x] of
degree at most n − 1 such that β = h(α). Since mα(x) is irreducible and
deg h < degmα, we must have that

gcd(h,mα) = 1

17



and hence there exist u(x), v(x) ∈ K[x] such that

u(x)h(x) + v(x)mα(x) = 1.

Evaluating this at x = α, we find

u(α)h(α) = 1

and so h(α) is invertible with inverse u(α) ∈ K[α]. Thus K[α] is a field and
K[α] = K(α).

Example 3.8. Over K = Q, if α =
√
5, then mα(x) = x2 −

√
5, and

Q[
√
5] = {a+ b

√
5 | a, b ∈ Q}

To determine the inverse of an element of this set, we multiply by a “conjugate”
element:

1

a+ b
√
5
=

1

a+ b
√
5

a− b
√
5

a− b
√
5
=

a

a2 − 5b2
− b

a2 − 5b2

√
5

Over K = R, the element α = i has minimal polynomial mα(x) = x2 + 1,
and

R[i] = {a+ bi | a, b ∈ R} = C
To determine the inverse of an element, we multiply above and below by the
complex conjugate

1

a+ bi
=

1

a+ bi

a− bi

a− bi
=

a

a2 + b2
− b

a2 + b2
i

In contrast, if K = Q and α = π (or α = e or another transcendental
number) then we have that

Q[π] ∼= Q[x] ̸∼= Q(x) ∼= Q(π)

Example 3.9. Is
√
2 algebraic over Q[

√
5]? Yes, as it is a root of x2−2, which

is an element of Q[
√
5][x].

What is its degree over Q[
√
5]? Well, its minimal polynomial must divide

x2−2, so it is either degree 1 or 2, depending on whether x2−2 is irreducible over
Q[

√
5]. If the minimal polynomial has degree 1, then we must have

√
2 ∈ Q[

√
5],

and so there exist a, b ∈ Q such that
√
2 = a+ b

√
5 ⇒ 2 = a2 + 5b2 + 2ab

√
5.

If a, b ̸= 0, this implies
√
5 ∈ Q, which is false. If b = 0, this would imply√

2 ∈ Q, which is false. If a = 0, this implies
√

2/5 ∈ Q, which is false. Thus,

no such a, b exist, and
√
2 has degree 2 over Q[

√
5].

This implies that Q[
√
5][

√
2] = Q[

√
5,
√
2] is a vector space of dimension 2

over Q[
√
2] with basis {1,

√
2}. Hence, every element of Q[

√
2,
√
5] is of the

form
(a+ b

√
5) + (c+ d

√
5)
√
2 = a+ b

√
5 + c

√
2 + d

√
10.
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The set of algebraic numbers over a given ground field K can be shown to
be a field, using a slight variation on resultants!

Theorem 3.10. Let L/K be a field extension. Given α, β ∈ L, algebraic over
K, we have that

α+ β, α− β, αβ,
α

β

are all algebraic over K (assuming β ̸= 0 for division.)

Proof. First we note that it suffices to show that

α+ β, αβ, −β, 1

β

are all algebraic over K (where they are defined) These are all trivial (or unde-
fined) if α = 0 or β = 0, so we may assume they are both non-zero. Let A(x)
be the minimal polynomial of α and B(x) be the minimal polynomial of β.

Then note that −β is a root of B̃(x) := B(−x) ∈ K[x], so −β is algebraic
over K. Similarly, if degB = n, then 1

β is a root of B(x) := xnB( 1x ) ∈ K[x].

Hence 1
β is algebraic over K.

To show that α+ β is algebraic, we consider the polynomials

A(y), B(x− y) ∈ K[x][y] ⊂ K(x)[y]

as polynomials in y with coefficients in K[x] ⊂ K(x). Computing the resultant

C(x) := Resy(A(y), B(x− y))

of these (where the entries in our determinant will be polynomials in K[x], we
obtain a polynomial C(x) ∈ K[x].

Let α = α1, . . . , αm be the roots of A(x) in some large enough field extension,
and let β = β1, β2, . . . , βn be the roots of B(x) in some large enough field
extension. From the properties of resultants, we have that

C(x) =

m∏
j=1

B(x− αj) =

m∏
j=1

n∏
k=1

(x− αj − βk).

The j = k = 1 factor is (x − α − β) and so C(α + β) = 0. Hence α + β is
algebraic.

To show that αβ is algebraic, we can make a very similar argument. Define

D(x) = Resy(A(y), y
nB(

x

y
) ∈ K[x].

Expanding this out as a product of linear factors in the same way, we quickly
find D(αβ) = 0 and so αβ is algebraic over K.
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Example 3.11. The sum
√
2 +

√
5 is algebraic over Q and is a root of

Res(y2 − 2, y2 − 2xy + x2 − 5) = det


1 0 1 0

0 1 −2x 1

−2 0 x2 − 5 −2x

0 −2 0 x2 − 5


which we can compute to be x4 − 14x2 + 9.

Remark 3.12. In general, the polynomial we get from a resultant computa-
tion will not be irreducible and is not the minimal polynomial. In this case, it
happened to be irreducible, but this is unusual!

3.2 Degree of extensions and tower law

Definition 3.13. Let L/K be a field extension. WE call the dimension of L as
a vector space over K the degree of L over K

[L : K] := dimK L

If [L : K] <∞, we call L a finite extension of K

Example 3.14.
[Q(

√
2) : Q] = 2

[Q(α) : Q] =

{
degα if α is algebraic,

∞ if α is transcendental.

Theorem 3.15. Every finite extension is algebraic

Proof. Let L/K be finite of degree n and let α ∈ L. Then 1, α, α2, . . . , αn are
n+1 elements in an n-dimensional vector space, and so are linearly dependent:
there exist c0, . . . cn ∈ K, not all 0 such that

c0 + c1α+ · · ·+ cnα
n = 0.

Thus, α is a root of

f(x) = cnx
n + · · ·+ c1 + c0 ∈ K[x]

and is therefore algebraic over K. This holds for every element of L, so L is
algebraic over K.

Corollary 3.16. If α is algebraic over K, so is every element of K[α].

Remark 3.17. The converse does not hold! Indeed, the field of complex num-
bers algebraic over Q is an infinite extension. Even more directly, the field
extension

Q(
√
2,
√
3,
√
5, . . .)/Q

is infinite.
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Proposition 3.18 (Tower Law). If K ⊂ L ⊂M is a chain of finite extensions,
then

[M : K] = [M : L][L : K]

Proof. Let [L : K] = r and [M : L] = s. Suppose that ℓ1, . . . , ℓr is a basis of
L over K, and m1, . . . ,ms is a basis of M over L. We claim {ℓjmk}1≤j≤r

1≤k≤s
is a

basis of M over K, from which the claim follows.
First note that if m ∈M , there exist λ1, . . . , λs ∈ L such that

m =

s∑
k=1

λkmk.

For each k, there exist µ1,k, . . . , µr,k ∈ K such that

λk =

r∑
j=1

µj,kℓj .

Hence

m =

r∑
j=1

s∑
k=1

µj,kℓjmk.

Thus {ℓjmk} is a spanning set of M over K. To see that they are linearly
independent over K, suppose there existed µj,k ∈ K, not all 0 such that

r∑
j=1

s∑
k=1

µj,kℓjmk = 0.

This implies that
s∑

k=1

 r∑
j=1

µj,kℓj

mk = 0.

Since m!, . . . ,ms are linearly independent over L we must have

r∑
j=1

µj,kℓj = 0

for each k = 1, . . . , s. Furthermore, since ℓ1, . . . , ℓr are linearly independent
over K, we must have µj,k = 0 for all j, k.

Remark 3.19. This also holds for infinite extensions!

Example 3.20. We have seen that

[Q(
√
5) : Q] = 2, and [Q(

√
5,
√
2) : Q(

√
5] = 2

and hence
[Q(

√
5,
√
2) : Q] = 2× 2 = 4

which fits given that we have seen that every element of this set can be written
as a Q-linear combination of 1,

√
2,

√
5 and

√
10.
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Definition 3.21. Let L/K and M/K be two field extensions. A K-morphism
f : L → M is a field homomorphism such that f |K = id i.e f(a) = a for all
a ∈ K. We denote by HomK(L,M) the set of K-morphisms L → M , and by
AutK(L) the set of K-automorphisms of L.

3.3 Application to constructable numbers

Suppose we are given two points in the plane, which we will call 0 and 1. A
point is called constructable if we can obtain it from 0 and 1 in finitely many
ruler-and-compass constructions. Identifying the plane with the complex plane
C, we obtain a subset of C, which we call the set of constructable numbers.
With same careful geometry, we can show that this set is a subfield of C that is
closed under square roots:

• Addition corresponds to construction of a parallelogram

• Negation corresponds to reflection through 0

• Multiplication and division of are performed by constructing similar tri-
angles

• Square roots correspond to bisecting an angle and a neat trick with a
semicircle of radius x+ 1.

In fact, we can say something stronger: every step of a ruler-and-compass
construction involves solving either a linear or quadratic equation. The inter-
section of two lines corresponds to a linear equation, while the intersection of
circle with either a line or a circle corresponds to solving a quadratic equation.
Suppose we are constructing α ∈ C, and denote by Ki the subfield of C we get
at step i of the process. We must have that

[Ki+1 : Ki] ∈ {1, 2}

depending on whether or not step i+ 1 requires us to solve a “new” quadratic
equation. This implies the following result.

Theorem 3.22. A complex number α is constructable if and only if there exists
a chain of extensions

Q = K0 ⊊ K1 ⊊ K2 ⊊ · · · ⊊ Kn

such that [Ki+1 : Ki] = 2 for each i and α ∈ Kn.

Corollary 3.23. If α is constructable, then α is algebraic of degree 2m for some
m.

Proof. We have that α is in a finite extension, and is therefore algebraic. Thus

degα = [Q(α) : Q] =
[Kn : Q]

[Kn : Q(α)]
=

2n

[Kn : Q(α)]
= 2m

for some m ≤ n.
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Example 3.24. This implies that we cannot construct 3
√
2 using a ruler and

compass, as this has minimal polynomial x3 − 2, and hence degree 3. Similarly,
we cannot trisect a generic angle θ, as that corresponds to finding a root of
x3 − eiθ, which is usually irreducible.

3.4 Abstract field extensions

Up until now, we have been assuming that our polynomials had root in some
sufficiently large field extension, without ever worrying about the existence of
such a field extension. We will now show that this was a perfectly acceptable
assumption, by constructing the necessary fields.

First recall that if f(x) ∈ K[x] is an irreducible polynomial, the ideal (f) ∈
K[x] is a maximal ideal and so the quotient ring K[x]/(f) is a field.

Proposition 3.25. Let f(x) ∈ K[x] be irreducible and let L = K[x]/(f). Then
L is a field extension of K of degree [L : K] = deg f containing a root of f(x)

Proof. By the same arguments as in Theorem 3.7, L has a basis {1, x, x2, . . . , xn−1}
over K, where n = deg f . The K-span of 1 is a copy of K contained in L, and
so L is an extension of K of degree [L : K] = n. Finally note that the image of
x under the natural projection

K[x] → K[x]/(f)

is a root of f , as f(x) = 0 in the quotient.

Not only does this give us a field extension in which f(x) has a root, but it
is essentially the (minimal) field extension in which f(x) has a root

Theorem 3.26. Suppose L/K and M/K are two extensions of K and sup-
pose we have α ∈ L and β ∈ M with the same minimal polynomial over K.
Then there exists a unique K-morphism ϕ : K[α] → K[β] such that ϕ(α) = β.
Furthermore, it is an isomorphism.

The set of K-morphisms K[α] → L are in bijection with the roots of the
minimal polynomial mα of α in L.

Proof. We first consider the morphism ϕ. If such a morphism exists, it is unique,
as any morphism K[α] → K[β] is uniquely determined by the image of α.

As ϕ(aγ) = aϕ(γ) for all a ∈ K and γ ∈ K[α], ϕ is a K-linear map between
two vector spaces. As ϕ is a field homomorphism, it is injective, and

dimK K[α] = degmα = degmβ = dimK K[β]

so it is an injective linear map between two vector spaces of the same dimension.
Hence ϕ must be an isomorphism.

As for the existence, the only possible obstruction to ϕ being well defined is
the requirement that mα(α) = 0, and so we must have that

mα(β) = mα(ϕ(α)) = ϕ(mα(α)) = 0.
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This holds, as mα = mβ is the common minimal polynomial of α and β.
For the second half of the statement, note again that a K-morphism ψ :

K[α] → L is completely determined by ψ(α). Since

0 = ψ(0) = ψ(mα(α)) = mα(ψ(α))

we must have that ψ(α) is a root of mα in L, and we can easily check that every
such root gives a well defined K-morphism.

Corollary 3.27. For every extensionM/K containing a root α of an irreducible
polynomial f(x) ∈ K[x], there exists a unique K-morphism

K[x]/(f) →M

x 7→ α

Example 3.28. The field R[x]/(x2+1) is spanned by 1 and x, where x2+1 = 0.
We have 2 R-morphisms to C:

x 7→ i,

x 7→ −i.

Similarly, we have that

Q[x]/(x3 − 2) ∼= Q[
3
√
2] ∼= Q[ω

3
√
2 ∼= Q[ω2 3

√
2]

where ω is a complex root of x3 − 1 = 0. The three “standard” fields correspond
to the three Q-morphisms

Q[x]/(x3 − 2) → C.

By iterating this process, we can always construct a field extension in which
a polynomial f(x) has all its roots. In such a field f(x) splits as a product of
linear factors.

Definition 3.29. Let f(x) ∈ K[x]. A splitting field of f(x) is a field extension
M/K in which f splits as a product of linear factors, and is minimal with this
property.

Remark 3.30. If α1, . . . , αn are the roots of f(x), then a splitting field is
K(α1, . . . , αn), though this might not be the best representation of the splitting
field.

Example 3.31. Consider f(x) = x3 − 2 over Q. Even though f has a root in
Q( 3

√
2), this is not a splitting field as we can only factorise f as

f(x) = (x− 3
√
2)(x2 +

3
√
2x+

3
√
4)

into a product of a linear factor and an irreducible quadratic. We can factor f
into linear factors in C, but this is way too big. An example of a splitting field
is

Q(
3
√
2, ω

3
√
2, ω2 3

√
2) = Q(ω,

3
√
2).

24



Corollary 3.32. For every f(x) ∈ K[x], there exists a splitting field. Further-
more, any splitting field is of finite degree.

Proof. We can assume that f(x) has no linear factors in K. Suppose f(x) has
an irreducible factor h(x). Then, in K1 = K[x]/(h), f(x) has at least one root
α, and so we can factor f(x) = (x − α)f1(x) for some f1(x) ∈ K1[x]. Arguing
by induction on the degree of f(x), we can say that there exists a splitting field
L of f1(x) over K1. Then viewing L as an extension of K ⊂ K1, we get a field
extension in which f(x) splits. Let α1, . . . , αn be the roots of f in L. Then
K(α1, . . . , αn) ⊂ L is a splitting field of f(x) over K.

To see that every splitting field is of finite degree, we must have that every
splitting field is of the form K(α1, . . . , αn) for where α1, . . . , αn are the roots of
f(x) in some sufficiently large field. Then note that

[K(α1, . . . , αn) : K]

= [K(α1, . . . , αn−1)(αn) : K(α1, . . . , αn−1)][K(α1, . . . , αn−1) : K].

The first of these factors is finite as αn is algebraic over K(α1, . . . , αn−1), while
we can argue that the second is finite by induction. Thus the product is finite.

Example 3.33. Lets construct a splitting field of x3 − 2 over Q via abstract
field extensions. We first enlarge Q to L = Q[x]/(x3 − 2). We will denote by α
the image of x. Then

x3 − 2 = (x− α)(x2 + αx+ α2)

in Q[α][x] ⊂ L[x]. If x2 + αx + α2 has a root in Q[α], we are done. If it is
irreducible (non-trivial), then we let M = Q[α][x]/(x2 + αx+ α2). Then x3 − 2
splits in M and so M contains a splitting field of x3 − 2 over Q.

