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Answers are due for October 4th, 2pm.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Properties of sequences (40pts)

Let {x⃗n} and {y⃗n} be two sequences of points in Rm, and let λ ∈ R be a real
number. Suppose that {x⃗n} converges to a point p⃗, and {y⃗n} converges to a
point q⃗. By giving a formal ε-N proof, establish the following:

(10pts) The sequence {λx⃗n} converges to λp⃗,

Hint: consider λ = 0 as a separate case.

(10pts) The sequence {z⃗n = x⃗n + y⃗n} converges to p⃗+ q⃗.

(20pts) The sequence of real numbers {an = ⟨x⃗n, y⃗n⟩} given by the inner prod-
uct of x⃗n with y⃗n converges to the inner product ⟨p⃗, q⃗⟩.
Hint: Using the following, apply the Cauchy-Schwarz inequality

⟨x⃗, y⃗⟩ − ⟨p⃗, q⃗⟩ = ⟨x⃗− p⃗, y⃗ − q⃗⟩+ ⟨p⃗, y⃗ − q⃗⟩+ ⟨x⃗− p⃗, q⃗⟩.
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Solution 1

1. First note that the claim is trivial if λ = 0, so we will assume otherwise.
As {x⃗n} converges to p⃗, for every ε > 0, there exists N > 0 such that
∥x⃗n − p⃗∥ < ε for all n ≥ N . Thus, for all ε > 0, there exists Nλ > 0
such that

∥x⃗n − p⃗∥ <
ε

|λ|
for all n ≥ Nλ. Hence, for all n ≥ Nλ

∥λx⃗n − λp⃗∥ = |λ|∥x⃗n − p⃗∥ < |λ| ε
|λ|

= ε

and so {λx⃗n} converges to λp⃗.

2. By the convergence of {x⃗n} and {y⃗n}, we have that for every ε > 0
there exist Nx, Ny > 0 such that

∥x⃗n − p⃗∥ <
ε

2
and ∥y⃗n − q⃗∥ <

ε

2

and so, by the triangle inequality

∥x⃗n + y⃗n − p⃗− q⃗ = ∥(x⃗n − p⃗) + (y⃗n − q⃗)∥
≤ ∥x⃗n − p⃗∥+ ∥y⃗n − q⃗∥

<
ε

2
+

ε

2
= ε

for all n ≥ max{Nx, Ny}.

3. , As noted in the hint

⟨x⃗, y⃗⟩ − ⟨p⃗, q⃗⟩ = ⟨x⃗− p⃗, y⃗ − q⃗⟩+ ⟨p⃗, y⃗ − q⃗⟩+ ⟨x⃗− p⃗, q⃗⟩

and so

|⟨x⃗, y⃗⟩ − ⟨p⃗, q⃗⟩| ≤ |⟨x⃗− p⃗, y⃗ − q⃗⟩|+ |⟨p⃗, y⃗ − q⃗⟩|+ |⟨x⃗− p⃗, q⃗⟩|.

Applying the Cauchy Schwarz inequality to each term individually, we
obtain that

|⟨x⃗, y⃗⟩ − ⟨p⃗, q⃗⟩| ≤ ∥x⃗− p⃗∥∥y⃗ − q⃗∥+ ∥p⃗∥∥y⃗ − q⃗∥+ ∥x⃗− p⃗∥∥q⃗∥.
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Applying this to (x⃗n, y⃗n), this gives an upper bound for the difference
of our inner products in terms of norms. From convergence, we know
that for any η > 0 there exists Nx, Ny > 0 such that

∥x⃗n − p⃗∥ < η and ∥y⃗n − q⃗∥ < η

for all n ≥ N = max{Nx, Ny}. Thus, for all n ≥ N , we have that

|⟨x⃗n, y⃗n⟩ − ⟨p⃗, q⃗⟩| < η (η + ∥p⃗∥+ ∥q⃗∥)

Any reasonable argument from here that, given ε > 0, we can find
η > 0 such that

η (η + ∥p⃗∥+ ∥q⃗∥) ≤ ε

should be awarded the majority of the points. Something like, noting
that

f(x) = x2 + x(∥p⃗∥+ ∥q⃗∥)

is positive for positive x, satisfies f(0) = 0, and is continuous at 0, and
so for any ε > 0, there exists η > 0 such that f(η) < ε would do. I will
instead note that taking

