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Analysis in Several Real Variables - Sample Exam 2 - Solutions
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Dr. Adam Keilthy

Instructions to candidates:

Attempt any three questions. If you attempt all four questions, only your best
three will be considered in your grade. All questions are worth 30 points

Unless stated otherwise, you may use all statements given lectures without proof,
but must clearly justify that the assumptions of statement are fulfilled.

Additional instructions for this examination:

You may use a non-programmable calculator. Please indicate the make and model
of your calculator on each answer book used.

You may not start this examination until you are instructed to do so by the Invigi-
lator.
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Question 1

LetM2×2(R) denote the set of (2×2)-matrices, and let GL2(R) denote the subset of invertible

matrices.

i) (8pts) Determine an explicit isomorphism of real vector spaces Ψ : R4 →M2×2.

ii) (8pts) Show that the map R4 → R given by

v⃗ 7→ detΨ(v⃗)

is continuous on R4.

iii) (6pts) Hence determine whether Ψ−1(GL2(R)) is open or closed or neither as a subset

of of R4.

iv) (8pts) Prove that the map

v⃗ 7→ Ψ−1
(
Ψ(v⃗)−1

)
induced by matrix inversion is continuous on Ψ−1(GL2(R)).

Solution

i) The map 
a

b

c

d

 7→

a c

b d



is clearly linear and injective, giving an injective linear map between two 4 dimensional

vector spaces, hence an isomorphism.

ii) Explicitly, this map is 
a

b

c

d

 7→ ad− bc
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which is continuous as the coordinate maps are continuous, multiplication is continuous,

and addition is continuous. Thus, it is a composition of continuous functions.

If we wanted to be overly explicit, the map is

v⃗ 7→ s(m(π1(v⃗), π4(v⃗)),m(π2(v⃗), π3(v⃗)))

where πi is the i
th coordinate function, m : R2 → R is multiplication and s : R2 → R is

addition.

iii) The general linear group is the set of invertible matrices, i.e. those with non-zero deter-

minant. Denoting by ψ the map from part (ii), we have that

Ψ−1(GL2(R)) = {v⃗ ∈ R4 | det(Ψ(v⃗) ̸= 0}

= {v⃗ ∈ R4 | ψ(v⃗) ̸= 0} = {(a, b, c, d) ∈ R4 | ad− bc ̸= 0}

which is open as ψ is continuous.

iv) Explicitly, this is the map 
a

b

c

d

 7→ 1

ad− bc


d

−b

−c

a


Recall that r : R \ {0} → R given by t 7→ t−1 is continuous. Since ad − bc ̸= 0 on

Ψ−1(GL2(R)), the map 
a

b

c

d

 7→ 1

ad− bc

is continuous on Ψ−1(GL2(R)). Thus

v⃗ =


a

b

c

d

 7→ 1

ad− bc
πi(v⃗)
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is continuous on Ψ−1(GL2(R)) for each i = 1, 2, 3, 4. Thus the map

v⃗ 7→ Ψ−1
(
Ψ(v⃗)−1

)
is continuous, as each of its components are.

Question 2

1. (8pts) State, with all necessary hypotheses, the chain rule for differentiable functions of

several real variables

2. (10pts) Let g : R → Rm and f : Rm → R be functions differentiable everywhere. Using

the chain rule, show that

(f ◦ g)′(t) =
m∑
k=1

∂f

∂xk
(g(t))

dgk
dt

(t)

for every t ∈ R, where

g(t) = (g1(t), . . . , gm(t)).

3. (12pts) Fix (x1, . . . , xm) ∈ Rm. Hence, or otherwise, show that there exists δ > 0 and

θ ∈ (0, 1) such that

f(x1 + a1h, x2 + a2h, . . . , xm + amh)

= f(x1, . . . , xm) + h
m∑
k=1

ak
∂f

∂xk
(x1 + a1θh, x2 + a2θh, . . . , xm + amθh)

for all h ∈ (−δ, δ).

Solution

i) Let X ⊂ Rm, Y ⊂ Rn be open sets, and let p⃗ ∈ X. Let φ : X → Y be differentiable at

p⃗ and let ψ : Y → Rs be differentiable at φ(p⃗). Then the composition

(ψ ◦ φ) : X → Rs

is differentiable at p⃗ with derivative

(D(ψ ◦ φ))p⃗ = (Dψ)φ(p⃗) ◦ (Dϕ)p⃗.
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ii) If a function is differentiable everywhere, the derivative is given by the Jacobian every-

where. Hence

(D g)t =


dg1
dt
(t)
...

dgm
dt

(t)


and

(D f)x⃗ =
(

∂f
∂x1

· · · ∂f
∂xm

)
.