Finally, we show that, not only do splitting fields exist, but they are essen-
tially unique.

Theorem 3.34. Let K be a field and let f(x) ∈ K[x]. Suppose that L is
a splitting field of f(x) over K, and suppose we have a field extension M/K
in which f splits as a product of linear factors. Then there is a K-morphism
ρ : L → M . In particular, if L1, L2 are splitting fields of f(x) over K, then
there is a K-isomorphism L1

∼= L2.

Proof. We will prove this by induction on [L : K]. We can assume that f(x)
has no linear factors, and take α ∈ L a root of f(x). Let mα(x) be the minimal
polynomial of α over K., so that

K(α) ∼= K[x]/(mα).

Since f(x) splits in M , and mα(x) divides f(x), mα(x) has roots in M . Let
β ∈M be such a root. By Theorem 3.26, there exists a K-morphism

ι : K(α) →M

α 7→ β.
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As such, we can view K(α) as a subfield of M . Then, consider the extensions

L/K(α) and M/K(α).

We have that

[L : K(α)] =
[L : K]

[K(α) : K]
< [L : K]

and so we can argue by induction that there is a K(α)-morphism L → M .
Combining this with the K-morphism ι, we get a K-morphism L→M .

Finally, to see that two splitting fields are isomorphic, note that the prior
argument implies we have a (necessarily) injective K-morphism L1 → L2 and a
K-morphism L2 → L1. By injectivity of both maps, we must have that

dimK L1 = dimK L2

and hence the injective K-morphism is a K-isomorphism.

As such, we can essentially freely speak of the splitting field of f(x) over K.

3.5 Classification of Finite Fields

A finite field is a field with only finitely many elements. The classical example
would be a field with a prime number of elements Fp = Z/pZ, which should
be familiar from earlier courses. Recall that we require a field to have distinct
additive and multiplicative elements, so the smallest possible field is F2. The is
no field with one element.

So what finite fields do exist? To describe this, we first need to introduce
the characteristic

Definition 3.35. Let R be a ring. The characteristic of R is the (unique)
non-negative c ∈ Z defining the kernel of the unique ring map Z → R:

cZ = ker(λ : Z → R)

1 7→ 1R.

That is to say that is its the smallest positive integer such that 1+1+ · · ·ntimes+
1 = 0 in R, or 0 if no such integer exists. We denote this by charR.

Example 3.36.
charZ/nZ = n, charC(x) = 0

In the case of fields, the characteristic has limited possible values.

Proposition 3.37. If R = K is a field, the charK = 0 or charK is prime

Proof. Suppose charK = c ̸= 0. If c = ab, then

λ(a)λ(b) = λ(ab) = λ(c) = 0

where λ : Z → K takes 1 to 1K . As K is a field, this implies one of λ(a) = 0 or
λ(b) = 0. As c was the minimal such integer, this implies that either a = c or
b = c, i.e. c has no proper divisors. Thus, if c ̸= 0, c is prime.
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Example 3.38. We have already seen a field of every possible characteristic:

charQ = 0, charFp = p

These examples are fundamental. Indeed, every field contains a copy of one
of these fields, determined by the characteristic.

Proposition 3.39. Let K be a field. If charK = 0 then K contains a copy of
Q. If charK = p > 0, then K contains a copy of Fp.

Proof. We consider the smallest subfield containing 0 and 1. If charK = p > 0,
then the additive subgroup generated by 1 is clearly a copy of Fp. If charK = 0,
then the additive subgroup generated by 1 is a copy of Z, and so the smallest
field containing 0 and 1 must be Q.

In particular, a finite field K must have prime characteristic and contain a
copy of Fp. As it is finite, it must be a finite extension of Fp. Thus, to classify
all finite fields, it suffices to classify all finite extensions of Fp for each prime p.

Theorem 3.40. Let K be a finite field of prime characteristic p. Then there
exists d ∈ N such that #K = pd.

Proof. We know that K must be a finite dimensional Fp-vector space. Suppose
it has dimension d = [K : Fp] and let e1, . . . , ed be a basis. Then every element
ξ ∈ K can be uniquely written as

ξ = a1e1 + · · ·+ aded

where a1, . . . , ad ∈ Fp. Furthermore, every such linear combination defines an
element of K. As there are p choices for each ai, we must therefore have pd

elements of K in total.

Theorem 3.41. For every prime p and positive integer d ∈ N there exists a
finite field Fq with exactly q = pd elements, unique up to isomorphism.

Proof. We start with optimism: suppose such a field F with q elements exists.
Then F× is a group of order q − 1 with respect to multiplication, and so by
Lagrange’s Theorem aq−1 = 1 for all a ∈ F×. Thus

aq = a

for all a ∈ F . So if such a field exists, every element is a root of xq − x. So lets
consider the splitting field of this polynomial over Fp.

Let L/Fp be a field in which fq(x) := xq − x splits as a product of linear
factors. We first show that fq(x) has q distinct roots in L. If fq(x) has a
repeated root, then it is also a root of f ′q(x): if

f(x) = (x− a)2g(x)

then
f ′(x) = (x− a)(2g(x) + (x− a)g′(x)).
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So if fq(x) has a repeated root a, a is a root of

f ′q(x) = qxq−1 − 1 = pdxq−1 − 1 = −1

since charL = p. This clearly has no roots, and so fq(x) has q distinct roots.
From our previous remarks, this implies that any field of q elements is a splitting
field of fq(x)

Next we claim that the set of roots forms a field. If so, then the set of roots
is the splitting field of fq(x). This will be a field of size q.

To see that the set of roots forms a field, note that, if a and b are roots of
fq(x), then

(a+ b)p = ap + bp ⇒ (a+ b)q = aq + bq = a+ b

and
(ab)q = aqbq = ab

so the sum and product of two roots is another root. Similarly, if a ̸= 0 then

(a−1)q = (aq)−1 = a−1

and
(−b)q = (−1)qbq = −b

(as either q is odd or 1 = −1 in characteristic 2).
Thus the set of roots is a field and hence the splitting field. It is of size q

and all other fields of size q must be isomorphic to it, by Theorem 3.34, as all
other fields of size q must also be splitting fields.

3.5.1 Constructing Fq

The easiest way to construct Fq for q = pd is to find an irreducible polynomial
f(x) ∈ Fp[x] of degree d. Such a polynomial must exists (pick some construction
of Fq = Fp(α) and take the minimal polynomial of α) and then Fp[x]/(f(x)) is
an extension of Fp of size q = pd.

Example 3.42. Let us construct F4, F8 and F16.
For F4, we need an irreducible quadratic polynomial. A quadratic is ir-

reducible if it has no roots, so we can easily manually check all for possible
quadratics to find x2 + x+ 1 is the unique irreducible quadratic. Then

F4
∼= F2[x]/(x

2 + x+ 1)

Denoting by α the image of x in the quotient, F4 is a two dimensional F2 vector
space, spanned by 1 and α, with multiplication determined by α2 = −α− 1.

For F8 we need an irreducible cubic polynomial. A cubic is irreducible if it
has no roots, so we can quickly check that we have two options

x3 + x2 + 1 and x3 + x+ 1
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both of which produce isomorphic F8. In the model

F8
∼= F2[x]/(x

3 + x+ 1)

the space is spanned by 1, α, α2, subject to α3 = −α− 1.
For F16, we need to find an irreducible quartic. As a reducible quartic could

be the product of two quadratics, it is no longer enough to check for a root. The
most efficient option would be so consider all possible products of irreducibles of
lower degree, as we have already determined these irreducibles. The only product
of irreducible quadratics is

(x2 + x+ 1)2 = x4 + x2 + 1

and the product of a linear factor with a cubic will have a root. Thus, we can
quickly find that f(x) = x4 + x+ 1 is irreducible. Hence

F16
∼= F2[x]/(x

4 + x+ 1).

4 Normal and separable extensions

From the perspective of discussing roots of polynomials, there are two field
properties that make a field particularly “nice”. These relate to both whether
we can factorise polynomials “easily”, and how accurately we can talk about
symmetries among the roots of a polynomial, as we will later see.

The first property is normality. A field is normal if every irreducible polyno-
mial with a root in the field has all its roots in the field. This is clearly desirable,
and conveniently easily described.

The second is separability. A field is separable if irreducible polynomials have
no repeated roots. This is often a hard property to conceptualise, as essentially
every field we might care about is separable. In fact, coming up with an example
of a inseparable field is suprisingly involved!

4.1 Normal extensions

Definition 4.1. Let L/K be a field extension. We call L a normal extension
of K if every irreducible f(x) ∈ K[x] that has a root in L splits as a product of
linear factors in L[x].

A normal closure of a field extension L/K is a field extension M/L such
that M/K is a normal extension and M is minimal with this property.

Example 4.2. The extension Q(
√
2)/Q is normal, as the minimal polynomial

of any a+ b
√
2 ∈ Q(

√
2) over Q is

x2 − 2ax+ (a2 − 2b2) = (x− a− b
√
2)(x− a+ b

√
2)

which splits as a product of linear factors in Q(
√
2)[x].

The extension Q( 3
√
2)/Q is not normal, as x3 − 2 has a root in Q( 3

√
2), but

does not split as a product of linear factors, since the other two roots are complex
non-real numbers.
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It turns out the classification of normal extension is quite straightforward. A
finite field extension is normal if and only if it is a splitting field. As such, given
a polynomial f(x) ∈ K[x], the minimal polynomial of any algebraic combination
of its roots splits entirely in the splitting field of f(x)!

Theorem 4.3. A finite extension L/K is normal iff L is the splitting field of
some polynomial f(x) ∈ K[x].

Proof. Suppose L/K is a normal extension of finite degree. Then we can find
α1, . . . , αn ∈ L such that

L = K(α1, . . . , αn)

by, for example, choosing a K-basis {α1, . . . , αn} of L. Since every element in
a finite extension is algebraic, each of these αi is algebraic, with some minimal
polynomial mi(x) ∈ K[x].

Since each mi(x) has a root αi ∈ L, and L/K is normal, mi(x) splits as a
product of linear factors in L[x]. Letting

h(x) = m1(x)m2(x) · · ·mn(x)

the field L must therefore contain the splitting field L′ of h(x) over K. But the
splitting field must contain K and α1, . . . , αn, and so

L = K(α1, . . . , αn) ⊂ L′.

Therefore L = L′ is the splitting field of h(x) over K.
Conversely, support that L is the splitting field of some h(x) ∈ K[x]. This

implies [L : K] < ∞. Now suppose that g(x) ∈ K[x] is irreducible, and has
a root in L. Let M/L be some extension in which g(x) splits as a product of
linear factors, and let α, β ∈ M be two roots of g(x).We know that we have a
K-isomorphism

K(α) ∼= K(β) ∼= K[x]/(g(x)).

Furthermore, as L is the splitting field of h(x) over K, we must also have that
L(α) is a splitting field of h(x) over K(α). It clearly contains the a splitting
field, and the splitting field must contain L and α, so they must be equal.

Similarly L(β) is a splitting field of h(x) over K(β) ∼= K(α). As any two
splitting fields of h(x) over K(α) are isomorphic (Theorem 3.34), we can extend
the K-isomorphism K(α) ∼= K(β) to a K-isomorphism L(α) ∼= L(β).

While we don’t know that this is an L isomorphism, we can say that

[L(α) : L][L : K] = [L(α) : K]

= [L(β) : K]

= [L(β) : L][L : K]

and so
[L(α) : L] = [L(β) : L].
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In particular, if α ∈ L, we have that

[L(β) : L] = [L(α) : L] = 1

and so β ∈ L. As such, if L contains one root of g(x), it contains all of them,
i.e. L is a normal extension.

Corollary 4.4. Every finite extension L/K has a (unique up to isomorphism)
normal closure

Proof. Choose aK-basis {α1, . . . , αn} of L, and letmi(x) ∈ K[x] be the minimal
polynomial of αi. Let M be the splitting field of

h(x) = m1(x)m2(x) · · ·mn(x).

This is a finite normal extension of K containing L. The normal closure of L/K
is then the smallest subfield of M that is a normal extension of K containing
L.

Corollary 4.5. Let L/K be a normal extension of finite degree. Then

a) If we have a tower of extensions K ⊂ F ⊂ L, then any K-homomorphism
τ : F → L extends to a K-automorphism τ : L→ L.

b) Suppose α ∈ L has minimal polynomial m(x) ∈ K[x]. Then, for any root
β ∈ L of m(x), there exists a K-automorphism φ : L→ L such that φ(α) =
β. That is to say that AutK(L), the group of K-automorphisms of L, acts
transitively on the roots of m(x).

Proof. a) As L/K is a finite normal extension, it is the splitting field over K of
some f(x) ∈ K[x]. Then L is also the splitting field of f(x) over F and over
the subfield τ(F ). From the uniqueness of the splitting field (Theorem 3.34),
there must exist an automorphism τ of L extending the K-isomorphism

τ : F → τ(F ).

As τ fixes K, so too must τ .

b) Taking F = K(α), and τ : F → L the unique K-homomorphism such that
τ(α) = β, we get the desired K-automorphism φ = τ .

4.2 Separable extensions

Definition 4.6. Let L/K be a field extension of finite degree.

• We call a (non-constant) irreducible polynomial f(x) ∈ K[x] separable
over K if all its roots are distinct in the splitting field.

• We call an element α ∈ L separable over K if its minimal polynomial is
separable over K.
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• The extension L/K is called a separable extension if every element of L
is separable over K.

• We call K perfect if every algebraic extension is separable.

Remark 4.7. As every element in an algebraic extension of K is contained in
a finite extension of K, it suffices to check that every finite extension of K is
separable to show that K is perfect.

Example 4.8. Over Q, x2− 2 is separable, and so
√
2 is separable, and Q(

√
2)

is separable.

In order to construct and example of a field extension that is not separable,
we will need a couple of tools for identifying inseparable polynomials.

Proposition 4.9. For a polynomial f(x) ∈ K[x], the following are equivalent:

1. gcd(f(x), f ′(x)) ̸= 1 in K[x],

2. f(x) and f ′(x) have a common root in some extension of K,

3. disc(f(x)) = 0,

4. f(x) has a repeated root.

Proof. To see that (i) ⇒ (ii), note that f(x) and f ′(x) will have a common
root in the splitting field of gcd(f(x), f ′(x)) if it is non-constant. Conversely, if
they have a common root, then its minimal polynomial must be a non-constant
common factor.

The equivalence of (ii) and (iii) is the content of Corollary 2.31.
To see that (iv) ⇒ (ii), note that if

f(x) = (x− α)2g(x)

in the splitting field, then

f ′(x) = (x− α) (2g(x) + (x− α)g′(x))

so α is a common root.
Finally suppose that α is a common root of f(x) and f ′(x) in some extension.

Then
f(x) = (x− α)g(x)

for some g(x), and so

f ′(x) = g(x) + (x− α)g′(x).

As f ′(α) = 0, this implies g(α) = 0, and so α is a repeated root of f(x) =
(x− α)g(x).
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Example 4.10. Let K = Fp(t) be the field of rational functions with coefficients
in Fp for some prime p. We claim xp − t is irreducible in K[x]. Suppose
otherwise, and that we can write

f(x) = g(x)h(x)

for some g(x), h(x) ∈ K[x] with 0 < deg g < p. Let L be the splitting field of
f(x) and let τ ∈ L be a root of f(x). We then have

(x− τ)p = xp −
(
p

1

)
xp−1τ +

(
p

2

)
xp−2τ2 + · · ·+

(
p

p− 1

)
xτp−1 − τp

= xp − τp = xp − t

as τp = t and
(
p
k

)
is always divisible by p. Hence, any monic proper factor g(x)

of xp − t must be of the form

g(x) = (x− τ)k

for some 0 < k < p. If g(x) ∈ K[x] this implies that

xk − kτxk−1 + · · · ∈ K[x]

and in particular that −kτ ∈ K. But τ ̸∈ K, so we must have that this is equal
to 0 in Fp, and so k = 0 or k = p. But neither of these are possible if g(x)
is a proper factor. Hence f(x) has no proper factors in K[x] and is therefore
irreducible. But f(x) clearly has repeated roots in the splitting field, and so f(x)
is inseparable.

