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Exercise 1 Convergence in R
(i) What is the least upper bound of the set {x ∈ R | x2 − 3x+ 2 < 0}?

(ii) What is the greatest lower bound of the set {sin(x) + cos(x) | 0 ≤ x ≤
π}?

(iii) Define a sequence {xn =
∑n

k=0
1
k!
}. Is this monotonic? Bounded?

Convergent?

(iv) Determine the limit (or argue that no such limit exists) of{
xn =

2n − 2−n

3n + 3−n

}
.

Solution 1

(i) The quadratic equation x2 − 3x+ 2 has roots x = 1 and x = 2, and is
easily seen to be positive for x ̸∈ [1, 2]. Therefore the set

{x | x2 − 3x+ 2 < 0} = (1, 2)

which has least upper bound 2.
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(ii) The function f(x) = sin(x) + cos(x) is continuous and defined on a
closed interval [0, π], and therefore achieves its minimum on this inter-
val. At x = 0 or x = π, f(x) = ±1, so it remains to check for any inter-
nal minima. f has turning points wherever f ′(x) = cos(x)−sin(x) = 0.
In the interval (0, π), this holds only for x = π

4
and x = 3π

4
. Checking

these, we see that f(3π
4
) = −

√
2 < −1, so the greatest lower bound is

−
√
2.

(iii) The sequence {xn} is monotonically increasing, as xn+1 = xn + 1
(n+1)!

is obtained by adding a positive term. It is bounded above, since

n! ≥ 2n−1 ⇔ 1

n!
≤ 21−n

for all n ≥ 1 and so

xn ≤
n∑

k=0

21−n < 4

and bounded below by 0. Hence it is convergent (to e, but that’s a
different problem).

(iv) Note that the sequence is bounded below by 0, and that since

2n − 2−n < 2n,

3n + 3−n > 3n,

we must have that xn <
(
2
3

)n
, which tends to 0 as n → ∞. Hence, we

must have that limn→∞ xn = 0.

Exercise 2 Practice with norms

(i) Show that, for x⃗, y⃗ ∈ Rm,

2∥x⃗∥2 + 2∥y⃗∥2 = ∥x⃗+ y⃗∥2 + ∥x⃗− y⃗∥2.

(ii) Given x⃗1 ̸= x⃗2 ∈ Rm and 0 < c < 1, prove that there exists y⃗ ∈ Rm

and r ∈ R such that the sets

{x⃗ ∈ Rm | ∥x⃗− x⃗1∥ = c∥x⃗− x⃗2∥}

and
{x⃗ ∈ Rm | ∥x⃗− y⃗∥ = r}

are equal.
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Solution 2

(i) Recall that ∥x⃗∥2 = ⟨x, x⟩. Thus

∥x⃗+ y⃗∥2 + ∥x⃗− y⃗∥2 =⟨x⃗+ y⃗, x⃗+ y⃗⟩+ ⟨x⃗− y⃗, x⃗− y⃗⟩
=⟨x⃗, x⃗⟩+ 2⟨x⃗, y⃗⟩+ ⟨y⃗, y⃗⟩
+ ⟨x⃗, x⃗⟩ − 2⟨x⃗, y⃗⟩+ ⟨y⃗, y⃗⟩

=2∥x⃗∥2 + 2∥y⃗∥2.

(ii) Squaring the defining condition of the first set (which changes nothing,
as all quantities are non-negative), gives us that

⟨x⃗− x⃗1, x⃗− x⃗1⟩ = c2⟨x⃗− x⃗2, x⃗− x⃗2⟩.

Expanding this out using bilinearity, and rearranging terms, we get

(1− c2)∥x⃗∥2 − 2⟨x⃗1 − c2x⃗2, x⃗⟩+ ∥x⃗1∥2 − c2∥x⃗2∥2 = 0

Defining y⃗ := 1
1−c2

x⃗1 − c2

1−c2
x⃗2, we note that

∥x⃗− y⃗∥2 = ∥x⃗∥2 − 2⟨y⃗, x⃗⟩+ ∥y⃗∥2

= ∥y⃗∥2 + c

1− c2
∥x⃗2∥2 −

1

1− c2
∥x⃗1∥2

as required, taking r2 to be the right hand side. In order for r to be a
real number, we need to check that the right hand side is non-negative,
but this follows quickly by expanding out ∥y⃗∥2 to obtain that

r2 =
c2

(1− c2)2
∥x⃗2∥2−

2c2

(1− c2)2
⟨x⃗2, x⃗1⟩+

c2

(1− c2)2
=

c2∥x⃗2 − x⃗1∥2

(1− c2)2
≥ 0

Exercise 3 Fun with Cauchy-Schwarz

1. Show that for any x1, . . . , xm ∈ R,

(x1 + x2 + · · ·+ xm)
2 ≤ m

(
x2
1 + · · ·+ x2

m

)
2. Show that, for any x, y ∈ R

(x+ y)2 ≤ (x2 + 1)(y2 + 1).
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Solution 3

(i) This is precisely the CS inequality for x⃗ = (x1, . . . , xm) and y⃗ =
(1, . . . , 1).

(ii) This is precisely the CS inequalty for x⃗ = (x, 1), y⃗ = (1, y).

Exercise 4 Sequences in Rm

Determine the limit, or argue that it does not exist, of the following sequences

(i) {(xn,1, xn,2) = ( 1+n
1−2n

, 1
n3 )}

(ii) {(xn,1, xn,2) = (1− 2−n, n sin(n−1))}

(iii) {(xn,1, xn,2) =
(
(1− n−1) cos(2πn

7
), (1 + n−1) sin(2πn

7
)
)
}

In the above questions, you may compute one variable limits using any tech-
nique you like. A formal ε−N proof is not required.

Solution 4

(i) In the first coordinate, we can divide above and below by n to get that

lim
n→∞

1 + n

1− 2n
= lim

n→∞

1
n
+ 1

1
n
− 2

= −1

2
.

The second coordinate is strictly decreasing and must tend to 0. Hence
x⃗n → (−1

2
, 0).

(ii) As 2−n → 0, the first coordinate tends to 1. As sin(x)
x

→ 1 as x → 0,
we must have that

n sin(n−1) =
sin( 1

n
)

1
n

→ 1

as n tends to ∞. Hence x⃗n → (1, 1).

(iii) Note that, while 1−n−1 → 1, cos(2πn
7
) cycles through 13 distinct values,

and therefore the first component, and hence the sequence {x⃗n}, cannot
converge.
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