η = min

{
1,

ε

1 + ∥p⃗∥+ ∥q⃗∥

}
implies that

η (η + ∥p⃗∥+ ∥q⃗∥) ≤ η(1 + ∥p⃗∥+ ∥q⃗∥) ≤ ε

Thus, as there exists N > 0 such that

|⟨x⃗n, y⃗n⟩ − ⟨p⃗, q⃗⟩| < η (η + ∥p⃗∥+ ∥q⃗∥) ≤ ε

for such η, for any ε > 0, we conclude that the sequence of real numbers
{an = ⟨x⃗n, y⃗n⟩} given by the inner product of x⃗n with y⃗n converges to
the inner product ⟨p⃗q⃗⟩.
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Exercise 2 Matrix norms (60pts)

In the following, you may use any standard facts from your first year courses.
Let A : Rm → Rs be a linear transformation represented by the (s × m)-
matrix (Ai,j) 1≤i≤s

1≤j≤m
with respect to the standard bases. We define the Hilbert-

Schmidt norm of T by

∥A∥HS :=

√√√√ s∑
i=1

m∑
j=1

A2
i,j.

(15 pts) Show that, for any x⃗ ∈ Rm,

∥Ax⃗∥ ≤ ∥A∥HS∥x⃗∥.

Hint: what are the components of Ax⃗ and how could we bound them
using the Cauchy-Schwarz inequality?

(15 pts) Show that, given linear transformations

A : Rm → Rs andB : Rs → Rt,

the Hilbert Schmidt norm satisfies

∥BA∥HS ≤ ∥B∥HS∥A∥HS

(15 pts) Denoting by AT the transpose of the matrix A, and by tr(M) the trace
of a square matrix M , show that

∥A∥2HS = tr(ATA)

(15 pts) Let A : R3 → R3 be given by the below matrix, and define a sequence
of points in R3 by x⃗n := An−1x⃗1, where x⃗1 is given below. Prove that
{x⃗n} converges to 0⃗.

A =

1
2

0 1
2

0 1
3

1
3

1
5

1
10

0

 , x⃗1 =

1
2
3

 .
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Solution 2

1. Letting v⃗ = Ax⃗, note that

vi = Ai,1x1 + Ai,2x2 + · · ·Ai,mxm

is given by the inner product of the ith row of A with x⃗. Hence, by the
Cauchy-Schwarz inequality, we have that

v2i = (Ai,1x1 + Ai,2x2 + · · ·Ai,mxm)
2 ≤

(
A2

i,1 + · · ·+ A2
i,m

)
∥x⃗∥2

. Summing over i, we get that

∥v⃗∥2 =
s∑

i=1

v2i ≤
s∑

i=1

(
m∑
j=1

A2
i,j

)
∥x⃗∥2

and so

∥Ax⃗∥2 = ∥v⃗∥2 ≤

(
s∑

i=1

m∑
j=1

A2
i,j

)
∥x⃗∥2 = ∥A∥2HS∥x⃗∥2

from which the claim follows.

2. Let C = BA. We have that

Ci,j =
s∑

k=1

Bi,kAk,j

which we can interpret as an inner product between the ith row of B
and the jth column of A. Hence, by Cauchy-Schwarz, we must have
that

C2
i,j ≤

(
s∑

k=1

B2
i,k

)(
s∑

ℓ=1

A2
ℓ,j

)
Summing over i and j, we get

∥BA∥2HS = ∥C∥2HS ≤ ∥B∥2HS∥A∥2HS

from which the claim follows.
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3. The matrix M = ATA is an (s× s) matrix, with diagonal entries

Mi,i =
m∑
k=1

(
AT
)
i,k

Ak,i

=
m∑
k=1

Ak,iA
=
k,iA

2
k,i

and so

tr(M) =
s∑

i=1

Mi,i =
s∑

i=1

m∑
k=1

A2
k,i = ∥A∥2HS.

4. Note that we must have

∥x⃗n∥ = ∥An−1x⃗1∥ ≤ ∥An−1∥HS∥x⃗1∥ ≤ ∥A∥n−1
HS ∥x⃗1∥

by the previous parts of the question. We can easily compute

∥A∥HS ≈ 0.87876 . . . < 1

and so
∥x⃗n∥ < (0.9)n−1∥x⃗1∥.

From first year analysis, we know that (0.9)n → 0, and hence the limit
of

∥x⃗n∥ = ∥x⃗n − 0⃗∥

is 0. Hence, we must have that {x⃗n} converges to 0⃗.
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