This sort of motivates why we are considering separability over a simpler
idea like being squarefree. Being squarefree depends heavily on the field: xp − t
was squarefree over K, but not in the splitting field. In contrast f(x) is in not
separable in any field extension of K.

Proposition 4.11. a) Every irreducible polynomial over a field of characteris-
tic 0 is separable.

b) Over a field K of characteristic p > 0, every inseparable polynomial is of the
form f(x) = g(xp) for some g(x) ∈ K[x].

c) Over a field K of characteristic p > 0, every irredicuble polynomial is sepa-
rable if the Frobenius map

K → K

a 7→ ap

is surjective.

Proof. We will prove a) and b) pretty much simultaneously. Suppose we have
an irreducible f(x) ∈ K[x] that is inseparable. Then f(x) and f ′(x) has a non-
constant common factor. As f(x) is irreducible, its only factors are itself and 1.

33



Thus, if f ′(x) has a common factor with f(x), it must be f(x) itself. But f ′(x)
is of lower degree, and so this is only possible if f ′(x) = 0.

Over a field of characteristic 0, this implies f(x) is constant. Hence every
irreducible polynomial is separable.

Over a field of characteristic p > 0, this implies that only the coefficients of
xkp in f(x) are non-zero: if

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

then
f ′(x) = nxn−1 + (n− 1)a1x

n−2 + · · ·+ an−1 = 0

implies that
(n− k)ak = 0

which occurs iff ak = 0 or n− k was a multiple of p.
Hence

f(x) = xnp + b1x
(n−1)p + · · · bn−1x

p + bn = g(xp)

for some polynomial g(x).
Finally, to prove c), note that if the Frobenius map is surjective, then any

possibly-inseparable polynomial

f(x) = xnp + b1x
(n−1)p + · · · bn−1x

p + bn

is equal to
f(x) = xnp

(
d1x

n−1
)p

+ · · ·+ (dn−1x)
p
+ dpn

where dpk = bk. As with binomials, we can write this as

f(x) =
(
xn + d1x

n−1 + · · ·+ dn−1x+ dn
)p

and so f(x) is not irreducible.

Corollary 4.12. a) Every field of characteristic 0 is perfect.

b) Every finite extension of a finite field is separable.

c) Every finite field is perfect.

Proof. a) Every irreducible polynomial over a field of characteristic 0 is separa-
ble, and so every algebraic element in any algebraic extension is separable,
and so any algebraic extension is separable.

b) A finite field K contains pn elements for some prime p and integer n. By
Lagrange’s Theorem/Fermat’s Little Theorem, every element a ∈ K satisfies

ap
n

= a

and so

a =
(
ap

n−1
)p

which implies the Frobenius map is surjective, and so every irreducible poly-
nomial is separable, and so every finite extension of a finite field is separable
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c) Every finite extension of a finite field is separable, so every algebraic extension
is separable, so the field is perfect.

5 Galois groups and Galois extensions

Definition 5.1. Let K be a field. We denote by Aut(K) the group of field
automorphism of K.

Let L/K be a field extension. The subgroup of all K-automorphisms of L
(previously denoted by AutK(L)) is called the Galois group of L over K and is
denoted by one of

Gal(L : K) or Gal(L/K).

If K = Q, we sometimes just write Gal(L).

Example 5.2. • Aut(Q) = {id}, as any field automorphism fixes 0 and 1,
and hence N, Z, and Q itself.

• Aut(R) = {id}. As before, any field automorphism φ : R → R fixes Q.
Furthermore, if a > b, then there is some non-zero c ∈ R such that

a− b = c2 ⇒ φ(a)− φ(b) = φ(c)2

and so φ(a) > φ(b). It is then an easy exercise to show that an order
preserving map that fixes Q preserves supremums of bounded sets

φ(sup(S)) = sup(φ(S))

and a sup-preserving map fixing Q must fix R, as every real is the supre-
mum of a set of rationals.

• Gal(Q(
√
2),Q) ∼= Z/2Z, as a map fixing Q is determined by where it sends√

2. The only options are

√
2 7→

√
2 and

√
2 7→ −

√
2

both of which give valid field automorphisms (Theorem 3.26)

• Gal(Q( 3
√
2),Q) = {id}, as any Q-automorphism must send 3

√
2 to a solu-

tion of x3 − 2 in Q( 3
√
2), of which there is only 3

√
2.

Our next goal is to prove a central result in Galois theory, relation the size
of a field extension to that of its Galois group

Theorem 5.3. Let L/K be a finite extension. Then

|Gal(L/K)| ≤ [L : K]

with equality if and only if L is a normal and separable extension.
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We will note prove this directly, but it will be an immediate consequence of
the following, more general, result.

Theorem 5.4. Let L/K and M/K be two extensions of a field K, such that
L/K is finite. Then, the number of K-homomorphisms ϕ : L → M is less
than or equal to [L : K] with equality if and only if every irreducible polynomial
f(x) ∈ K[x] with a root in L splits as a product of distinct linear factors in
M [x].

Proof. We will prove the bound by induction on [L : K]. First suppose we have
some α ∈ L\K and consider the extension K(α). Suppose thatmα(x) ∈ K[x] is
the minimal polynomial of α over K, of degree n. Then any K-homomorphism
ϕ : L→M restricts to a K-homomorphism K(α) →M .

The set of such K-homomorphisms is in bijection with the set of roots of
mα(x) in M . In particular, there are at most

degmα = n = [K(α) : K]

such homomorphisms.
Fixing a K-homomorphism τ : K(α) →M , we can viewM and an extension

of K(α), and hence any K-homomorphism ϕ : L → M restricting to τ can be
viewed as a K(α)-homomorphism. As

[L : K(α) =
[L : K]

[K(α) : K]
< [L : K]

we can assume, by induction, that there are at most [L : K(α)] such K(alpha)-
homomorphisms restricting to a given K-homomorphism K(α) →M .

As everyK-homomorphism L→M corresponds to one of these pairs of aK-
homomorphism K(α) → M and a K(α)-homomorphism L → M , we conclude
that there are at most

[L : K(α)][K(α) : K] = [L : K]

K-homomorphisms L→M .
Now suppose there are exactly [L : K] such maps. The same argument

as above shows that this implies that we must have exactly [L : K(α)] K(α)-
homomorphisms L → M and exactly [K(α) : K] K-homomorphisms K(α) →
M . This latter condition implies that mα(x) has exactly

degmα = [K(α) : K]

distinct roots in M , i.e. it splits as a product of distinct linear factors in M . As
α was generic, other than α ̸∈ K, this must hold for every irreducible polynomial
with a root in L (even the linear ones, trivially).

Conversely, suppose that every irreducible polynomial with a root in L splits
as a product of distinct linear factors in M . Take some α ∈ L \K, and consider
the extension K(α). Choose some β ∈ L and let

mβ(x) ∈ K[x]
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be the minimal polynomial over K and

m̃β(x) ∈ K(α)[x]

be the minimal polynomial overK(α). Clearly, we must have that m̃β(x) divides
mβ(x) in K(α)[x].

As mβ(x) has a root (β) in L, it splits as a product of distinct linear factors
in M , and so m̃β(x) splits as a product of distinct linear factors in M .

Hence, by induction, we can assume that we get exactly [L : K(α)] K(α)-
homomorphisms L → M for any given K-homomorphism K(α) → M , and
there are exactly [K(α) : K] = degmα such maps (as mα(x) splits as a product
of distinct linear factors in M). Thus, there are exactly

[L : K(α)][K(α) : K] = [L : K]

K-homomorphisms L→M .

Theorem 5.3 follows directly from Theorem 5.4 on taking L = M . The set
of K-homomorphisms L → L is Gal(L/K), as every K-homomorphism L → L
is an automorphism. The condition that

f(x) has a root inL ⇒ f(x) splits in L

is precisely what it means to be normal, and the distinctness of the linear factors
is precisely what it means to be separable. As such, we make the following
definition.

Definition 5.5. A field extension L/K is called Galois if it is finite, normal,
and separable.

Corollary 5.6. |Gal(L/K)| = [L : K] if and only if L/K is Galois

As a side effect of our proof of Theorem 5.4, we also get

Corollary 5.7. If L/K is Galois, and we have an intermediate field K ⊂ F ⊂
L, then L/F is Galois.

Remark 5.8. The extension F/K is not necessarily Galois! It will always be
separable, but may not be normal. Take for example

K = Q, F = Q(
3
√
2), L = Q(

3
√
2, ω)

where ω is a complex cube root of 1.

As a quick note: recall that a field extension is finite and normal iff it is
the splitting field of a polynomial (Theorem 4.3), and so a Galois extension is a
separable splitting field. In particular, over a field of characteristic 0, or over a
finite field, a Galois extension is the same thing as a splitting field.
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5.1 Fixed fields and the Galois correspondence

So, given a Galois extension L/K, what are the intermediate fields K ⊂ F ⊂ L
such that F/K is Galois? To classify these, we need to introduce the notion of
a fixed field.

Definition 5.9. Let K be a field and let G be a subgroup of Aut(K). We define
the fixed subfield of G to be the set

KG = {a ∈ K | σ(a) = a for all σ ∈ G}.

Lemma 5.10. KG is a subfield of K.

Proof. We can check that if a, b ∈ KG, then

σ(a+ b) = σ(a) + σ(b) = a+ b

for all σ ∈ G, and
σ(ab) = σ(a)σ(b) = ab

and so on. Thus KG is a subfield.

Fixed subfields are closely related to Galois groups. For a field extension
L/K, K is precisely the subfield of L fixed by Gal(L/K).

Theorem 5.11. A field extension L/K is Galois if and only if K = LG for
some finite G ⊂ Aut(L). Moreover, in this case, Gal(L/K) = G.

Proof. We start by assuming that L/K is Galois, and let

G = Gal(L/K) ⊂ Aut(L).

By definition, Gal(L/K) fixes K, so

K ⊂ LG ⊂ L

and so
[L : LG] ≤ [L : K] = |Gal(L/K)| = |G|.

By Theorem 5.3, we also have that

[L : LG] ≥ |Gal(L/LG)|.

As any element of G fixes LG, we must therefore have

G ⊂ Gal(L/LG) ⇒ |G| ≤ |Gal(L/LG)|.

Putting all these inequalities together, we find

[L : LG] ≤ [L : K] = |G| ≤ |Gal(L/LG)| ≤ [L : LG]

which implies these are all equalities. Hence

[L : LG] = [L : K] ⇒ [LG : K] = 1
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and so LG = K. Furthermore

|G| ≤ |Gal(L/LG)| ⇒ G = Gal(L/LG)

Now we will prove the converge. Let G ⊂ Aut(L) be some finite subgroup
of automorphisms. We want to show that L/LG is a Galois extension, and will
start by showing that

[L : LG] ≤ |G|.

Suppose that
G = {g1, g2, . . . , gn}.

To show this inequality, we want to show that no set of (n + 1) elements if L
are linearly independent over LG, or equivalent that for any set {x1, . . . , xn+1}
of (n+ 1) elements of L are linearly dependent over LG. Thus, we want to find
u1, . . . , un+1 ∈ LG, not all 0, such that

x1u1 + · · ·+ xn+1un+1 = 0

Lets start by supposing such a dependency exists. We can then act on it by
g1, g2, . . . , gn to get n linear equations

0 = gj

(
n+1∑
i=1

xiui

)
=

n+1∑
i=1

gj(xi)gj(ui) =

n+1∑
i=1

gj(xi)ui

assuming ui ∈ LG. If such ui exist, they must give a solution to this set of n
linear equation in (n+ 1) unknowns u1, . . . , un+1.

Any such system of equations has a non-trivial solution in Ln+1, but possibly
not in LG. Let us choose a non-trivial solution (u1, . . . , un+1) ∈ Ln+1 with as
few non-zero coordinates as possible. We can assume that

u1, u2, . . . , ur ̸= 0, ur+1 = ur+2 = · · · = un+1

by reordering the coordinates if needed. We can also assume that u1 = 1.
Taking some σ ∈ G, we can apply this to our equations and solution to find

that
n+1∑
i=1

σgj(xi)σ(ui) = 0

for each 1 ≤ j ≤ n. As

{σg1, σg2, . . . , σgn} = {g1, . . . , gn}

this is just a permutation of our equations, so

(σ(u1), . . . , σ(un+1)) = (1, σ(u2), . . . , σ(ur), 0, . . . , 0)

is another solution. The space of solutions is closed under addition, so

(1, u2, . . . , ur, 0, . . . , 0)− (1, σ(u2), . . . , σ(ur), 0, . . . , 0)
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is another solution. But this is

(0, u2 − σ(u2), . . . , ur − σ(ur), 0, . . . , 0)

which has fewer non-zero coordinates. Thus it must be trivial, and so

uj = σ(uj)

for all j. Since σ was arbitrary, u1, . . . , un+1 are elements of LG, giving the
desired LG dependence. Thus

[L : LG] ≤ |G|

Clearly G ⊂ Gal(L/LG), so

|G| ≤ |Gal(L/LG)| ≤ [L : LG].

Combining these inequalities, we see that we must have

|Gal(L/LG)| = [L : LG] and |G| = |Gal(L/LG)|.

Thus L/LG is Galois and G = Gal(L/LG).

Remark 5.12. We could also use a trick that you would likely see in a group
representations course to give a different argument. As in the argument above,
we can find u1, . . . , un+1 ∈ L such that

n+1∑
i=1

gj(xi)ui = 0

for each 1 ≤ j ≤ n. As in the proof, we can apply σ ∈ G to this system of
equations to find another solution

(σ(u1), σ(u2), . . . , σ(un+1)

for each σ ∈ G. Adding these solutions together, we get a solution(∑
σ∈G

σ(u1), . . . ,
∑
σ∈G

σ(un+1)

)

which is fixed by G. For any g ∈ G

g

(∑
σ∈G

σ(ui)

)
=
∑
σ∈G

gσ(ui) =
∑
σ∈G

σ(ui)

as g permutes the elements of G. Thus, we get a solution in LG. We need to
do a bit of work to show that this is a non-trivial solution, but it is possible.
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Example 5.13. Consider the field extension K = Q(
√
2,
√
3)/Q. Since

√
3 ̸∈

Q(
√
2), we can compute the degree of the extension to be

[K : Q] = [K : Q(
√
2)][Q(

√
2),Q] = 2× 2 = 4.

This extension is Galois, as it is the splitting field of (x2 − 2)(x2 − 3), but
we will show this using Theorem 5.11. Theorem 5.11 says that if we can find a
finite subgroup G ⊂ Aut(K) such that

Q = KG

is the fixed subfield, then K/Q is Galois with Galois group G.
If it were Galois, then the Galois group would have order [K : Q] = 4, so we

are looking for a group of order 4, of which there are two:

Z/2Z× Z/2Z, and Z/4Z

A basis of K is {1,
√
2,
√
3,
√
6}. Any field automorphism of K fixes Q if

and only if it fixes 1. Thus, any field automorphism of K fixing Q is completely
determined by its action of

√
2 and

√
3, and must take these to roots of their

minimal polynomials. Two such automorphisms are

σ :

{√
2 7→ −

√
2√

3 7→
√
3

, τ :

{√
2 7→

√
2√

3 7→ −
√
3

.