Thus, by chain rule,

(f ◦ g)′(t) = (D(f ◦ g))t

=
(

∂f
∂x1

(g(t)) · · · ∂f
∂xm

(g(t))
)

dg1
dt
(t)
...

dgm
dt

(t)


=

m∑
k=1

∂f

∂xk
(g(t))

dgk
dt

(t).

iii) Taylor’s theorem says that for any function

F : R → R

differentiable at 0, there exists δ > 0 and θ ∈ (0, 1) such that

F (h) = F (0) + F ′(θh)h

for all h ∈ (−δ, δ). Consider the function

F (t) = f(x1 + a1t, . . . , xm + amt).

By chain rule, this is differentiable at t = 0, with derivative

F ′(t) =
m∑
k=1

ak
∂f

∂xk
f(x1 + a1t, . . . , xm + amt).

By Taylor’s theorem applied to F , we find that there exists δ > 0 and θ ∈ (0, 1) such
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that

f(x1 + a1h, . . . , xm + amh) = F (h)

= F (0) + F ′(θh)h

= f(x1, . . . , xm)

+ h
m∑
k=1

ak
∂f

∂xk
(x1 + a1θh, x2 + a2θh, . . . , xm + amθh)

for all h ∈ (−δ, δ).

Question 3

Recall that a real symmetric (m ×m)-matrix A is called positive definite if ⟨x⃗, Ax⃗⟩ > 0 for

all non-zero x⃗ ∈ Rm. Given a positive definite matrix A, we define the A-norm by

∥x⃗∥A =
√

⟨x⃗, Ax⃗⟩.

1. (5pts) Show that every eigenvalue of A is positive.

2. (8pts) Hence show that the exist constants c, C > 0 such that

c∥x⃗∥ ≤ ∥x⃗∥A ≤ C∥x⃗∥

for all x⃗ ∈ Rm.

3. (10pts) Show that ∥x⃗+ y⃗∥A ≤ ∥x⃗∥A + ∥y⃗∥A for all x⃗, y⃗ ∈ Rm.

Hint: Diagonalise A. Given x⃗, can you find v⃗x such that ∥x⃗∥A = ∥v⃗x∥? Is the mapping

x⃗→ v⃗x linear?

4. (7pts) Prove that a sequence {x⃗n} of points in Rm converges to a point p⃗ with respect

to the A-norm if and only if it converges with respect to the usual Euclidean norm.

Solution

i) Let v⃗ be an eigenvector of A with eigenvalue λ. Then, as v⃗ ̸= 0

0 < ⟨v⃗, Av⃗⟩ = ⟨v⃗, λv⃗⟩ = λ∥v⃗∥2.
Page 6 of 11

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2024



MAU22203-1

Since ∥v⃗∥2 > 0, this implies λ > 0. As v⃗ was an arbitrary eigenvector, this implies all

eigenvalues are positive.

ii) We will give two solutions. The first will use the extreme value theorem, but requires

some linear algebra, and the second will use just linear algebra.

For the first argument, first note at the inequality is true for x⃗ = 0. Next we note that

∥µx⃗∥ = |µ|∥x⃗∥ for every µ ∈ R. Hence, it suffices to prove the inequality for vectors of

unit norm, as the inequality (for non-zero x⃗) is equivalent to

c ≤
∥∥∥∥ x⃗

∥x⃗∥

∣∣∣∣
A

≤ C.

Next, we note that

x⃗ 7→ ∥x⃗∥A

is a continuous map. As the set {x⃗ ∈ Rm | ∥x⃗∥ = 1} is closed and bounded, ∥x⃗∥A
achieves a maximum C and a minimum c on this set. In particular, there exists x⃗min and

x⃗max of norm 1 such that

c =
√

⟨x⃗min, Ax⃗min⟩ > 0, C =
√

⟨x⃗max, Ax⃗max⟩ > 0

as A is positive definite and both vectors are non-zero.

For the second argument, we note that as A is real symmetric, there exists an orthonormal

basis of eigenvectors v⃗1, . . . , v⃗m. Without loss of generality, assume that the associated

eigenvalues satisfy

0 < λ1 ≤ λ2 ≤ · · · ≤ λm.
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Then, for any vector x⃗ = a1v⃗1 + · · · amv⃗m, we have that

∥x⃗∥A =

√√√√⟨
m∑
i=1

aiv⃗i, A(
m∑
j=1

aj v⃗j)⟩

=

√√√√ m∑
i,j=1

aiaj⟨v⃗i, Av⃗j⟩

=

√√√√ m∑
i,j=1

aiaj⟨v⃗i, λj v⃗j⟩

=

√√√√ m∑
i

λia2i

via orthonormality. As

λ1a
2
i ≤ λia

2
i ≤ λna

2
i

for each i, we have that

√
λ1∥x⃗∥ =

√√√√λ1

m∑
i=1

a2i ≤ ∥x⃗∥A ≤

√√√√λm

m∑
i=1

a2i =
√
λm∥x⃗∥

as needed.

iii) In the orthonormal eigenbasis, if x⃗ =
∑m

i=1 aiv⃗i

∥x⃗∥A =

√√√√ m∑
i=1

λia2i

Since λi > 0 for each i, we can take its square root and define

v⃗x⃗ =



√
λ1a1

√
λ2a2
...

