MAU22203/33203 - Analysis in Several Real Variables

Tutorial Sheet 2

Trinity College Dublin

Course homepage

The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Convergent subsequences

Let $\{\vec{x}_k\}$ be a bounded sequence in \mathbb{R}^m that does not converge to $\vec{0}$.

i) Show that there exist R, c > 0 such that $\{\vec{x}_k\}$ contains a subsequence contained within the set

$$\{\vec{x} \in \mathbb{R}^m \mid c \le ||\vec{x}|| \le R\},\$$

- ii) Show that this subsequence contains a convergent subsequence, converging to a point not equal to $\vec{0}$,
- iii) Hence conclude that $\{\vec{x}_k\}$ contains a convergent subsequences, converging to a point other than $\vec{0}$.

Solution 1

- i) Since $\{\vec{x}_k\}$ is bounded, by definition there exists R such that $\|\vec{x}_k\| \leq R$ for every $k \geq 1$. As $\{\vec{x}_k\}$ does not converge to $\vec{0}$, there exists some c > 0 such that for every N > 0, there exists $j_N \geq N$ such that $\|\vec{x}_{j_N}\| \geq c$. The subsequence given by these points $\{\vec{x}_{j_N}\}$ is contained within the given set.
- ii) The sequence $\{\vec{x}_{j_N}\}$ is a bounded sequence, and so by the Bolzano-Weierstrass theorem, contains a convergent subsequence $\{\vec{x}_{j_{N_k}}\}$. This subsequence is contained entirely in the set

$$\{\vec{x} \in \mathbb{R}^m \mid c \le ||\vec{x}|| \le R\}$$

which is closed as it is the preimage of the closed interval [c, R] under the continuous map $\vec{x} \mapsto ||\vec{x}||$. The limit of a convergent sequence contained in a closed set is also contained within the closed set, so

$$\lim_{k \to \infty} \vec{x}_{j_{N_k}} \in \{ \vec{x} \in \mathbb{R}^m \mid c \le ||\vec{x}|| \le R \}$$

and hence cannot be $\vec{0}$.

iii) The sequence $\{\vec{x}_{j_{N_k}}\}$ is a subsequence of $\{\vec{x}_k\}$ converging to a point other than $\vec{0}$.

Exercise 2 Interiors

Given a subset $X \subset \mathbb{R}^m$, we define its interior X^o , closure \overline{X} , and boundary ∂X by

$$X^{o} = \bigcup_{\substack{U \subset X \\ U \text{ open}}} U,$$
$$\overline{X} = \bigcap_{\substack{F \supset X \\ F \text{ closed}}} F,$$
$$\partial X = \overline{X} \setminus X^{o}.$$

i) Show that X^o is open and \overline{X} is closed,

ii) Find the interior, closure, and boundary of

$$\{\vec{x} \in \mathbb{R}^m \mid ||\vec{x}|| \le 2\},\$$

iii) Find the interior, closure, and boundary of

$$\{(x,y) \in \mathbb{R}^2 \mid x \ge 2, y > 0\},\$$

iv) Find the interior, closure, and boundary of

$$\{x \in \mathbb{R} \mid x \in \mathbb{Q}\}.$$

Hint: It might be easier to consider the interior of the complement.

Solution 2

- i) X^o is a union of open sets and is therefore open. \overline{X} is an intersection of closed sets and is therefore closed.
- ii) Denote the set by X. Then, as $X = \overline{B}(\vec{0}, 2)$ is the closed ball of radius 2 centred at the origin, X is closed and so

$$\overline{X} = X \cap \bigcap_{F \supset X, \, F \neq X} F = X.$$

Clearly $X^o \supset B(\vec{0},2)$ contains the open ball. Now suppose it is not equal to it. Then there is a point $\vec{p} \in X$, which is contained within an open set contained within X, but $||\vec{p}|| = 2$. This cannot occur, as then we would have an open ball of radius $\varepsilon > 0$ for some $\varepsilon > 0$, centred at \vec{p} contained within X. But every such open ball contains a point $\vec{q} = \left(1 + \frac{\varepsilon}{2}\right)\vec{p}$ of norm $||\vec{q}|| = 2 + \varepsilon$, not in X. Thus $X^o = B(\vec{0}, 2)$. Thus

$$\partial X = \{ \vec{x} \in \mathbb{R}^m \mid ||\vec{x}|| = 2 \}.$$

iii) The set

$$\{(x,y) \in \mathbb{R}^2 \mid x > 2, y > 0\} = \{(x,y) \in \mathbb{R}^2 \mid x > 2\} \cap \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$$

is open, as it is the intersection of two opens, and is contained within

$$X = \{(x, y) \in \mathbb{R}^2 \mid x \ge 2, y > 0\}.$$

If X^o contains any other points (2, y), then it must contain an open ball around such a point. But any open ball around such a point will contain $(2 - \frac{\varepsilon}{2}, y)$, which is not in X, let alone X^o . Thus