It is an easy check to see that these generate a group G isomorphic to Z/2Z×
Z/2Z, as σ2 = τ2 = e and στ = τσ. Furthermore, this group G fixes Q and
only Q: we find that

a+ b
√
2 + c

√
3 + d

√
6 = σ(a+ b

√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3− d

√
6

and

a+ b
√
2 + c

√
3 + d

√
6 = τ(a+ b

√
2 + c

√
3 + d

√
6) = a+ b

√
2− c

√
3− d

√
6

if and only if b = c = d = 0.
Thus K/Q is Galois with Galois group G.

Remark 5.14. If we didn’t want to manually check that G fixes Q and only Q,
we could note that K/KG is Galois with Galois group G, so

[KG/Q] =
[K : Q]

[K : KG]
=

4

|G|
=

4

4
= 1

and hence KG = Q.

Recall that Corollary 4.5, there exists an element of Gal(L/K) taking α ∈ L
to any other root β of the minimal polynomial of α mα(x) ∈ K[x]. A short
corollary of Theorem 5.11 follows neatly with this observation.
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Corollary 5.15. A finite extension L/K is Galois if and only if, for every
α ∈ L, the minimal polynomial of α over K is

Mα(x) =
∏

β∈Gal(L/K)·α

(x− β)

where
Gal(L/K) · α = {σ(α) | σ ∈ Gal(L/K)}

is the set of images of α under the Galois group, without multiplicity.

Proof. Suppose L/K is Galois. Since Gal(L/K) permutes the elements of
Gal(L/K)·α, it fixes any symmetric polynomial in the elements of Gal(L/K)·α.
In particular, it fixes the coefficients of Mα(x). The elements of L fixed by
Gal(L/K) are exactly the elements of LGal(L/K) = K, and so Mα(x) ∈ K[x].
Thus, the minimal polynomial of α mα(x) ∈ K[x] dividesMα(x) inK[x]. Corol-
lary 4.5 tells us that Gal(L/K) acts transitively on the roots of mα(x), and so
every root of mα(x) is an element of Gal(L/K) · (α), which implies that Mα(x)
divides mα(x). They must therefore be equal.

Conversely, suppose that Mα(x) is the minimal polynomial of α ∈ L for
every α ∈ L. Clearly Mα(x) has no repeated roots, so α is separable over K
and so L is separable over K. Now suppose f(x) ∈ K[x] is irreducible, with a
root α ∈ L. Then, (up to multiplication by a constant)

f(x) =Mα(x).

Since σ(α) ∈ L for all σ ∈ Gal(L/K), every root of Mα(x) is in L, and so
f(x) =Mα(x) splits as a product of linear factors in L[x]. Thus L/K is normal
and hence Galois.

5.2 Some Galois group computations

We will later see a semi-systematic way of computing Galois groups of various
extensions, but for now we will demonstrate slightly ad-hoc methods in a number
of examples.

Example 5.16. Let L = Q( 3
√
2, ω), where ω is a complex root of x3 − 1. We

know this is a normal extension of Q (as it is the splitting field of x3 − 2) and
hence a Galois extension of Q. We must have that Gal(L/Q) permutes the roots
of x3−2 (since it is irreducible over Q), and its action is completely determined
by its action on the roots (since L is obtained by adjoining the roots to Q). Thus,
Gal(L/Q) is isomorphic to a subgroup of S3. As this is a Galois extension

|Gal(L/Q)| = [L : Q] = [L : Q(
3
√
3)][Q(

3
√
2) : Q] = 2× 3 = 6 = |S3|.

Hence, we must have Gal(L/Q) ∼= S3.
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Example 5.17. Let α =
√
5 +

√
21 and let L = Q(α). We will show that it is

Galois and compute its Galois group. First note that

(α2 − 5)2 − 21 = 0

so α is algebraic of degree at most 4. Thus

[L : Q] ≤ 4.

Next we note that

√
21 = α2 − 5 ∈ L ⇒ Q(

√
21) ⊂ L.

Thus
[L : Q] = [L : Q(

√
21)][Q(

√
21) : Q] = 2[L : Q(

√
21)]

is even. If it is equal to 2, then
√
5 +

√
21 ∈ Q(

√
21. Assuming this, we can

show this implies

21x4 − x2 +
1

4
= 0

has a rational root, when this in fact has no real roots. Thus [L : Q] = 4.
It is not too difficult to show that

(x2 − 5)2 − 21

splits in L, with roots

α,−α, β =

√
5−

√
21 =

2

α
,−β

and so L/Q is a splitting field and therefore Galois. Thus |Gal(L/Q)| = 4.
An element of Gal(L/Q) is completely determined by its action on α, and

since Gal(L/QQ) acts transitively on the roots of (x2−5)2−21, we get the four
automorphisms in the Galois group for free

σ0 : α 7→ α, σ1 : α 7→ −α, σ2 : α 7→ β, σ3 : α 7→ −β.

It is easy to check that σ2
i = σ0, so every element has order 2. Thus

Gal(L/Q) ∼= Z/2Z× Z/2Z

Note that every element of the Galois preserves relations among the roots!
If two roots add to 0, this relation holds after applying an element of the Galois
group. If two roots multiply to 2, this relation holds after applying an element
of the Galois group.

A very helpful notion to keep in mind when thinking about the Galois group
of the splitting field of a polynomial is the following: the Galois group permutes
the roots of the polynomial, so can be viewed as a subgroup of the symmetric
group. This is made precise below
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Lemma 5.18. Let f(x) ∈ K[x] be a polynomial of degree n with splitting field
L/K. Suppose that f(x) has distinct roots in L. Then Gal(L/K) can be iden-
tified with a subgroup of the symmetric group Sn.

Proof. Let α1, . . . , αn be the n distinct roots of f(x) in L, and let σ ∈ Gal(L/K).
As L = K(α1, . . . , αn) is the splitting field, the action of σ on L is uniquely
determined by its action on the set

{α1, α2, . . . , αn}.

Furthermore, since

f(σ(αk)) = σ(f(αk)) = σ(0) = 0

for each 1 ≤ k ≤ n, we must have that σ is determined by a map

{α1, α2, . . . , αn} → {α1, α2, . . . , αn}

As σ is an automorphism, this map must be injective, and hence bijective. Thus,
σ is uniquely identified by a permutation of the set {α1, . . . , αn}. This holds
true for every element of Gal(L/K), which lets us identify it with a subgroup
of the permutation group Sn.

5.3 The Galois correspondence

The Galois correspondence, or the fundamental group of Galois theory, is the
following collection of results. It lets us relate the subgroup structure of a Galois
group with the subfield structure of a field extension.

Theorem 5.19. Let L/K be a Galois extension, with Galois group G = Gal(L/K).
Let

F = {K ⊂ F ⊂ L | F is a field}

be the set of intermediate fields, and let

G = {H ⊂ G | H a subgroup}

be the set of subgroups. Define maps

γ : F → G, φ : G → F

by
γ(F ) = Gal(L/F ), φ(H) = LH .

Then:

1. If F1 ⊂ F2, then γ(F1) ⊃ γ(F2),

2. If H1 ⊂ H2, then φ(H1) ⊃ φ(H2),

3. φ(γ(F )) = F , and γ(φ(H)) = H,
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4. [K : F ] = |γ(F )| and
[F : K] = |G|/|γ(F )|,

5. F/K is a normal extension (and hence a Galois extension) if and only if
γ(F ) is a normal subgroup of G. In this case the Galois group is isomor-
phic to the quotient group

Gal(F/K) ∼= G/γ(F ).

Proof. 1. If F1 ⊂ F2, then any automorphism of L that fixes F2 also fixes
F1, and so Gal(L/F2) ⊂ Gal(L/F1), i.e. γ(F2) ⊂ γ(F1).

2. If H1 ⊂ H2, then any element of L fixed by H2 is fixed by H1, and so
LH2 ⊂ LH1 , i.e. φ(H2) ⊂ φ(H1).

3. Recall that, since L/K is Galois, L/F is Galois. Thus

F = LGal(L/F ) = Lγ(F ) = φ(γ(F )).

Similarly, for any subgroupH, L/LH is Galois with Galois group Gal(L/LH) =
H. That is

γ(φ(H)) = Gal(L/φ(H)) = Gal(L/LH) = H.

4. Since L/F is Galois, [L : F ] = |Gal(L/F )| = |γ(F )|. By Tower Law

[F : K] =
[L : K]

[L : F ]
= |G|/|γ(F )|.

5. We first show a property of conjugate Galois groups. Specifically, we will
show that

If g ∈ G and F ∈ F , then g(F ) ⊂ F and γ(g(F )) = gγ(F )g−1.

To prove this, we first note that

K ⊂ F ⊂ L

implies that
K = g(K) ⊂ g(F ) ⊂ g(L) = L

so g(F ) ∈ F . Now take h ∈ G. We have h ∈ γ(g(F )) if and only if h fixes
elements of g(F ), i.e.

h(g(a)) = g(a) for all a ∈ F

⇔ g−1hg(a) = a for all a ∈ F

⇔ g−1hg ∈ Gal(L/F ) = γ(F )
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and so h ∈ gγ(F )g−1.

Thus γ(F ) is a normal subgroup of G if and only if γ(g(F )) = γ(F ) for
all g ∈ G. By part 3, this is equivalent to g(F ) = F for all g ∈ G.

So now suppose F/K is a normal extension, and let α ∈ F have minimal
polynomial mα(x) ∈ K[x]. For each g ∈ G, g(α) is a root of mα(x). Since
F/K is normal and has a root ofmα(x), mα(x) splits as a product of linear
factors in F [x], and so F contains all the roots of mα(x). Thus g(α) ∈ F
for all g ∈ G and α ∈ F . Hence g(F ) = F for all g ∈ G. Therefore γ(F )
is a normal subgroup of G.

Conversely, suppose γ(F ) is a normal subgroup. If α ∈ F has minimal
polynomial mα(x) ∈ K[x], then mα(x) splits as a product of linear factors
in L[x]. If β ∈ L is another root, there exists g ∈ G such that g(α) = β.
But g(F ) = F , so β ∈ F . This holds for all roots of mα(x), so mα(x)
splits as a product of linear factors in F [x]. This holds for every irreducible
polynomial with a root in F , and so F/K is normal.

Finally, note that if γ(F ) is a normal subgroup, then g(F ) = F . Hence
every K-automorphism of L restricts to a K-automorphism of F . Thus,
we have a map

λ : G→ Gal(F/K).

By Corollary 4.5, every K-automorphism of F extends to one of L, so this
map is surjective. The kernel of this map is, by definition,

{g ∈ G | g|F = id} = Gal(L/F ) = γ(F ).

Thus, by the first isomorphism theorem

G/γ(F ) = G/ kerλ ∼= im λ = Gal(F/K).

Remark 5.20. We could also prove the final statement by noting that

|Gal(F/K)| = [F : K] = |G|/|γ(F )| = |G/γ(F )|

and so the image of λ a subgroup of Gal(F/K) of the same size as Gal(F/K),
so must be equal to it.

5.4 Examples of the Galois correspondence

We collect here some more examples of Galois group computations and appli-
cations of the Galois correspondence.

Example 5.21. Let L = Q(
√
2,
√
3). Recall that G = Gal(L/Q) is isomorphic

to
Z/2Z× Z/2Z
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and is generated by

σ :

{√
2 7→ −

√
2√

3 7→
√
3

, τ :

{√
2 7→

√
2√

3 7→ −
√
3

.

Since G is abelian, every subgroup is normal, so F/Q is Galois for every
intermediate subfield Q ⊂ F ⊂ L. The Galois group G has subgroup diagram
below, and the intermediate fields have the following inclusion diagram

{e} Q(
√
2,
√
3)

⟨σ⟩ ⟨στ⟩ ⟨τ⟩ Q(
√
3) Q(

√
6) Q(

√
2)

G Q

We can easily compute that

φ({e}) = Q(
√
2
√
3){e} = Q(

√
2,
√
3)

φ(⟨σ⟩) = Q(
√
2
√
3)⟨σ⟩ = Q(

√
3)

φ(⟨τ⟩) = Q(
√
2
√
3)⟨τ⟩ = Q(

√
2)

φ(⟨στ⟩) = Q(
√
2
√
3)⟨στ⟩ = Q(

√
6)

φ(G) = Q(
√
2
√
3)G = Q.

Notably, the Galois correspondence tells us that this is a complete list of in-
termediate fields. As such, if we have any other intermediate field, such as
Q(

√
2+

√
3), must be one of the above list, and we can figure this out by looking

at the action of G on the given subfield. In this case, it is easy to see that
√
2+

√
3

is not fixed by σ, τ , or στ . Hence, we must have Q(
√
2 +

√
3) = Q(

√
2,
√
3).

Example 5.22. Consider the product P over all possible expressions of the
form

1±
√
2±

√
3± · · · ±

√
99 +±

√
100.

This product is an element of

K = Q(
√
2,
√
3, . . . ,

√
99)

which is the splitting field of
∏99

k=2(x
2 − k), and so K/Q is a Galois extension.

Every Q-automorphism of K must send a square root to itself or its negative,
and so permutes the factors of P . Thus P is fixed by every element of Gal(K/Q)
and is therefore an element of Q. In fact, as P is an algebraic integer, P ∈ Z.

Example 5.23. Lets compute the Galois group of the splitting field of x4 − 3
over Q. The splitting field is K = Q( 4

√
3, i), which is an extension of degree

[K : Q] = [K : Q(
4
√
3)][Q(

4
√
3) : Q] = 2× 4 = 8.
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The extension is Galois, so |Gal(K/Q)| = 8 and so it is one of

Z/8Z, Z/4Z× Z/2Z, (Z/2Z)3, D4, Q8

where
D4 = ⟨r, s | r4 = s2 = (sr)2 = e⟩

is the dihedral group of symmetries of the square, and Q8 is the quaternion
group.

A Q-automorphism is determined by the image of 4
√
3 and i, and we must

have that

4
√
3 7→ 4

√
3, i

4
√
3,− 4

√
3,−i 4

√
3

i 7→ i,−i.

To determine the Galois group, we can either try to write down every automor-
phism, or to find a generating set. We define two Q-automorphisms by

σ :

{
4
√
3 7→ i 4

√
3

i 7→ i
, τ :

{
4
√
3 7→ 4

√
3

i 7→ −i
.

We can check that
σ4 = τ2 = (τσ)2 = e

so the subgroup of Gal(K/Q) generated by σ and τ is isomorphic to D4. Since
both of these are groups of order 8, we therefore have

Gal(K/Q) ∼= D4.

What are the fixed subfields? We have normal subgroups {e}, ⟨σ⟩, ⟨σ2⟩, and
⟨σ, τ⟩, and

⟨τ, σ2⟩, ⟨στ, σ2⟩,

and the non-normal subgroups

{e, τ}, {e, στ}, {e, σ2τ}, {e, σ3τ}

The fixed fields corresponding to the interesting normal subgroups are

φ(⟨σ⟩) = Q(i)

φ(⟨σ2⟩) = Q(
√
3, i)φ(⟨τ, σ2⟩) = Q(

√
3)

φ(⟨στ, σ2

rangle) = Q(i
√
3)

which are the only four intermediate subfields that are Galois extensions of Q.
Everything else is not normal, corresponding to adding a single root of x4 − 3
to Q:

φ(⟨τ⟩) = Q(
4
√
3).
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Example 5.24. Lets determine the Galois group of the splitting field of x4 − 3
over F5. As a4 = 1 for all a ∈ F5, x

4 − 3 has no roots in F5. If we suppose

x4 − 3 = (x2 + ax+ b)(x2 + cx+ d)

in F5[x], we find that b2 = 2, which has no solutions in F5, so x
4−3 is irreducible

in F5[x].
We claim that

F54
∼= F5[x]/(x

4 − 3)

is the splitting field. Let α denote the image of x in the quotient. As 14 = 24 =
34 = 44 = 1 in F54, we have that

(kα)4 = 3

for each k = 1, 2, 3, 4. Thus α, 2α, 3α, 4α are the roots of x4 − 3, and so x4 − 3
splits of F54 .