√
λman


It is easy to see that

∥v⃗x⃗ =

√√√√ m∑
i=1

λia2i = ∥x⃗∥A.
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Furthermore, the map x⃗ 7→ v⃗x⃗ is clearly linear, so

v⃗x⃗+y⃗ = v⃗x⃗ + v⃗y⃗.

Thus, for any x⃗, y⃗ ∈ Rm

∥x⃗+ y⃗∥A = ∥v⃗x⃗+y⃗∥

= ∥v⃗x⃗ + v⃗y⃗∥

≤ ∥v⃗x⃗∥+ ∥v⃗y⃗∥

= ∥x⃗∥A + ∥x⃗∥A

using the standard triangle inequality.

iv) Suppose {x⃗n} converges to p⃗ with respect to the usual norm. Then, for all ε > 0, there

exists N > 0 such that

∥x⃗n − p⃗∥ < ε

C

for all n ≥ N . Hence, for all n ≥ N ,

∥x⃗n − p⃗∥A ≤ C∥x⃗− p⃗∥ < ε

and {x⃗n} converges to p⃗ in the A-norm. Similarly, if {x⃗n} converges to p⃗ in the A-norm,

then for all ε > 0 there exists N > 0 such that

∥x⃗n − p⃗∥A < cε

for all n ≥ N and hence

∥x⃗n − p⃗∥ ≤ 1

c
∥x⃗− p⃗∥A < ε

for all n ≥ N .
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Question 4

i) (10pts) State, with all necessary hypotheses, the implicit function theorem.

ii) (8pts) Show that

x2 + 7xy + 10y2 − 1 = 0

defines y as an continuously differentiable function of x near (1, 0).

iii) (8pts) Are there any points around which neither x or y can be expressed as a continuous

function of the other?

iv) (4pts) Determine the maximal set containing (1, 0) on which y can be expressed as a

continuously differentiable function of x.

Solution

i) Let X ⊂ Rm be open, f1, . . . , fk : X → R be continuously differentiable functions on

X, with k < m. Define

S = {x⃗ ∈ X | fi(x⃗) = 0 for all 1 ≤ i ≤ k}

and let p⃗ ∈ S. Suppose that the matrix

J(x⃗) = (∂jfi(x⃗))

has rank at least k at p⃗. Without loss of generality, we assume that the first k columns

are independent, reordering the variables x1, . . . , xm if needed. Then there exists open

V ⊂ X containing p⃗, and continuously differentiable functions g1, . . . , gk : U → R defined

on some open set U ⊂ Rm−k containing (pk+1, pk+2. . . . , pm) such that

S ∩ V = {(g1(x⃗′)), . . . , gk(x⃗′), xk+1, . . . , xm) | x⃗′ = (xk+1, . . . xm) ∈ U}

ii) Letting f(x, y) = x2 + 7xy+ 10y2 − 1, the assumptions of the implicit function theorem

apply. Hence, we can write y as a continuously differentiable function of x near (1, 0) if

∂f
∂y

̸= 0 at (1, 0).
∂f

∂y
(1, 0) = (7x+ 20y)|(x,y)=(1,0) = 7 ̸= 0

and so f(x, y) = 0 defines y as a continuously differentiable function of x near (1, 0).
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iii) From the implicit function theorem, f(x, y) = 0 defines one of x and y as a continuous

function of the other whenever (
∂f

∂x
,
∂f

∂y

)
has rank 1. This can only have rank less than 1 if it has rank 0, i.e.

∂f

∂x
=
∂f

∂y
= 0.

Explicitly, one of x or y is a continuous function of the other near all points of

S = {(x, y) ∈ R2 | f(x, y) = 0}

other than those where

2x+ 7y = 7x+ 10y = 0 ⇔ x = y = 0.

But f(0, 0) = −1 ̸= 0, so (0, 0) ̸∈ S and the implicit function theorem applies at all

points of S.

iv) We know that y can be expressed as a continuously differentiable function of x for all

(x, y) ∈ S for which ∂f
∂y

̸= 0. Thus the point points of S for which we might not be able

to express y as a continuously differentiable function of x are those where

7x+ 20y = 0.

As (0, 0) ̸∈ S, the only such points are given by solutions of

f(
−20y

7
, y) = 0 ⇔ 400y2

49
− 20y2 + 10y2 = 1.

This reduces to

−90y2 = 1

which has no real solutions. Thus, we can always express y as a continuously differentiable

function of x - f(x, y) = 0 defines a hyperbola. The diagram shown in class was a lie.

Page 11 of 11

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2024


