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0 Recapping analysis in one real variable

Before trying to define notions of convergence, continuity, differentiation, and
integration for functions f : Rm → Rn, it will be helpful to remind ourselfs of
some basic concepts in one dimensional analysis, both to refresh our knowledge,
and to illustrate some important differences. We start by asking a painful
question: what is a real number?

0.1 The real numbers

In our mathematical career, we encounter many objects with properties similar
to the reals. We can do addition in N, and subtraction in Z. We can divide in
Q and C. We can even do all of these things in

R(x) =
{
f(x)

g(x)
| f, g ∈ R[x], g ̸= 0

}
.

So what makes the reals unique.

Fact 0.1. The reals are the unique (up to isomorphism) Dedekind complete
Archimedean ordered field.

Remark 0.2. Other than the above fact, and the definition of least upper bound,
this subsection is mostly for flavour. Don’t worry too much if you want to skip
it.

Let’s break this down:
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Definition 0.3. A field is a set F equipped with two binary commutative, as-
sociative operations + and ·, such that

• For every x, y, z ∈ F , x · (y + z) = x · y + x · z,

• There exists an element 0 such that 0 + x = x+ 0 = x for every x ∈ F ,

• There exists an element 1 such that 1 · x = x · 1 = x for every x ∈ F ,

• For every x ∈ F , there exists an element −x ∈ F such that x+ (−x) = 0,
called an additive inverse,

• For every x ∈ F \ {0}, there exists an element x−1 such that x · x−1 = 1,
called a multiplicative inverse.

The need for an additive inverse removes objects like N, and the need for a
multiplicative inverse cuts out objects like Z.

Definition 0.4. An ordered field is a field F with a binary relation < such that

• For every x, y, exactly one of x < y, y < x or x = y holds,

• If x < y and y < z, then x < z

• If x < y, then x+ z < y + z for every z ∈ F ,

• If x, y > 0¡ then x · y > 0.

The rationals Q and the reals R form ordered fields with the usual order.
The field of rational functions forms an ordered field with the ordering

f(x)

g(x)
<
p(x)

q(x)
if and only if lim

x→∞
(p(x)g(x)− f(x)q(x)) > 0

where this final inequality is considered in the usual order for R. However C
cannot be equipped with an order compatible with the field operations.

Definition 0.5. An ordered field is Archimedean if for every x ∈ F there exists
n ∈ Z such that the sum of n copies of the multiplicative identity is greater than
x:

1 + 1 + · · ·+ 1 > x

The field of rational functions fails to be Archimedean, as the function f(x) =
x is greater than every integer n. In order to distinguish between the rationals
and the reals, however, we need to introduce the least upper bound.

Definition 0.6. Let S ⊂ F be a subset of an ordered field. We say S is bounded
above if there exists b ∈ F such that x < b for every x ∈ S, and call such a b an
upper bound. We say S is bounded below if there exists a ∈ F such that a < x
for every x ∈ S, and call such an a a lower bound. We say S is bounded if it is
bounded both above and below.
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Definition 0.7. Let S ⊂ F be a subset of an ordered field that is bounded above.
We say that s ∈ F is the least upper bound, or supremum, of S if s is an upper
bound for S and s ≤ b for every upper bound b of S. We write s = supS.

For S ⊂ F a subset of an ordered field that is bounded below, we say that
ℓ ∈ F is the greatest lower bound, or infimum, of S if ℓ is a lower bound for S
and ℓ ≥ a for every lower bound a of S. We write ℓ = inf S.

Example 0.8. Consider the subset S = {x ∈ Q | x2 < 2} ⊂ R. This set is
bounded above, and has least upper bound supS =

√
2.

Note that the existence of a least uppper bound depends on the field of defi-
nition. If we view S = {x ∈ Q | x2 < 2} as a subset of the ordered field Q, then
supS does not exist: for any rational number q such that q > 0 and q2 > 2, we
can find a smaller such rational number, better approximating

√
2.

Definition 0.9. An ordered field F is called Dedekind complete, or is said to
satisfy the Least Upper Bound Principle, if for any non-empty S ⊂ F that is
bounded above, supS exists in F .

Remark 0.10. As
inf S = − sup{−x | x ∈ S},

the existence of least upper bounds also guarantees the existence of greatest lower
bounds. As such, we will often only prove results about one of them, and deduce
the other by this symmetry.

And this is the key distinction between the rationals and the reals. The
rational numbers do not contain all suprema, while the reals do.

The proof of Fact 0.1 consists of two components: one is to show that there
is a unique Dedekind complete Archimedean ordered field, and the other is to
explicitly construct the real numbers as such an object. There are two main
approaches to defining the real numbers: one via Dedekind cuts, and one via
Cauchy sequences. Either suffice for our purposes, but since the specific con-
struction of the reals is not important for our purposes, we will not expand on
these here.

0.2 Convergent sequences in R
Let us now recap some important results and concepts about sequences of real
numbers.

Definition 0.11. A sequence of real numbers is a function f : N → R, usually
represented as x1, x2, . . . or {xn}∞n=1. We will often suppress the range of the
index, and just write {xn}.

Definition 0.12. A sequence {xn} of real numbers is said to converge to a limit
L ∈ R if, for all ε > 0, there exists an integer N > 0 such that |xn − L| < ε for
all n ≥ N . We call a sequence {xn} convergent if it converges to a finite limit
L, and write xn → L or limn→∞ xn = L to denote this.
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Definition 0.13. A sequence {xn} is bounded above if there exists B ∈ R such
that B ≥ xn for all n ≥ 1. The sequence is bounded beow if there exists A ∈ R
such that A ≤ xn for all n ≥ 1. We say the sequence is bounded if it is bounded
both above and below.