As this is a splitting field, it is a Galois extension of F5. Thus, the Galois
group

G = Gal(F54/F5)

has order |G| = |F54 : F5] = 4.
Any F5-automorphism is determined by the image of α, and we have at least

4 distinct automorphisms
σk : α 7→ kα

for k = 1, 2, 3, 4. These must form the Galois group, and we can check that

σ2
2 = σ4, σ

3
2 = σ4, σ

4
2 = σ1 = e

so G ∼= Z/4Z.
This has exactly one interesting subgroup ⟨σ2

2⟩, with corresponding fixed sub-
field spanned by elements

a+ bα+ cα2 + cα3

such that

a+ bα+ cα2 + cα3 = a+ 4bα+ 16cα2 + 64dα3 = a− bα+ cα2 − dα3.

Thus b = d = 0, and so

φ(⟨σ2
2⟩)− F5(α

2) ∼= F52 .

Example 5.25. Let us find the Galois group of the splitting field of x4− 3 over
F7. We first check if it is irreducible. It has no roots over F7, as a

4 ∈ {0, 1, 2, 4}
in F7. It does, however, split as a product of quadratic factors. If

x4 − 3 = (x2 + ax+ b)(x2 + cx+ d)

we must have that

a+ c = 0, ac+ b+ d = 0, ad+ bc = 0, bc = −3 = 4
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which as solution
a = 2, b = 2, c = −2, d = 2

and so
x4 − 3 = (x2 + 2x+ 2)(x2 − 2x+ 2).

Lets first adjoint a root α of x2 + 2x+ 2 to obtain

F49
∼= F7[x]/(x

2 + 2x+ 2).

The quadratic x2+2x+2 splits in this field. Does x2−2x+2 split in this field?
We can be clever and note that

x2 − 2x+ 2 = (−x)2 + 2(−x) + 2

and so −α is a root. Otherwise, we suppose we have a root a + bα ∈ F49 and
compute

(a+ bα)2 − 2(a+ bα) + 2 = a2 + 2abα+ b2α2 − 2a− 2bα+ 2

= a2 + 2abα+ b2(−2α− 2)− 2a− 2bα+ 2 = 0

which implies that

a2 − 2b2 − 2a+ 2 = 0, 2ab− 2b2 − 2b = 0.

We know there is no root with b = 0, so we can divide out by 2b in the second
equation to find

a = b+ 1.

Filling this into the first equation, we get

−b2 + 1 = 0 ⇒ b2 = 1 ⇒ b = ±1.

Thus we have (a, b) = (2, 1) or (a, b) = (0,−1). Checking these, we find that
−α is a root!. Thus F49 is the splitting field. Thus

|Gal(F49/F7)| = [F49 : F7] = 2 ⇒ Gal(F49,F7) ∼= Z/2Z.

6 Applications of the Galois correspondence

6.1 Cyclotomic fields and regular polygons

6.1.1 Constructing a pentagon

Given points 0, 1 ∈ C, to construct a pentagon inscribed in the unit circle, it
suffices to construct the point ζ = e2πi/5, we can then copy the distance from
1 to ζ around the circle to find all the vertices of the pentagon. So how do we
construct ζ?

This root of unity is a root of

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1).
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The polynomial x4+x3+x2+x+1 is irreducible over Q (apply Eisenstein after
setting x = y + 1), and so we can identify

Q(ζ) ∼= Q[x]/(x4 + x3 + x2 + x+ 1).

Note that the other roots of this polynomial are ζ2, ζ3, and ζ4, so Q(ζ) is the
splitting field of x5 − 1, and is a degree 4 extension. As 4 = 22, there is hope
that elements in this field are constructable. Specifically, ζ is constructable if
we can find an intermediate field F such that

[Q(ζ) : F )] = [F : Q] = 2.

Since Q(ζ) is a splitting field, it is a normal extension of Q, so the Galois
correspondence tells us that intermediate fields are in bijection with subgroups
of Gal(Q(ζ)/Q).

An element of Gal(Q(ζ)/Q) is completely determined by the image of ζ,
which can be any of the four roots of x4 + x3 + x2 + x + 1. If we take the
automorphism σ determined by σ(ζ) = ζ2, we find

σ2(ζ) = ζ4, σ3(ζ) = ζ3, σ4(ζ) = ζ

and so σ generates a copy of Z/4Z in Gal(Q(ζ)/Q). Since

|Gal(Q(ζ)/Q)| = [Q(ζ) : Q] = 4

the Galois group must be isomorphic to Z/4Z. This has exactly one non-trivial
subgroup, generated by σ2, and so there is one intermediate subfield

F = Q(ζ)⟨σ
2⟩.

The Galois correspondence tells us that

[Q(ζ) : F )] = [F : Q] = 2

so we can indeed construct ζ.
We can make this construction explicit via the Galois correspondence too.

Since

σ2(a+bζ+cζ2+dζ3) = a+bζ4+cζ3+dζ2 = a+b(−1−ζ−ζ2−ζ3)+cζ3+dζ2,

an element of Q(ζ) is fixed by ⟨σ2⟩ if and only if b = 0 and c = d. Hence

F = Q(ζ2 + ζ3).

We can simplify this further: let

A = ζ2 + ζ3, B = ζ + ζ4.

Then
A+B = −1, AB = −1
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and so A and B are roots of

t2 + t− 1, ⇒ A,B =
−1±

√
5

2
.

Thus F = Q(
√
5), and we can easily construct ζ from this.

We use the square root construction to construct B as the positive solution
to

t2 + t− 1 =

(
t+

1

2

)2

− 5

4
= 0

and then ζ is obtained by drawing a vertical line through B, and finding the
intersection with the unit circle.

To generalise this to an arbitrary polygon, we need to understand cyclotomic
fields.

6.1.2 Cyclotomic fields

Let n ∈ N and denote by ζ
2πi
n

n a primitive nth root of unity.

Definition 6.1. The field Q(ζn) is called the nth cyclotomic field. The nth

cyclotomic polynomial is defined to be

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x− e

2πik
n

)

Consider the polynomial

xn − 1 =

n∏
k=1

(
x− ζkn

)
=

n∏
j=1

(
x− e

2πik
n

)
.

For every d|n, we find a factor for every primitive
(
n
d

)
th root of unity, and so

we can group these together to find that

xn − 1 =
∏
d|n

Φn/d(x) =
∏
d|n

Φd(x)

This is a very useful way to recursively compute the cyclotomic polynomials via
division, and also helps us establish the following.

Proposition 6.2. The cyclotomic polynomials Φn(x) are elements of Z[x] and
are irreducible over Q.

Proof. It is easy to check that Φ1(x) = x− 1 is an element of Z[x]. Since if

f(x) = g(x)h(x)
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for some non-constant polynomials f(x), g(x) ∈ Z[x] and h(x), then h(x) ∈ Z[x].
Thus, by induction on n, it is easy to see that

Φn =
xn − 1∏

d|n, d ̸=n Φd(x)

must be an element of Z[x].
To prove that it is irreducible, we have to do a bit more work. Suppose

otherwise, that
Φn(x) = g(x)h(x)

for some monic polynomials with integer coefficients (Gauss Lemma lets us
assume integer coefficients). Without loss of generality, we can assume g(x) is
irreducible over Q. Let ξ be a root of g(x) and take some prime p not dividing
n. Since p does not divide n, ξp is also a primitive root of unity, and hence a
root of Φn(x). If ξ

p is a root of h(x), then ξ is a root of h(xp), and so g(x)|h(xp):

h(xp) = g(x)h̃(x).

Since these all have integer coefficients, we can consider this modulo p to obtain
a factorisation of h(xp) in Fp[x]. Thus

h(x)p ∼= h(xp) ∼= g(x)h̃(x) (mod p)

and so g(x) and h(x) have a common factor mod p. This implies that Φn(x)
has a repeated factor mod p, and so xn − 1 has a repeated factor mod p. This
means it has a common factor with its derivative nxn−1. Since p does not divide
n, the only irreducible factor of nxn−1 is x, which is not a factor of xn − 1, a
contradiction.

Therefore ξp is a root of g(x). Iterating this argument, we see that ξk is a
root of g(x) for any k such that gcd(k, n) = 1, and so every primitive root of
unity is a root of g(x). Therefore g(x) = Φn(x) must be irreducible.

Corollary 6.3. The Galois group of a cyclotomic field is cyclic:

Gal(Q(ζn)/Q) ∼= (Z/nZ)× ∼= Z/ϕ(n)Z.

Proof. It is evident that Q(ζn) is the splitting field of xn − 1 over Q, and so it
is a Galois extension of Q. Thus

|Gal(Q(ζn)/Q)| = [Q(ζn) : Q].

Since Φn(x) is the minimal polynomial of ζn, we have that

Q(ζn) ∼= Q[x]/(Φn(x))

is an extension of degree degΦn(x) = ϕ(n).
Elements of the Galois group must send ζn to one of the roots of Φn(x), so

every element of the Galois group is one of

σk : zetan 7→ ζkn
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for gcd(k, n) = 1. Since

σk(σℓ(ζn))(ζ
k
n)

ℓ = σkℓ(ζn)

we see that
σk ◦ σell = σkℓ

which is precisely the multiplicative group structure of (Z/nZ)×. Thus, we have
a surjective homomorphism

Gal(Q(ζn)/Q) → (Z/nZ)×

σk 7→ k

between two groups of the same order, and hence an isomorphism.

6.1.3 Constructing regular polygons

Corollary 3.23 tells us that if a complex α is constructable, then [Q(α) : Q] = 2m

for some m. Suppose
n = pa1

1 . . . par
r

is the prime decomposition of n. Then, we know that

[Q(ζn) : Q] = ϕ(n) = pa1−1
1 . . . par−1

r (p1 − 1) . . . (pr − 1).

In order for this to be a power of two we need that ai = 1 for any odd pi, and
furthermore that for any odd prime factor must be of the form

pi = 2bi + 1

for some bi.
Furthermore, as

x2k+1 + 1 = (x+ 1)(x2k − x2k−1 + x2k−2 − · · · − x+ 1)

for any k ≥ 1, we have that

(2t + 1)|(2t(2k+1) + 1).

As such, 2b + 1 cannot be prime if b has any odd prime factors. Thus, the odd
prime factors of n must be Fermat primes.

Definition 6.4. A number 22
k

+ 1 is called a Fermat number. It is called a
Fermat prime if it is prime.

Example 6.5. The first 5 Fermat numbers

3, 5, 17, 257, 65537

are prime. For k = 5, we do not obtain a prime

641|22
5

+ 1 = 4294967297.

There are no more known examples of Fermat prime!
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Theorem 6.6. A regular n-gon (equivalently ζn) can be constructed using a
ruler and compass if and only if

n = 2ap1 . . . pr

where p1, . . . , pr are distinct Fermat primes.

Proof. The earlier discussion shows that no other n-gon can be constructed, so
suppose we have such an n.

If we can construct the angle 2π
m (equivalently ζm) for some m, we can easily

construct ζ2m by bisecting the angle 2π
m . If we can construct the angle 2π

m1
and

2π
m2

for some m1 and m2, we can construct the angle

2π(am1 + bm2)

m1m2

for any integers a, b. In particular, if gcd(m1,m2) = 1, we can find a, b such
that

am1 + bm2 = 1

and so we can construct the angle 2π
m1m2

.

Thus, it suffices to consider n = p = 22
k

+1 for a single Fermat prime p. By
Corollary 6.3, the Galois group is

Gal(Q(ζp)/Q) ∼= (Z/pZ)× ∼= Z/ϕ(p)Z = Z/(p− 1)Z = Z/22
k

Z.

Let σ be a generator of the Galois group. Then we get a sequence of subgroups

{e} ⊂ ⟨σ22
k−1

⟩ ⊂ ⟨σ22
k−2

⟩ ⊂ · · · ⟨σ22⟩ ⊂ ⟨σ21⟩ ⊂ Z/22
k

/Z

each of which is index 2 in the next. By the Galois correspondence, this corre-
sponds to a sequence of subfields

Q(ζp) ⊃ Q(ζp)
⟨σ2⟩ ⊃ Q(ζp)

⟨σ22 ⟩ ⊃ · · · ⊂ Q(ζp)
⟨σ22

k−1
⟩ ⊃ Q

where the degree of each extension is 2. Hence, ζp is constructable.

Example 6.7. Let us reduce constructing a 17-gon to solving a bunch of quadrat-
ics. Let ζ = ζ17 and we choose the generator of (Z/17Z)× given by

σ : ζ 7→ ζ3.

We start with the first quadratic extension of Q, which corresponds to the
subfield F2 of Q(ζ) fixed by σ2. This has Q-basis consisting of 1 and one of the
fixed elements

A3 = ζ3 + ζ10 + ζ5 + ζ11 + ζ14 + ζ7 + ζ12 + ζ6

A1 = ζ + ζ2 + ζ4 + ζ8 + ζ16 + ζ15 + ζ13 + ζ9.
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These satisfy

A3 +A1 =

16∑
k=1

ζk = −1.

As σ(A3) = A1 and σ(A1) = A3, A3A1 is fixed by the Galois group and is there-
fore an integer. In fact, in the product, 1 does not appear, and each primitive
root appears exactly 4 times, so A3A1 = −4. Thus, they are roots of

t2 + t− 4 = 0.

Next we consider the subfield F4 fixed by σ4. This has F2 basis 1 and one of
the four fixed elements

B1 = ζ + ζ4 + ζ16 + ζ13

B2 = ζ2 + ζ8 + ζ15 + ζ9

B3 = ζ3 + ζ12 + ζ14 + ζ5

B6 = ζ6 + ζ7 + ζ11 + ζ10.

It is easy to see/check that

B1 +B2 = A1, B1B2 = −1, B3 +B6 = A3, B3B6 = −1

so we can easily construct quadratic equations for each of the B quantities.
Finally, we consider the subfield F8 fixed by σ8. This has F4-basis 1 and one

of the 8 fixed elements

C1 = ζ + ζ16

C2 = ζ2 + ζ15

C3 = ζ3 + ζ14

C4 = ζ4 + ζ13

C5 = ζ5 + ζ12

C6 = ζ6 + ζ11

C7 = ζ7 + ζ10

C8 = ζ8 + ζ9.

We have that

C1 + C4 = B1, C2 + C8 = B2, C3 + C5 = B3, C6 + C7 = B6

and
C1C4 = B3, C2C8 = B6, C3C5 = B2, C6C7 = B1

so we can construct quadratic equations for each of these. Finally, ζ satisfies

t2 − C0 + 1 = 0

so we can find ζ.
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6.2 Solvability in radicals

Next we will resolve the question of whether a quartic equation can be solved
in terms of radicals, as well as to motivate the formula we derived for the cubic
and quartic equations. As a side effect, we will develop some useful tools for
determining Galois groups of splitting fields of low degree polynomials.

Definition 6.8. A field extension L/K is called a radical extension if there
exists a tower of field extensions

L = Km ⊂ Km ⊂ Km−1 ⊂ · · · ⊂ K1 ⊂ K0 = K

such that for each 1 ≤ i ≤ m, there exists a prime number pi and an element
ai ∈ Ki such that api

i ∈ Ki−1 and Ki = Ki−1(ai). We call each extension
Ki/Ki−1 a simple radical extension.

Remark 6.9. We could allow non-prime powers here, but taking the nth root
is the same as taking several pth roots for varying primes p. The definition also
captures adjoining roots of unity, which is essentially the case when api is a pi

th

power in Ki−1, but ai is not an element of Ki−1.

We want to describe when a specific element is contained within a radical
extension, and so it is more convenient to discuss solvable extensions.

Definition 6.10. A field extension L/K is called solvable (or soluable) if there
is an extension M/L such that M/K is radical.

