MAU22203/33203 - Analysis in Several Real Variables

Exercise Sheet 4

Trinity College Dublin

Course homepage

This is an entirely optional homework. If submitted, the best 3 out of 4 homeworks will be considered for your continuous assessment. Answers are due for December 1st, 23:59.

Exercise 1 An extended fundamental theorem of calculus (60pts)

i) (20pts) Let $f: \mathbb{R} \to \mathbb{R}$ be a Riemann integrable function, and let $b: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Determine the derivative of

$$g(x) = \int_0^{b(x)} f(t) dt.$$

Hint: Recall that the function

$$x \mapsto \int_{a}^{x} f(t) dt$$

is differentiable with derivative f(x). Chain rule?

ii) (10pts) Let $a:\mathbb{R}\to\mathbb{R}$ be a differentiable function. Determine the derivative of

$$h(x) = \int_{a(x)}^{0} f(t) dt.$$

iii) (20pts) Hence determine the derivative of

$$r(x) = \int_{a(x)}^{b(x)} f(t) dt.$$

iv) (10 pts) Hence, or otherwise, compute the derivative of

$$q(x) = \int_{1-x^2}^{1+x^2} \sin(t^3 - 3t^2 + 3t) dt$$

Solution 1

i) Denote by $F: \mathbb{R} \to \mathbb{R}$ the function

$$F(x) = \int_0^x f(t) \, dt$$

which is differentiable with derivative f(x). Note that g(x) = F(b(x)), so by chain rule

$$g'(x) = (F \circ b)'(x) = F'(b(x))b'(x) = f(b(x))b'(x).$$

ii) Note that

$$h(x) = \int_{a(x)}^{0} f(t) dt = -\int_{0}^{a(x)} f(t) dt$$

and so, by the previous part

$$h'(x) = -f(a(x))a'(x).$$

iii) We have that

$$r(x) = \int_0^{b(x)} f(t) dt + \int_{a(x)}^0 f(t) dt = g(x) + h(x)$$

and so

$$r'(x) = f(b(x))b'(x) - f(a(x))a'(x).$$

iv) We compute that

$$q'(x) = \sin((1+x^2)^3 - 3(1+x^2)^2 + 3(1+x^2))(2x) - \sin((1-x^2)^3 - 3(1-x^2)^2 + 3(1-x^2))(-2x)$$

which simplifies to

$$q'(x) = 2x \left(\sin(1+x^6) + \sin(1-x^6)\right) = 4\sin(1)\cos(x^6)$$

An essentially identical calculation shows that

$$\int_{\alpha-x^2}^{\alpha+x^2} \sin(t^3 - 3\alpha t^2 + 3\alpha^2 t) dt$$

is constant for $\alpha = \sqrt[3]{\pi}$. Wild, right?

Exercise 2 Applying the implicit function theorem (40pts)

1. (10pts) Let $f:[0,1]^3\to\mathbb{R}$ be a continuous function. Using Fubini's theorem for 2 variable functions, show that

$$\int_0^1 \int_0^1 \int_0^1 f(x, y, z) \, dx \, dy \, dz = \int_0^1 \int_0^1 \int_0^1 f(x, y, z) \, dy \, dz \, dx$$

Hint: Remember the integrand must be continuous to use Fubini

2. (10 pts) Show that

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{otherwise} \end{cases}$$

is continuous on $[0,1]^2$.

Hint: Bound the absolute value near 0 in terms of norms.

3. (20 pts) Compute

$$\int_{[0,1]^2} \frac{xy(x^2 - y^2)^2}{x^2 + y^2} \, dA$$

Hint: You may (and should) use without proof that

$$\int_0^1 t^5 \left(\ln(t^2 + 1) - \ln(t^2) \right) dt = \frac{\ln(2)}{3} - \frac{1}{12}$$

Solution 2

i) For fixed z, the function f(x, y, z) is continuous as a function of x and y. Hence

$$\int_0^1 \int_0^1 f(x, y, z) \, dx \, dy = \int_0^1 \int_0^1 f(x, y, z) \, dy \, dx$$

and so

$$\int_0^1 \int_0^1 \int_0^1 f(x, y, z) \, dx \, dy \, dz = \int_0^1 \left(\int_0^1 \int_0^1 f(x, y, z) \, dx \, dy \right) \, dz$$
$$= \int_0^1 \left(\int_0^1 \int_0^1 f(x, y, z) \, dy \, dx \right) \, dz$$
$$= \int_0^1 \int_0^1 \int_0^1 f(x, y, z) \, dy \, dx \, dz.$$

As $\int_0^1 f(x,y,z) dy$ is a continuous function of x and z, we have that

$$\int_0^1 \int_0^1 \int_0^1 f(x, y, z) \, dy \, dx \, dz = \int_0^1 \left(\int_0^1 \int_0^1 f(x, y, z) \, dy \right) \, dx \, dz$$
$$= \int_0^1 \left(\int_0^1 \int_0^1 f(x, y, z) \, dy \right) \, dz \, dx$$
$$= \int_0^1 \int_0^1 \int_0^1 f(x, y, z) \, dy \, dz \, dx.$$

ii) The function is clearly continuous away from (0,0) so it suffices to show that

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0.$$

Note that, for $(x, y) \neq (0, 0)$

$$|f(x,y)| = |xy| \frac{|x^2 - y^2|^2}{|x^2 + y^2|}$$

$$\leq |xy| \frac{(|x|^2 + |y|^2)^2}{|x^2 + y^2|}$$

$$= |xy| frac(x^2 + y^2)^2 x^2 + y^2$$

$$= |xy|(x^2 + y^2) = |xy| \cdot ||(x,y)||^2$$

which clearly tends to 0 as $(x, y) \rightarrow (0, 0)$. Thus,

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

and f is continuous.

iii) Since f is continuous, we can compute this as the iterated integral

$$L = \int_0^1 \int_0^1 \frac{xy(x^2 - y^2)^2}{x^2 + y^2} \, dx \, dy.$$

Letting $u = x^2 + y^2$ in the x-integral, we find that

$$L = \frac{1}{2} \int_0^1 \int_{y^2}^{y^2+1} \frac{y(u-2y^2)^2}{u} du dy$$

$$= \frac{1}{2} \int_0^1 \int_{y^2}^{y^2+1} yu - 4y^3 + \frac{4y^5}{u} du dy$$

$$= \frac{1}{4} \int_0^1 y - 6y^3 + 8y^5 \ln(y^2 + 1) - 8y^5 \ln(y^2) dy$$

$$= \frac{1}{4} \left(\frac{1}{2} - \frac{3}{2} + \frac{8\ln(2)}{3} - \frac{2}{3}\right)$$

$$= \frac{2\ln(2)}{3} - \frac{5}{12}$$