$$X^{o} = \{(x, y) \in \mathbb{R}^{2} \mid x > 2, y > 0\}.$$

To determine the closure, note that

$$\{(x,y) \in \mathbb{R}^2 \mid x \ge 2, y \ge 0\}$$

is closed, as it is the intersection of two closed sets. Furthermore, since X contains $(x, \frac{1}{n})$ for any $x \geq 2$, $n \geq 1$, so must any closed F containing X. The sequence $\{(x, \frac{1}{n})\}$ converges to (x, 0), which must be contained in any closed F containing X. Thus, any closed F containing X also contains the closed set

$$\{(x,y) \in \mathbb{R}^2 \mid x \ge 2, y \ge 0\}$$

Thus this is the intersection of all closed sets containing X:

$$\overline{X} = \{(x, y) \in \mathbb{R}^2 \mid x \ge 2, y \ge 0\}$$

Finally note that

$$\partial X = \{(2, y) \in \mathbb{R}^2 \mid y \ge 0\} \cup \{(x, 0) \in \mathbb{R}^2 \mid x \ge 2\}.$$

iv) Note that, for any non-empty open set contained within $X = \mathbb{Q}$, there must be a point q of \mathbb{Q} contained in this open set, and hence an open ball around q contained entirely within X. But any open ball around a rational number contains infinitely many irrational numbers, which are not in X. Thus the open subset of X are the empty set: $X^o = \emptyset$.

I claim the closure, and hence the boundary, are both equal to \mathbb{R} . To see this, note that

$$\mathbb{R}\setminus \overline{X} = (\mathbb{R}\setminus X)^o$$

and so it suffices to show that this interior is empty. Suppose $r \in \mathbb{R} \setminus \mathbb{Q}$. Then any open ball around r contains a rational approximation to r, and hence cannot be contained entirely within $\mathbb{R} \setminus \mathbb{Q}$. Thus $(\mathbb{R} \setminus \mathbb{Q})^o = \emptyset$.

Exercise 3 Topological stuff

- i) Identify whether the following sets are open/closed in \mathbb{R}^2 :
 - a) $\{(x,y) \in \mathbb{R}^2 \mid xy = 1\},\$
 - b) $\{(x,y) \in \mathbb{R}^2 \mid x \neq 0, y \neq 0\},\$
 - c) $\{(x,y) \in \mathbb{R}^2 \mid \max\{|x|,|y|\} = 1\},\$
 - d) $\{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 17xy < 34\}$
- ii) Suppose that $X\subset\mathbb{R}^m$ is not closed. Show that there exists a point $\vec{v}\in\mathbb{R}^m\setminus X$ such that

$$B(\vec{v},\varepsilon) \cap X \neq \emptyset$$

for all $\varepsilon > 0$.

iii) Call a subset A of \mathbb{Z} open if $\mathbb{Z} \setminus A$ is finite or if A is empty. Show that this collection of open sets defines a topology on \mathbb{Z} .

Solution 3

- i) a) This is closed, as it is the preimage of the closed set $\{1\}$ under the continuous map f(x,y) = xy.
 - b) This is open, as it us the intersection of the two open sets

$$\{(x,y) \in \mathbb{R}^2 \mid x \neq 0\}, \text{ and } \{(x,y) \in \mathbb{R}^2 \mid y \neq 0\}$$

which are open as they are the preimages of the open set $\mathbb{R} \setminus \{0\}$ under the continuous maps $\pi_1(x,y) = x$ and $\pi_2(x,y) = y$ respectively.

c), This is closed as it is the union of four closed sets

$$\{ (-1,y) \mid -1 \le y \le 1 \} \quad \{ \{ (1,y) \mid -1 \le y \le 1 \}, \\ \{ (x,-1) \mid -1 \le x \le 1 \} \quad \{ (x,1) \mid -1 \le x \le 1 \}.$$

To see that these are closed, we will illustrate this with just one set

$$\{(-1,y) \mid -1 \le y \le 1\}$$

which is the intersection of closed sets

$$\pi_1^{-1}(\{-1\}) \cap \pi_2^{-1}([-1,1]).$$

d) This is open, as it is the intersection of the open sets

$$\{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2\}, \quad \{(x,y) \in \mathbb{R}^2 \mid 17xy < 34\},$$

 $\{(x,y) \in \mathbb{R}^2 \mid x^2 - 17xy + y^2 < 0\}$

which are all preimages of open sets under continuous functions.

ii) Since X is not closed, $\mathbb{R}^m \setminus X$ is not open. This implies that there exists a point $\vec{v} \in \mathbb{R}^m \setminus X$ such that for every $\varepsilon > 0$, the open ball is not contained within $\mathbb{R}^m \setminus X$:

$$B(\vec{v}, \varepsilon) \not\subset \mathbb{R}^m \setminus X$$

which is exactly to say that for every $\varepsilon > 0$,

$$B(\vec{v}, \varepsilon) \cap X \neq \emptyset$$
.