Example 6.11. The extension Q(
√
2, ω)/Q, where ω = e

2πi
3 is a radical exten-

sion, since ω3 = 1, so
Q(

√
2, ω) ⊃ Q(ω) ⊃ Q

is a sequence of simple radical extensions.
Since we know, from an earlier discussion, that

Q(
√
2 +

√
3) = Q(

√
2,
√
3)

we have that Q(
√
2 +

√
3)/Q is a radical extension.

Since we know we can solve a cubic in terms of radicals, the extension
Q(α)/Q is solvable, where α is a root of x3 − 9x + 9. However, this is not
a radical extension. To see that it is not radical, note that

[Q(α) : Q] = 3

and so if this were a radical extension, it would have to be a simple radical
extension:

Q(α) = Q(
3
√
b)

for some b ∈ Q. Such an extension is not normal, and so not a splitting field.
In contrast, we can show that Q(α)/Q is the splitting field of x3 − 9x + 9, and
so cannot be radical.

Our goal is essentially now to describe radical and solvable fields in terms of
their Galois groups, which means it is time for a bit of group theory

57



6.2.1 Solvable groups

Definition 6.12. Let G be a group and define the derived subgroup of G, written
G′ = [G,G] to be the subgroup of G generated by all commutators ghg−1h−1,
where g, h ∈ G.

The derived series of H is the sequence of subgroups

G(0) := G, G(k+1) = [G(k), G(k)]

We call G solvable (or soluable) if G(m) = {e} for some m ≥ 0.

Example 6.13. • If G is abelian, ghg−1h−1 = e for all g, h ∈ G, so G(1) =
{e}. Hence every abelian group is solvable.

• If G = S3, then G
(1) is generated by ghg−1h−1 for g, h ∈ S3.

i) If g and h are 3-cycles, they commute, as the only 3-cycles are (123)
and (132) = (123)−1.

ii) If g, h are distinct 2-cycles, their commutator is a 3-cycle

(12)(23)(12)(23) = (132)

iii) If g, h are a 3-cycle and a 2-cycle, the commutator is again a 3-cycle

(12)(123)(12)(132) = (123)

Hence G(1) consists of the identity and the 3-cycles, i.e. the alternating
group:

G(1) = A3
∼= Z/3Z.

This is abelian, so G(2) = {e} and S3 is solvable.

Solvable groups have a number of useful properties with regards to tak-
ing quotients and subgroups, that let us more easily generate examples/non-
examples

Proposition 6.14. i) If G is solvable, and H ⊂ G is a subgroup, then H is
solvable.

ii) If G is solvable, and H ⊂ G is a normal subgroup, then the quotient G/H
is solvable.

iii) If G is a group, with a normal subgroup H ⊂ G such that both H and G/H
are solvable, then G is solvable.

Proof. i) If H ⊂ G, it is quick to check that H(1) ⊂ G(1), and so H(2) ⊂
G(2), . . . H(k) ⊂ G(k). In particular, if G is solvable, with G(m) = {e}, we
must have H(m) = {e}, and so H is solvable.
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ii) Let π : G→ G/H be the natural projection, and note that the commutator
subgroup (G/H)(1) is generated by elements of the form

(gH)(hH)(g−1H)(h−1H) = ghg−1h−1H,

and so (G/H)(1) ⊂ π
(
G(1)

)
. As π must take commutators to commuta-

tors, we must also have π
(
G(1)

)
⊂ (G/H)(1), and hence they are equal.

Similarly, we must have

π
(
G(k)

)
= (G/H)(k)

and so if G(m) = {e}, (G/H)(m) = {eH}. Thus G/H is solvable if G is.

iii) Suppose G/H is solvable, with (G/H)(m) = {eH} for some m. Then, as in
part (ii), we have that π(G(m)) = {eH}, which means that every element
of G(m) is contained in H:

G(m) ⊂ H.

But then G(m+1) ⊂ H(1), G(m+2) ⊂ H(2), and so on, as in part (i). Thus,
if H is solvable, and H(k) = {e}, G(m+k) = {e}, so G is solvable.

Corollary 6.15. The symmetric group Sn is not solvable for any n ≥ 5.

Proof. As the alternating group A5 is a subgroup of Sn for all n ≥ 5, the
previous proposition implies it is sufficient to show A5 is not solvable. Every
non-identity element of A5 is of the form

(ijk) or (ij)(kl)

for distinct 1 ≤ i, j, k, l ≤ 5. Since

(ijl)(ikm)(ijl)−1(ikm)−1 = (ijl)(ikm)(ilj)(imk)

= (ijk)

and

(ijk)(ijl)(ijk)−1(ijl)−1 = (ijk)(ijl)(ikj)(ilj)

= (ij)(kl),

every element of A5 is a commutator, and so A
(1)
5 = A5. In particular, the

derived series of A5 is constant, so A5 cannot be solvable.

In order to related solvable groups to radical extensions, we need a more
Galois-friendly reformulation, given by the following theorem.

Theorem 6.16. For a finite group G, the following are equivalent:

1. G is solvable.
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2. There exists a sequence of subgroups

G = G0 ⊃ G1 ⊂ G2 ⊃ · · · ⊃ Gm = {e}

such that Gi+1 is a normal subgroup of Gi, and the quotient Gi/Gi+1 is
abelian.

3. There exists a sequence of subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gm = {e}

such that Gi+1 is a normal subgroup of Gi, and the quotient Gi/Gi+1 is
cyclic of prime order.

Proof. To see that (1) ⇒ (2), note that, for any group H, the commutator
subgroup H(1) = [H,H] is a normal subgroup of H. If h ∈ [H,H], then

ghg−1 = (ghg−1h−1)h

is a product of two elements of h, and is therefore in H. Essentially by defini-
tion, the quotient group H/[H,H] is abelian, as all commutators project to the
identity. Thus, taking Gi = G(i), we obtain a sequence of subgroups with Gi+1

a normal subgroup of Gi such that Gi/Gi+1 is abelian. If G is solvable, this
gives the desired sequence.

Next we assume (2). We can assume that all the inclusions in our sequence

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gm = {e}

are strict. Consider one such inclusion Gi ⊃ Gi+1, and let Hi,1 be the maximal
proper normal subgroup ofGi containingGi+1. Then define a sequence of proper
normal subgroups by taking Hi,j+1 to be the maximal proper normal subgroup
of Hi,j containing Gi+1. We must eventually find a k such that Hi,k = Gi+1, as
the subgroups are decreasing in order, and we stop once we find this k.

As Hi,j+1 is maximal, the quotient Hi,j/Hi,j+1 is a simple group (that is to
say, it contains no subgroups other than itself and the trivial group). Further-
more, it must be abelian: let g, h ∈ Hi,j ⊂ Gi. Since Gi/Gi+1 is abelian, we
must have that

ghg−1h−1 ⊂ Gi+1 ⊂ Hi,j+1.

As such, this commutator is also trivial in the quotient Hi,j/Hi,j+1, and so it
is abelian. Finally, we note that every simple abelian group is cyclic of prime
order. Thus, gluing the sequences

Gi = Hi,0 ⊃ Hi,1 ⊃ · · · ⊃ Hi,k = Gi+1

together, we obtain the necessary sequence of subgroups for condition (3)
Finally to see that (3) implies (1), suppose we have such a sequence. Note

that {e} is solvable, and Gm−1
∼= Gm−1/{e} is abelian, and hence solvable. As

Gm−2/Gm−1 is abelian, and hence solvable, Proposition 6.14 tells us that Gm−2

is solvable. We can repeat this argument all the way up the chain: Gi/Gi+1

is abelian, and therefore solvable, so if Gi+1 is solvable, so if Gi. Thus G is
solvable.
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6.3 The Galois theory of radical extensions

We are now almost equipped to describe when an algebraic number is an element
of a radical extension. We first need a few technical lemmas. Some are to handle
roots of unity, which are necessary to have radical Galois extensions, while the
others will enable us to always consider a Galois extension, even when adjoining
our desired algebraic number doesn’t necessarily produce one.

6.3.1 Some technical lemmas

We start with a group theory lemma, followed by a lemma that applies broadly
to abelian groups, but we only need it for the multiplicative subgroups of fields.

Lemma 6.17. Let G be an abelian group and let a be an element of maximal
order m. Then, for every g ∈ G of order r, we must have that r|m.

Proof. Suppose we have an element g of order r not dividing m. Then there
exists some prime p such that pa is the maximal power of p dividing r, pb is the
maximal power of p dividing m and a > b. Consider the elements

ã = ap
b

and g̃ = g
r
pa .

These have orders m
pb and pa respectively. As gcd

(
pa, m

pb

)
= 1, their product

ãg̃ must have order

pa
m

pb
= mpa−b > m

contradicting the maximality of m. Thus r|m.

Lemma 6.18. Let E and F be two fields, and suppose we have k distinct group
homomorphisms

σ1, . . . , σk : E× → F×.

Then there homomorphisms are linearly independent over F , which is to say
that if

c1σ1(s) + c2σ2(s) + · · ·+ ck(σk(s) = 0

for every s ∈ E×, then c1 = c2 = · · · = ck = 0.

Proof. We proceed by induction on k. The case of k = 1 is obvious, as σ(1) = 1.
Suppose it holds true for k − 1 distinct homomorphisms, and suppose we have
k distinct homomorphisms E× → F× and c1, . . . , ck ∈ F such that

c1σ1(s) + · · ·+ ckσk(s) = 0

for all s ∈ E×. We can assume that none of c1, . . . , ck are 0, as otherwise we
could apply the induction hypothesis. As this holds for all s ∈ E×, we must
also have that

c1σ1(s)σ1(t)+c2σ2(s)σ2(t)+· · ·+ckσk(s)σk(t) = c1σ1(st)+c2σ2(st)+· · ·+ckσk(st) = 0
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for all s, t ∈ E×. Therefore, the sum

c1σ1(s)σ1(t)+c2σ2(s)σ2(t)+· · ·+ckσk(s)σk(t)−(c1σ1(s) + · · ·+ ckσk(s))σk(t) = 0

as each major summand vanishes. This rearranges to

c1(σ1(t)−σk(t)σ1(s)+c2(σ2(t)−σk(t))σ2(s)+· · ·+ck−1(σk−1(t)−σk(t))σk−1(s) = 0

for all s and t in E×. Bu our induction hypothesis, we must therefore have

ci(σ1(h)− σk(t)) = 0

for each 1 ≤ i ≤ k − 1 and every t ∈ E×. But since our homomorphisms were
distinct, this can only hold if c1 = c2 = · · · = ck−1 = 0. This gives the desired
contradiction.

Finally, we will use these two lemmas to prove the following important propo-
sition, relating simple radical extensions with cyclic Galois groups.

Proposition 6.19. Suppose that a field K contains n distinct roots of unity of
order n, for some n ≥ 2. Then a Galois extension L/K with [L : K] = n has
Galois group Z/nZ if and only if there exists a ∈ L such that L = K(a) and
an ∈ K

Proof. Suppose such an a exists. Then, xn − an must be irreducible over K, as
otherwise we would have

n = [L : K] = [K(a) : K] < n

as the minimal polynomial of a would have lower degree. Since the elements of
G = Gal(K(a)/K) are completely determined by their action on a, and must
send a root of xn − an to another root in K(a), G is in bijection with the set of
roots in L. As K contains n distinct roots of unity, these roots are

a, aζ2, aζ3, . . . , aζn

where ζk is a root of unity of order n in K. It is easy to see that G must be
abelian, with automorphisms given by multiplying a by the corresponding root
of unity.

Let σk : a 7→ aζk be an element of maximal order m in G. If m = n, then σ
generates G and so G is cyclic. If m < n, then

a = σm
k (a) = aζmk ⇒ ζmk = 1.

For any other element σℓ ∈ G of order r, we can similarly conclude that

a = σr
ℓ (a) = aζrℓ ⇒ ζrℓ = 1

Lemma 6.17 tells us that r|m, and so ζmℓ = 1. But this holds for every σℓ ∈ G
and hence for every ζℓ, 1 ≤ ℓ ≤ n. This gives n solutions to a degree m < n
equation, giving a contradiction. Thus m = n and so G is cyclic.
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Conversely, suppose that G = Gal(L/K) = ⟨σ⟩ is cyclic with generator σ.
Choose ζ ∈ K a primitive root of unity, and for each b ∈ L× consider the
element

a := b+ ζ−1σ(b) + ζ−2σ2(b) + · · ·+ ζ1−nσn−1(b).

As e, σ, σ2, . . . , σn−1 are distinct homomorphisms L× → L×, Lemma 6.18 tells
us that they are linearly independent. In particular, there exists a b for which
a is non-zero, as the coefficients of this linear combination are non-zero.

We then see that

σ(a) = σ(b) + ζ−1σ2(b) + · · ·+ ζ1−nσn(b)

= ζζ−1σ(b) + ζζ−2σ2(b) + · · ·+ ζζ1−nσn−1(b) + ζb

= ζa

and so σ(an) = σ(a)n = an. Thus an is fixed by G and is therefore an element
of K. Finally, as σk(a) = ζka are all distinct, the minimal polynomial of a over
K is

(x− a)(x− ζa)(x− ζ2a) · · · (x− ζn−1a)

which is of degree n. Hence

[K(a) : K] = n = [L : K]

and so L = K(a).

6.3.2 Galois groups of radical extensions

Combining the results from previous section, we obtain the following

Theorem 6.20. Suppose that L/K is a Galois extension with Galois group G,
and that K contains all the pth roots of unity for every prime p | |G|. Then G
is solvable if and only if L/K is radical.

Proof. By Theorem 6.16, G is solvable if and only if there exists a chain of
subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gm = {e}

such that Gi+1 ⊂ Gi is a normal subgroup, and Gi/Gi+1 is cyclic of prime order,
dividing the order of G.

By the Galois correspondence, G is therefore solvable if and only if there
exists a chain of subfields

K = K0 ⊂ K1 ⊂ · · · ⊂ Km = L

such that Ki+1/Ki is normal (and therefore Galois) with cyclic Galois group
of prime order dividing the order of G. As K contains all roots of unity of
prime order dividing |G|, Proposition 6.19 tells us that this occurs if and only
if Ki+1/Ki is a simple radical extension, which occurs if and only if L/K is
radical.
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This gives us a very straightforward classification of radical extensions in
terms of Galois groups, but with two major restrictions: the extension L/K
must be Galois, and K must contain many roots of unity. The first of these is
not too much of an issue, as the following proposition tells us that, at least in
characteristic 0, freely pass to the Galois closure without losing the property of
being radical, and so we can always working the a Galois extension containing
the extension we are interested in.

Proposition 6.21. Let L/K be a radical extension, and denote by Lnorm/K
the normal closure of this extension. Then Lnorm/K is radical.

Proof. If L/K is radical, then we can write

L = K(a1, . . . , an)

with a prime pi such that api

i ∈ K(a1, . . . , ai−1) for each 1 ≤ i ≤ n. Let mi(x)
be the minimal polynomial of ai over K. Then the normal closure of L/K is

the splitting field of f(x) = m1(x)m2(x) . . .mn(x). Let {b(j)i } be the roots of
mi(x), with 1 ≤ j ≤ di = degmi(x), and let

Ki = K(b(j)s | s ≤ i} ⊃ K(a1, . . . , ai).

Since b
(j)
i and ai have the same minimal polynomial over K, there exists a K-

automorphism τ
(j)
i : Lnorm → Lnorm such that τ

(j)
i (ai) = b

(j)
i , by Corollary

4.5.
Since api

i ∈ K(a1, . . . , ai−1) ⊂ Ki−1, we must have that(
b
(j)
i

)pi

=
(
τ
(j)
i (ai)

)pi

= τ
(j)
i (api

i ) ∈ τ
(j)
i Ki−1.

But Ki−1 is the splitting field of m1(x) . . .mi−1(x) over K, so it is a normal
extension of K. From the proof of the Galois correspondence, we know that
any K-automorphism of Lnorm must map normal subextensions to themselves,

so τ
(j)
i Ki−1 = Ki−1. Thus (

b
(j)
i

)pi

∈ Ki−1

Hence Ki is a radical extension of Ki−1, and so Ki/K is radical. Thus Lnorm/K
is radical.

Thus we can always moved to a normal extension, and to a Galois where
our extensions are guaranteed to be separable (e.g. characteristic 0). Next, we
need to address the issue of roots of unity. In order to do so, we need to work
in characteristic 0, as this is where we best understand cyclotomic fields.

Proposition 6.22. Let L/K be a Galois extension of a characteristic 0 field
K, and let n ≥ 2 be an integer. Let K ′/K and L′/L be the splitting fields of
xn − 1 over K and L respectively. Then

64



1. If one of H = Gal(L′/K), G = Gal(L/K), or Γ = Gal(L′/K ′) is solvable,
then all three are solvable.

2. The degree [L′ : K ′] divides [L : K].

Proof. We first note that we have a restriction map

Gal(L′/L) → Gal(K ′/K)

σ 7→ σ|K′

This is a well defined homomorphism since

a) If σ|L = e, then σ|K = e, as K ⊂ L,

b) Since K ′/K is a normal extension, any K-automorphism of L′ must map
K ′ → K.

c) Composition is compatible with restriction.

Furthermore, this is an injective map. We can write

L′ = L(ζn), K ′ = K(ζn),

so any element of either Galois group is completely determined by where it sends
ζn, which will not change upon restriction. Thus Gal(L′/L) is isomorphic to a
subgroup of Gal(K ′/K).

Now, since L′/L is Galois and L/K is Galois, L′/K is Galois, with Galois
group H. By the Galois correspondence, Γ is a normal subgroup of H, as is
Gal(L′/L), and we have that

G = Gal(L/K) ∼= H/Gal(L′/L)

Gal(K ′/K) ∼= H/Γ.

Finally, we note that

Gal(L′/L) ⊂ Gal(K ′/K) = Gal(K(ζn)/K) ⊂ Gal(Q(ζn)/Q) ∼= (Z/nZ)×

and so both Gal(L′/L) and Gal(K ′/K) are abelian and hence solvable. Then,
by Proposition 6.14m we have that

• H solvable implies the subgroup Γ and the quotient G are solvable,

• Γ solvable implies H is solvable, as the quotient Gal(K ′/K) is, and hence
G is solvable,

• G solvable implies that H is solvable, as the normal subgroup Gal(L′/L)
is, and hence Γ is solvable.
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To see that [L′ : K ′] divides [L : K], we first note that the order a subgroup
divides the order of the group, so

[L′ : L] = |Gal(L′/L)| | |Gal(K ′/K) = [K ′ : K].

Tower law tells us that

[L′ : L][L : L] = [L′ : K ′][K ′ : K]

and so

[L : K] =
[K ′ : K]

[L′ : L]
[L′ : K ′]

is an integer multiple of [L′ : K ′].

Using this, we can circumvent needing the roots of unity in K.

Theorem 6.23. Suppose K is a field of characteristic 0, and let L/K be a finite
field extension. This extension is solvable if and only if the normal closure Lnorm

has solvable Galois group over K.

Proof. First suppose Gal(Lnorm/K) is solvable. Let L′ and K ′ be the splitting
fields of

x[L
norm:K] − 1

over Lnorm andK respectively. By Proposition 6.22, L′/K ′ is a Galois extension
with solvable Galois group. Since

|Gal(L′/K ′)| = [L′ : K ′] | [Lnorm : K]

K ′ contains all pth root of unity for p dividing the order of the Galois group,
and so Theorem 6.20 tells us that L′/K ′ is radical. Clearly K ′/K is radical, so
L′/K is radical, and therefore L/K is solvable.

Conversely, suppose that L/K is solvable. This means we can extend this to
a radical extensionM/K. LetMnorm be the normal closure ofM . Propositions
6.21 tells us this is a radical extension of K. Now letM ′ and K ′ be the splitting
fields of

x[M
norm:K] − 1

over Mnorm and K respectively. Then M ′/K is radical.
Since [M ′ : K ′] | [Mnorm : K], we have all the necessary roots of unity to

conclude that Gal(M ′/K ′) is solvable, and hence Gal(Mnorm/K) is solvable.
Thus

Gal(Lnorm/K) ∼= Gal(Mnorm/K)/Gal(Mnorm/Lnorm)

is solvable.

Corollary 6.24. Suppose K is a field of characteristic 0, and f(x) ∈ K[x] is
a polynomial. The roots of f(x) can be expressed in terms of nested radicals,
roots of unity, and arithmetic operations if and only if the Galois group of the
splitting field is solvable.
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6.4 Soluability of polynomials

6.4.1 The quintic case

Theorem 6.25. Let K = Q, and let n ≥ 5 be an integer. Let x1, . . . , xn be
formal variables, so that

f(x) = (x− x1)(x− x2) · · · (x− xn) = xn − e1x
n−1 + e2x

n−2 + · · · ± en

has coefficients in elementary symmetric polynomials. Then there is no formula
using arithmetic operations and extractions of roots expressing x1, x2, . . . , xn in
terms of e1, . . . , en.

Proof. Consider the fieldQ(e1, . . . , en). The splitting field of f(x) overQ(e1, . . . , en0
is Q(x1, . . . , xn). Since this is an algebraic extension, every element of this ex-
tension can be written in the form

g(x1, . . . , xn)

h(e1, . . . , en)

where g(x1, . . . , xn) is a polynomial, and h(e1, . . . , en) ∈ Q(e1, . . . , en). From
Theorem 2.19, we can see that such an element is invariant under the action of
Sn permuting the variables if and only if it is expressible in terms of elementary
symmetric polynomials:

Q(x1, . . . , xn)
Sn = Q(e1, . . . , en).

Thus
Gal(Q(x1, . . . , xn)/Q(e1, . . . , en)) = Sn

which is not solvable for n ≥ 5. The claim then follows.

The situation is even worse than this: it is not just that there is no formula
that works for arbitrary quintics, but we can write down specific quintics whose
roots cannot be expressed in terms of radicals. For example, we will show
x5 − 6x+3 has no roots expressible over Q via radicals. First, we need a useful
lemma.

Lemma 6.26. A transitive subgroup of S5 containing a transposition is equal
to S5.

Proof. Let G be a transitive subgroup of S5 containing a transposition (a b).
By transitivity, we can find σk ∈ G such that σ(a) = k for each k = 1, 2, 3, 4, 5.
Hence

σ(a, b)σ−1 = (σ(b) k) ∈ G.

Thus, every 1, 2, 3, 4, 5 is involved in at least one transposition in G. This means
that G contains at least 3 transpositions, and one number appears in 2 of them.
Since the transpositions (i k) and (j k) generate all permutations of i, j, k G
contains a copy of S3. Relabelling if necessary, we can assume that this copy
permutes 1, 2, 3.
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By transitivity, there is a σ ∈ G such that σ(1) = 4. The element τ = σ(2 3)
also maps 1 to 4, and so

σ(1 2)σ−1 = (4σ(2)) and τ(1 2)τ−1 = (4 τ(2))

give two transpositions involving a 4. One of them must therefore not be (4 5),
and so this transposition, alongside the copy of S3, generates a copy of S4.
Finally, we know that 5 is involved in some transposition, so this, along with S4

generates all of S5.

Example 6.27. We claim the roots of f(x) = x5 − 6x+ 3 cannot be expressed
in terms of radicals. Let L be the splitting field of f(x) over Q. It then suffices
to show that G = Gal(L/Q) is not solvable. To determine this group, we need
to do a bit of work. We first note that

3 | 6, 3 | 3, 9 ∤ 3,

so f(x) is irreducible by Eisenstein’s criterion. Thus, G is a transitive subgroup
of S5. Based on the previous lemma, if G contains a transposition, it must equal
S5, which is not solvable.

Complex conjugation is always an automorphism of any extension of Q, of
order at most 2. As such, it is a good candidate for a transposition. How-
ever, there is no guarantee that is is a transposition. For example, it acts as
the identity on the extension Q(

√
2)/Q, and as a product of a pair of disjoint

transpositions on Q(
√
−2,

√
−3)/Q. To show that it must be a transposition in

our case, it would suffice to show that f(x) has exactly 2 complex roots.
We can check that

f(−2) = −17 < 0,

f(−1) = 8 > 0,

f(1) = −2 < 0,

f(2) = 23 > 0.

Thus, f(x) has at least 3 real roots. As f ′(x) = 5x4 − 6 has exactly 2 real roots,
f(x) has exactly 2 turning points, and so f(x) has exactly 3 real roots.

Thus it has exactly two non-trivial complex conjugate roots, which are swapped
by complex conjugation, giving a transposition in G. Thus G = S5, so the roots
cannot be expressed in terms of radicals.

Remark 6.28. Rather than having to constantly define the splitting field of a
polynomial, we introduce the notation

Gal(f) := Gal(L/K)

for the Galois group of the splitting field of a polynomial over K. The base field
will usually be obvious from context.
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6.4.2 The cubic case

We know that S3 is solvable, as we have a sequence

S3 ⊃ A3 ⊃ {e}

of normal subgroups, for which the quotient is cyclic of prime order. This
informs how we can solve a cubic in terms of radicals.

Consider an irreducible cubic f(x) = x3 + ax2 + bx + c ∈ Q[x], with roots
x1, x2, x3 and Galois groupG = Gal(f). Since f(x) is irreducible, G is transitive,
and hence G = A3 or S3.

If G = A3, then the proof of Proposition 6.19 tells us that

X = x1 + ζ3x2 + ζ23x3

generates L. Since (123)X = ζ23X and (132)X = ωX, we have that X3 is
invariant under G, and so X3 ∈ Q. Similarly

Y = x1 + ζ23x2 + ζ3x3

must have Y 3 ∈ Q. Knowing that

x1 + x2 + x3 = −a

we find

x1 =
X + Y − a

3

so it suffices to find X and Y .
If G = S3, then X3 and Y 3 are still invariant under A3, but are swapped

by the transpositions. Hence X3 + Y 3 and X3Y 3 are elements of Q, and so we
can construct a quadratic equation for them, as we did in the very beginning!
Indeed, some calculations with symmetric polynomials shows that, if

f(x) = x3 + px+ q

then (
X

3

)3

+

(
Y

3

)
s = −q,

(
XY

9

)3

= − p

27

which gives exactly the quadratic we derived earlier!

Remark 6.29. The expression in terms of radicals is pretty much useless in
real life. For example, if we solve

f(x) = x3 − 7x+ 6 = (x− 1)(x− 2)(x+ 3)

using the formula, we get that

3

√
−3 +

10

9

√
−3 +

3

√
−3− 10

9

√
−3

is a root of f(x). I leave you to figure out which one it is!

69



6.4.3 The quartic case

Let
V4 = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

denote the Klein-4 normal subgroup of S4. We can show that S4 is solvable, as

S4 ⊃ A4 ⊃ V4 ⊃ {e}

is a sequence of normal subgroups with abelian quotients.
Suppose we have an irreducible quartic

f(x) = x4 + ax3 + bx2 + cx+ d

with roots x1, x2, x3, x4, and let L be the splitting field of f over Q. It is easy
to check that

LV4 = Q(x1x2 + x3x4, x1x3 + x2x4, x1x4 + x2x3)

is the fixed subfield associated to V4. The generators of this field are permuted
by the action of S4, and so we have that

R(x) = (x− x1x2 − x3x4)(x− x1x3 − x2x4)(x− x1x4 − x2x3) ∈ Q[x].

This is exactly (at least when a = 0) the auxiliary cubic we constructed in the
first lecture. We can solve a cubic, so we can compute the roots α1, α2, α3 of
R(x). Then by solving

x2 − αix+ d = x2 − αix+ x1x2x3x4

we can find
x1x2, x1x3, x1x4

in terms of radicals. The product of these is

x21(x1x2x3x4) = x21d

and so we can determine x1.

6.4.4 Distinguishing Galois groups

In the above discussion, we looked at the worst case scenario, but as we saw
with the cubic, knowing the Galois group can let us skip some steps and product
a simpler formula for the roots. We will provide a complete description of how
to identify transitive subgroups of S3 and S4. The first check is to compute the
discriminant.

Proposition 6.30. Let f(x) ∈ K[x] have degree n. Then Gal(f) ⊂ An if and
only if disc(f) is a square in K.
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Proof. Recall that, if f(x) has roots α1, . . . , αn in the splitting field, then

disc(f) =
∏
i<j

(αi − αj)
2.

This is clearly invariant under the permutation action of Sn on the roots, and
so is an element of K. Its square root√

disc(f) =
∏
i<j

(αi − αj)

is usually not. It is easy to check that

σ(
√
disc(f)) = ±

√
disc(f)

with
√
disc(f) being invariant under σ if and only if σ ∈ An. Thus disc(f) is a

square in L if and only if
√

disc(f) ∈ K if and only if Gal(f) ⊂ An.

This immediately separates the transitive subgroups of S3, and provides a
useful step in distinguishing transitive subgroups of S4. The transitive sub-
groups of S4, up to conjugation, are

S4, A4, D4, Z/4Z, V4 ∼= (Z/2Z)2.

We have the following result.

Proposition 6.31. Let

f(x) = x4 + ax3 + bx2 + cx+ d ∈ K[x]

be an irreducible quartic polynomial, and let G = Gal(f). Let R(x) be the cubic
defined earlier. Then:

• if disc(f) is not a square in K and R(x) is irreducible, then G = S4,

• if disc(f) is a square in K and R(x) is irreducible, then G = A4,

• if disc(f) is a square in K and R(x) is reducible, then G = V4,

• if disc(f) is not a square in K, R(x) is reducible with root r ∈ K, and both
x2 + ax+ b− r and x2 − rx+ d split over K(

√
disc(f)), then G ∼= Z/4Z,

• otherwise G ∼= D4.

Proof. We will only consider the first three cases. If R(x) is irreducible, then the
splitting field contains an intermediate extension of order 3, so 3 | |G|. Hence
G = S4 or G = A4, which are distinguished by the discriminant.

If G contains a 3-cycle, this 3-cycle permutes the roots of R(x), which means
it must be irreducible. Thus, if R(x) is not irreducible, G cannot contain a 3-
cycle. If disc(f) is a square in K, and R(x) is reducible, then G is a transitive
subgroup of A4 not containing a 3-cycle; V4 is the only such group.
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6.5 The fundamental theorem of algebra

If you have seen a proof of the fundamental theorem of algebra, it probably
made use of complex analysis in a fundamental way. Galois theory and group
theory provide us with an entirely algebraic proof.

Theorem 6.32. Every polynomial with complex coefficients has a complex root.

Proof. We take a polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ C[x]

and define

g(x) = f(x)(anx
n + an−1x

n−1 + · · ·+ a0)(x
2 + 1).

The coefficients this are invariant under complex conjugation, so g(x) ∈ R[x].
Let K be the splitting field of g(x) over R. It suffices to show K = C, as if g(x)
splits in C, so does f(x).

Let G = Gal(K/R), and write |G| = 2mq for some odd q. Sylow’s first
theorem tells us that, for any prime p, if pk divides the order of G, G contains
a subgroup of order pk. In our case, G contains a subgroup H of order 2m. By
the Galois correspondence, K/KH is a Galois extension of degree

[K : KH ] = |H| = 2m

and so KH/R is an extension of degree [KH : R] = q. We claim q = 1.
Suppose we have some a ∈ KH with minimal polynomial of degree d over

R. Since
d = [R(a) : R] | [KH : R] = q

we must have that d is odd. But every polynomial of odd degree has a real
root, so if d > 1, the minimal polynomial of a would not be irreducible. Thus
we must have d = 1, and so a ∈ R for all a ∈ KH . Therefore KH = R and
Gal(K/R) = H.