iii) The empty set is open, by definition. \mathbb{Z} is open as $\mathbb{Z} \setminus \mathbb{Z} = \emptyset$ is finite. Now suppose we have a collection of open sets $\{A_i\}_{i \in I}$, which we can assume, without loss of generality, to be non-empty. Then $\mathbb{Z} \setminus A_i$ is finite and hence

$$\bigcap_{i \in I} \mathbb{Z} \setminus A_i = \mathbb{Z} \setminus \bigcup_{i \in I} A_i$$

must also be finite. Therefore

$$\bigcup_{i \in I} A_i$$

is open. Finally, suppose we have a finite collection of open sets A_1, \ldots, A_k . Then

$$\mathbb{Z} \setminus \bigcap_{i=1}^k A_i = \bigcup_{i=1}^k \mathbb{Z} \setminus A_i$$

is a finite union of finite sets, and is therefore finite. Hence

$$\bigcap_{i=1}^{k} A_i$$

is open, and we have a topology.

Exercise 4 Continuous functions and convergent sequences

i) Without resorting to an $\varepsilon - \delta$ proof, show that if $\phi_1, \phi_2 : \mathbb{R}^m \to \mathbb{R}^n$ are continuous functions, then

$$\vec{x} \mapsto \phi_1(\vec{x}) + \phi_2(\vec{x})$$

is a continuous function.

ii) Without resorting to an $\varepsilon - N$ argument, prove that if we have two sequences $\{\vec{x}_k\}$ and $\{\vec{y}_k\}$ in \mathbb{R}^m converging to \vec{p} and \vec{q} respectively, then the sequence in \mathbb{R} given by

$$\{z_k = \langle \vec{x}_k, \vec{y}_k \rangle\}$$

converges to $\langle \vec{p}, \vec{q} \rangle$.

iii) Let $X \subset \mathbb{R}^m$ be a strict subset of \mathbb{R}^m , and suppose we have a point $\vec{p} \in \mathbb{R}^m \setminus X$. Show that

$$\phi_{\vec{p}}(\vec{x}) = \frac{1}{\|\vec{x} - \vec{p}\|}$$

is continuous on X.

iv) Hence argue that if X is not closed in \mathbb{R}^m , there exists $\vec{p} \in \mathbb{R}^{\setminus} X$ such that the image $\phi_{\vec{p}}(X)$ is not bounded in \mathbb{R} .

Hint: Use 3.ii to construct a bad sequence.

Solution 4

i) The map

$$\psi(\vec{x}) = \phi_1(\vec{x}) + \phi_2(\vec{x})$$

is continuous if and only if all of its components are. The components of ψ are given by the sum of the components of ϕ_1 and ϕ_2 , which are continuous. Thus the components of ψ are continuous, as the sum of continuous functions to \mathbb{R} is continuous, and so ψ is continuous.

ii) Let $\vec{x}_{k,i}$ and $\vec{y}_{k,i}$ be the ith components of \vec{x}_k and \vec{y}_k respectively. The consider the sequence of points in \mathbb{R}^{2m} given by

$$\{\vec{z}_k = (x_{k,1}, x_{k,2}, \dots, x_{k,m}, y_{k,1}, \dots, y_{k,m})\}.$$

Since it has convergent components, this sequences converges and it must converge to

$$(p_1,p_2,\ldots,p_m,q_1,\ldots,q_m).$$

Next note that the map $\phi: \mathbb{R}^{2m} \to \mathbb{R}$ given by

$$\phi(w_1, \dots, w_m, w_{m+1}, \dots, w_{2m}) = \sum_{i=1}^m w_i w_{m+1}$$

is continuous, and furthermore that

$$\phi(\vec{z}_k) = \langle \vec{x}_k, \vec{y}_k \rangle = z_k.$$

Thus, as ϕ is continuous,

$$\lim_{k \to \infty} z_k = \lim_{k \to \infty} \phi(\vec{z}_k) = \phi\left(\lim_{k \to \infty} \vec{z}_k\right) = \phi(p_1, \dots, p_m, q_1, \dots, q_m) = \langle \vec{p}, \vec{q} \rangle.$$

iii) We know that the map $\vec{x} \mapsto \vec{x} - \vec{p}$ is continuous, by part (i) of the question or by considering components. We know that the map $\vec{x} \mapsto ||\vec{x}||$ is continuous, and so

$$\vec{x} \mapsto \|\vec{x} - \vec{p}\|$$

is continuous, as it is the composition of continuous functions. Finally note that this is non-zero for all $\vec{x} \in X$, and so we can conclude that $\phi_{\vec{p}}(\vec{x})$ is continuous on X.

iv) If X is not closed, then there exists a point $\vec{p} \in \mathbb{R}^m \setminus X$ such that $B(\vec{p}, \varepsilon) \cap X \neq \emptyset$ for every $\varepsilon > 0$. In particular, for every $k \geq 1$, there exists $\vec{x}_k \in X$ such that $\|\vec{x}_k - \vec{p}\| < \frac{1}{k}$. But then the sequence

$$\{\phi_{\vec{p}}(\vec{x}_k)\}$$

is unbounded, as $\phi_{\vec{p}}(\vec{x}_k) > k$, and is a subset of the image of $\phi_{\vec{p}}$, as needed.