If m = 1, we are done, as K/R is a quadratic extension of R containing the
quadratic extension C, and so K = C. If m > 1, then we have [K : C] = 2m−1 >
1. Hence Gal(K/C) is solvable by Lemma 6.33, and so we must have a sequence

Gal(K/C) = G0 ⊃ G1 ⊃ · · ·Gr = {e}

where Gal(KC)/G1 is cyclic of prime order, which must be 2. Thus, by the
Galois correspondence, [KG1 : C] = 2. But as every element of C is a square
in C, every quadratic splits in C, so C has no quadratic extensions. Thus, we
must have m = 1 and K = C.

Lemma 6.33. Every group of prime power order is solvable.
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Proof. Let p be prime, and suppose |G| = pk. If k = 1, we are done, as G is
cyclic. We proceed by induction.

Suppose it is true for groups of prime power order p, p2, . . . , pk−1. If G has
non-trivial centre Z(G), this is an abelian (and solvable) normal subgroup, and
the quotient G/Z(G) has order pd < pk, which is solvable by the induction
hypothesis. Thus, G is solvable.

So it suffices to show we have a non-trivial centre. Consider the action of G
on itself by conjugation:

g · x = gxg−1,

and let C be the set of conjugacy classes. For a given representative x of a
conjugacy class [x], we have that

|[x]| = |G|
|Sx|

where Sx is the stabliser of x. Hence

pk = |G| =
∑
[x]∈C

|[x]| =
∑
[x]∈C

|G|
|Sx|

.

We have that |G|
|Sx| is a power of p, and that the term corresponding to x = e

is equal to 1. Since the sum is a power of p, this means that we must have at
least one non-identity element x such that |[x]| = 1, and so |G| = |Sx|, and so
x ∈ Z(G) for some non-identity x.

7 Some final results, and tricks for computation

7.1 Primitive element theorem

Definition 7.1. Let L/K be a field extension. We call an element a ∈ L a
primitive element if L = K(a).

Example 7.2. We know that Q(
√
2,
√
3) = Q(

√
2 +

√
3), so

√
2 +

√
3 is a

primitive element for the extension Q(
√
2,
√
3)/Q.

We claim a primitive element always exists, though we will only show this
for when the base field is infinite. For this we need a lemma.

Lemma 7.3. Let F be an infinite field, and f(x1, . . . , xn) ∈ F [x1, . . . , xn] be a
non-zero polynomial. Then there exist a1, . . . , an ∈ F such that f(a1, . . . , an) ̸=
0.

Proof. We induct on n. For n = 1, the polynomial f(x1) has only finitely many
roots if it is non-zero. Thus, we can find a1 such that f(a1) ̸= 0. For n > 1, we
can write

f(x1, . . . , xn) = fk(x1, . . . , xn−1)x
k
n+fk−1(x1, . . . , xn−1)x

k−1
n +· · ·+f1(x1, . . . , xn−1)xn+f0(x1, . . . , xn−1).
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As f(x1, . . . , xn) is non-zero, at least one of fi(x1, . . . , xn−1) is non-zero, and so
by induction there exists (a1, . . . , an−1) ∈ Fn−1 such that fi(a!, . . . , an−1) ̸= 0.
Thus f(a1, . . . , an−1, xn) is a non-zero polynomial in 1 variable, so we can find
an ∈ F such that f(a1, . . . , an) ̸= 0.

Theorem 7.4. A finite separable extension L of an infinite field K contains a
primitive element.

Proof. Suppose [L : K] = n. We first extend L/K to a Galois extension M/K,
and let G = Gal(M/K). As this is finite, G has finitely many subgroups, and so
there are finitely many intermediate subfields. In particular, there are finitely
many fields

K ⊂ F ⊂ L.

Call those subfields strictly between K and L F1, F2, . . . , Fk. Since each of these
is a strict (K-vector) subspace of L, there exists a non-zero linear function

gi(x1, . . . , xn) : K
n → K

that is 0 on every element of Fi (viewed as a vector subspace of L ∼= Kn. These
functions exist since, as K-vector spaces

dimK F⊥
i = dimK L− dimK Fi > 0.

Let
f(x1, . . . , xn) = g1(x1, . . . , xn)g2(x1, . . . , xn) · · · gk(x1, . . . , xn).

This is a non-zero polynomial, so by Lemma 7.3 there exists (a1, . . . , an) ∈
Kn ∼= L such that f(a1, . . . , an) ̸= 0. In particular, this gives an element a ∈ L
that is not contained in any of the F1, . . . , Fk. Thus, we have a field

K ⊂ K(a) ⊂ L

that is not equal to any of the subfield strictly contained in L. ThereforeK(a) =
L.

7.2 Normal basis theorem

Definition 7.5. Let L/K be a Galois extension. A K-basis of L is called
normal if it is a single orbit of Gal(L/K), i.e.

{e1, e2, . . . , en} = {σ1(α), σ2(α), . . . , σn(α)}

for some α ∈ L.

Example 7.6. The Q-basis {1,
√
2} of Q(

√
2) is not normal, as the Galois

group does not permute the basis elements. The basis{
1 +

√
2

2
,
1−

√
2

2

}
is a normal basis.
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As with the primitive basis theorem, we claim a normal basis exists, but we
will only prove this in the case of infinite K. We first need a lemma.

Lemma 7.7. Let L/K be a Galois extension with Galois group

Gal(L/K) = {e = σ1, σ2, . . . , σn}

and let e1, . . . , en be a K-basis of L. Then the set of tuples

{vi = (σ1(ei), σ2(ei), . . . , σn(ei))}

forms an L-basis of Ln.

Proof. Suppose {v1, . . . , vn} are not linearly independent over L. Then there
exists c1, . . . , cn ∈ L, not all 0, such that

c1v1 + · · ·+ cnvn = 0.

Taking the components of this, we therefore have

c1σ1(ei) + · · ·+ cnσn(ei) = 0

for each i. Since the σi are K-linear, this implies that

c1σ1(a) + · · ·+ cnσn(a) = 0

for all a ∈ L. By Lemma 6.18, this implies c1 = · · · = cn = 0, a contradiction.

Theorem 7.8. A Galois extension L of an infinite field K has a normal basis.

Proof. It suffices to show that we can find some a ∈ L such that σ1(a), . . . , σn(a)
are linearly independent over K. If not, then for each a ∈ L, we can find
c1, . . . , cn ∈ K (not all 0) such that

c1σ1(a) + · · ·+ cnσn(a) = 0.

Applying σ−1
i to this, we see that, for each a ∈ L, we can find c1, . . . , cn ∈ K

such that
c1σ

−1
i σ1(a) + · · ·+ cnσ

−1
i σn(a) = 0

for all 1 ≤ i ≤ n. This says that, for each a ∈ L, the system of linear equations

A(a)


c1

c2
...

cn

 =


σ−1
1 σ1(a) σ−1

1 σ2(a) · · · σ−1
1 σn(a)

σ−1
2 σ1(a) σ−1

2 σ2(a) · · · σ−1
2 σn(a)

...
...

. . .
...

σ−1
n σ1(a) σ−1

n σ2(a) · · · σ−1
n σn(a)




c1

c2
...

cn
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has a non-trivial solution for each a ∈ L. Thus det(A(a)) = 0 for each a ∈ L.
Choosing a K-basis e1, . . . , en of L and writing a generic element of L in the
form

x = x1e1 + x2e2 + · · ·+ xnen

we have that
A(x) = x1A(e1) + · · ·+ xnA(en)

and det(A(x)) is a polynomial in x1, . . . , xn. If we can show this polynomial is
non-zero, then by Lemma 7.3 there exists

a = a1e1 + · · ·+ anen ∈ L

such that det(A(a)) ̸= 0, giving an element such that

{σ1(a), . . . , σn(a)}

are linearly independent.
To show this polynomial is non-zero, we note that is is sufficient to show

that it is non-zero for any x1, . . . , xn, even if they are elements of L, not K.
From Lemma 7.7, we know that we can find c1, . . . , cn ∈ L such that

c1σi(e1) + · · ·+ cnσi(en) =

{
1 if i = 1,

0 otherwise,

and so

c1σ
−1
i σj(a) + · · ·+ cnσ

−1
i σj(a) =

{
1 if i = j,

0 otherwise
.

as σ1 = e. Thus
c1A(e1) + · · ·+ cnA(en) = In

is the identity matrix. Therefore, when we evaluated det(A(x)) at (c1, . . . , cn),
we obtain 1, which means det(A(x)) is non-zero. The claim then follows.

7.3 A method for computing Galois groups

Most results in this section will be presented without proof, at least temporarily.
A useful, but impractical, result on the computation of Galois groups is due

to Kronecker.

Theorem 7.9. Let K be a field, and f(x) ∈ K[x] be a separable polynomial
with roots a1, . . . , an in the splitting field. Introduce formal variables t1, . . . , tn
and define

F (x; t1, . . . , tn) =
∏

σ∈Sn

(x− tσ(1)a1 − · · · − tσ(n)an).

Then
F (x; t1, . . . , tn) ∈ K[x, t1, . . . , tn].
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Let F̃ (x; t1, . . . , tn) be the irreducible factor of F in K[x, t1, . . . , tn] divisible by
(x− t1a1 − · · · − tnan) over the splitting field. Then

Gal(f) = {σ ∈ Sn | F̃ (x; tσ(1), · · · , tσ(n)) = F̃ (x; t1, . . . , tn)}

On one hand, this is an entirely explicit way of computing a Galois group
knowing only the coefficients of f(x). On the other hand, expressing F in terms
of these coefficients involves substantial computation with symmetric polynomi-
als, and factorising it is quite challenging. For something more doable by hand
(and by computer), we introduce the following result.

Theorem 7.10. Let f(x) ∈ Z[x] be monic and separable, and let p be a prime.
Then:

1. disc(f) ∈ Z and

disc (f(x) (mod p)) ≡ disc(f) (mod p),

2. f(x) (mod p) is separable for all but finitely many p,

3. if f(x) (mod p) is separable and splits as a product of irreducible factors of
degrees d1, d2, . . . , dk in Fp[x], then Gal(f) contains a permutation whose
decomposition into disjoint cycles consists of a product of cycles of length
di for each 1 ≤ i ≤ k.

Thus, by picking various primes, we can deduce a good bit of information
about the Galois group. In fact, Cebotarev’s density theorem tells us that, by
picking p at random, we “find” all elements of Gal(f) with equal probability.

Example 7.11. Let f(x) = x4−8x2+4x+2. This is irreducible by Eisenstein’s
criterion for p = 2, so Gal(f) is a transitive subgroup of S4:

S4, A4, D4, V4, Z/4Z.

We can compute disc(f) = 89344 = 23 · 349, which is not a square in Q, so
Gal(f) is one of S4, D4,Z/4Z.

Considering f(x) modulo 2, we get

f(x) ≡ x4 (mod 2)

so Gal(f) contains a product of 1-cycles...
Considering f(x) modulo 3, we find that f(x) has a root −1 in F3. We

compute
f(x) ≡ (x+ 1)(x3 − x2 − x+ 2) (mod 3).

By checking for roots, we find that this cubic is irreducible, and so Gal(f) con-
tains a 3-cycle. Thus Gal(f) = S4.

Alongside this theorem, we can often use the following to quickly show a
Galois group to be Sn.
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Lemma 7.12. Let G ⊂ Sn be a transitive subgroup containing a transposition
and an (n− 1)-cycle. Then G = Sn.

Proof. We can assume, without loss of generality, that the (n− 1)-cycle is σ =
(1 2 · · · n − 1) and that the transposition is (a b). Since G is transitive, there
exists τ ∈ G such that τ(b) = n, and so G contains the transposition

τ(a b)τ−1 = (τ(a)n) = (k n).

Then G contains
σm(k n)σ−m = (σm(k)n)

for each 1 ≤ m ≤ n− 1. Thus

(1n), (2n), . . . , (n− 1n) ∈ G

and
(i n)(j n)(i n) = (i j) ∈ G

for each 1 ≤ i, j ≤ n − 1. Thus G contains every transposition and hence
G = Sn.

Example 7.13. Let f(x) = x5 + x2 + 1. We can show this is irreducible so
Gal(f) is transitive and we can apply our theorem to compute Gal(f). We find
that

f(x) ≡ (x− 1)(x4 + x3 + x2 − x− 1) (mod 3)

is the complete factorisation in F3[x], and so Gal(f) contains a 4-cycle. Simi-
larly, we find a complete factorisation

f(x) ≡ (x2 − x+ 2)(x3 + x2 − x− 2) (mod 5)

in F5[x], and so there is a σ that is a product of a disjoint transposition and
3-cycle. Hence σ3 is a transposition. Thus Gal(f) = S5.

We can use this to construct monic fn(x) ∈ Z[x] such that Gal(f) = Sn for
every n ≥ 1, as follows. We let

• F2(x) ∈ F2[x] be any monic irreducible polynomial of degree n,

• F3(x) ∈ F3[x] be any monic irreducible polynomial of degree n− 1

• F5(x) ∈ F5[x] be any monic irreducible polynomial of degree n− 2) if n is
odd or n− 3 if n is even.

We can lift these to monic polynomials G2(x), G3(x), G5(x) ∈ Z[x], and define

fn(x) :=

{
−15G2(x) + 10xG3(x) + 6(x2 + 2)G5(x) if nis odd,

−15G2(x) + 10xG3(x) + 6x(x2 + 2)G5(x) if nis even.

Then fn(x) is monic (as −15 + 10 + 6 = 1) and irreducible (as it is irreducible
modulo 2). It factorises as xF3(x) in F3[x], so Gal(f) contains an (n− 1)-cycle,
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and factorises as xεn(x2 +2)F5(x) in F5[x], and so Gal(f) contains a product σ
of a disjoin transposition and a cycle of odd length. Raising σ to the length of
this odd cycle, we obtain a transposition in Gal(f). Hence Gal(f) = Sn.

In fact, most irreducible polynomials of Q will have Galois group Sn. The
probablity of a random monic f(x) ∈ Z[x] of degree n with coefficients of ab-
solute value at most N having Galois group not equal to Sn decays like Cn

6√
N

as

N → ∞. As such, the probability of a random polynomial having Galois group
Sn is 1!

7.4 The inverse Galois problem

Most Galois groups are Sn, but what about the others? Do most groups appear
as Galois groups? The answer, if we aren’t too picky about our base field, is yes!
In fact, every finite group appears as the Galois group of some extension L/C(t).
But if we want to consider a more familiar ground field like Q, then we have no
idea. A result due to Kronecker-Weber tells us that every abelian group arises
as the Galois group arises as Gal(L/Q) for L a subfield of a cyclotomic field.
Shafarevich showed taht every solvable group is a Galois group over Q. Serre
gave us a surprising result which said that if all finite groups appears as Galois
groups of extensions of Q, then they appear as Galois groups of real extensions
of Q. Beyond this, little is known, and even to get all small groups, some effort
is needed. We provide here an example for every finite group of order at most
8, and leave it to you to verify these. (Q8 is particularly fun)

• Z/2Z arises from Q(
√
2),

• Z/3Z arises from Q(cos(2π/7)),

• Z/4Z arises from Q(ζ5),

• (Z/2Z)2 arises from Q(
√
2 +

√
3),

• Z/5Z arises from Q(cos(2π/11)),

• Z/6Z arises from Q(ζ7),

• S3 arises from Q( 3
√
2, ζ3),

• Z/7Z arises from Q(ζ29)
H where H is the subgroup of (Z/29Z)× ∼= Z/28Z

consisting of H ∼= {0, 7, 14, 21},

• Z/8Z arises from Q(cos(2π/17)),

• Z/4Z× Z/2Z arises from Q(ζ16),

• (Z/2Z)3 arises from Q(
√
2,
√
3,
√
5),

• D4 arises from Q( 4
√
3, i),

• Q8 arises from

Q(
√
2,
√
3,

√
(2 +

√
2)(3 +

√
3)).
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