A sequence being bounded is essential to have hope of it converging. Indeed,
we have the following basic result.

Lemma 0.14. Every convergent sequence of real numbers is bounded.

Proof. Suppose we have a convergent sequence {xn} with limit L. By definition,
there exists some N > 0 such that, for all n ≥ N , |xn − L| < 1, and so

L− 1 < xn < L+ 1

for all n ≥ N . Define

A : = min{x1, . . . , xN , L− 1},
B : = max{x1, . . . , xN , L+ 1}.

These exist and are well defined since the sets involved are finite, and further-
more satisfy that A < xn < B for all n ≥ 1.

However, being bounded is not sufficient to guarantee convergence. The
sequence {xn = (−1)n} is bounded, but definitely does not converge. Bound-
edness only guarantees convergence for monotonic sequences.

Definition 0.15. A sequence {xn} is called increasing if xn ≤ xn+1 for all
n ≥ 1, and strictly increasing if xn < xn+1 for all n ≥ 1. We define decreasing
and strictly decreasing sequences similarly. A sequence is called monotonic if it
is increasing or decreasing.

Remark 0.16. Note that a sequence {xn} is (strictly) increasing if and only
if the sequence {−xn} is (strictly) decreasing. As such, to prove results about
monotonic sequences, we can freely assume we are working with an increasing
sequence.

Theorem 0.17. Any increasing sequence that is bounded above converges. Any
decreasing sequence that is bounded below converges.

Proof. By Remark 0.16, it suffices to consider only the increasing case. Let {xn}
be an increasing sequence that is bounded above. Since R is Dedekind complete,
there exists a least upper bound p ∈ R. In particular, for any ε > 0, p− ε is not
an upper bound, and so there exists some N > 0 such that xN > p− ε. Then,
since the sequence is increasing, we have that

p ≥ xn ≥ xN > p− ε

for every n ≥ N . In particular, |xn − p| < ε for every n ≥ N . Thus, {xn}
converges and xn → p.
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Without monotonicity, the best we can say about bounded sequences comes
in the form of the Bolzano-Weierstrass theorem.

Theorem 0.18. Let {xn} be a bounded sequence. Then there exists a subse-
quence {xjk}∞k=1, with jk < jk+1 that converges to a finite limit.

Proof. Let {xn} be a bounded sequence. Call j ∈ N a valley point if xj < xk
for all k ≥ j, and let S be the (ordered) set of all valley points

S = {j1 < j2 < · · · }.

By definition of a valley point,

xj1 < xj2 < xj3 < . . .

so if S is infinite, we obtain an increasing sequence that is bounded above, and
hence convergent. If S is finite, then there is a maximal valley point J . Then,
since j1 := J + 1 is not a valley point, there exists j2 > j1 such that xj1 ≥ xj2 .
Since j2 is not a valley point, there exists j3 > j2 such that xj2 ≥ xj3 . Continuing
in this way, we construct an infinite decreasing sequence

xj1 ≥ xj2 ≥ xj3 ≥ · · ·

which is bounded below and hence converges.

1 Convergent sequences in Rn

We start our step into several variables by trying to extend the above results
into higher dimensions. A sequence in Rn is a function f : N → Rn, and can be
thought of as an ordered collection of vectors or points {x⃗n} in Rn. In order to
talk about convergence, we need a notion of distance.

Remark 1.1. It will be convenient to think of points in Rn as both points in a
metric or topological space, and as vectors in a vector space. As such, we will
somewhat abusively talk about adding points together, when we really mean their
sum as vectors, and so on. This is not possible in a general metric or topological
space, and it is important to keep this in mind in other analysis courses.

Definition 1.2. Given a point x⃗ = (x1, . . . , xn) ∈ Rn, we define its Euclidean
norm by

∥x⃗∥ =
√
x21 + x22 + · · ·+ x2n.

Given a pair of points x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , yn) in Rn, we define
their inner product by

⟨x, y⟩ = x1y1 + x2y2 + · · ·+ xnyn.

We refer to Rn equipped with the Euclidean norm as n-dimensional Euclidean
space.
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Using this norm, and the vector space structure on Rn, we can define a
notion of distance, and hence convergence.

Definition 1.3. A sequence {x⃗k} of points in Rn is said to converge (with
respect to the Euclidean norm) to a point p⃗ ∈ Rn if, for any ε > 0, there exists
an integer N > 0 such that ∥x⃗k − p⃗∥ < ε for all k ≥ N .

We call a sequence {x⃗k} bounded if there exists R > 0 such that ∥x⃗n∥ ≤ R
for all n ≥ 1.

Note that it no longer makes sense to talk about a sequence being bounded
above or below, as we no longer have an order structure. Similarly, monotonicity
is no longer defined.

Lemma 1.4. If x⃗, y⃗ ∈ Rn, then |xi − yi| ≤ ∥x⃗− y⃗∥ for all 1 ≤ i ≤ n.

Proof. Since all quantities involved are non-negative, it suffices to prove the
squared version:

(xi − yi)
2 = |xi − yi|2 ≤ ∥x⃗− y⃗∥2 =

n∑
k=1

(xk − yk)
2.

This is clearly true, as the right hand side is equal to the left hand side plus a
sum of non-negative numbers.

With this lemma in mind, we can say something above converges of sequences
points in Rn in terms of the sequences of their components.

Lemma 1.5. Let p⃗ = (p1, . . . , pn) ∈ Rn, and let {x⃗k = (xk,1, . . . , xk,n)} be
a sequence of points in Rn. Then {x⃗k} converges to p⃗ (with respect to the
Euclidean norm) if and only if {xk,i} converges to pi for every 1 ≤ i ≤ n.

Proof. Suppose x⃗k → p⃗. Then, for every ε > 0 there exists an N > 0 such that
∥x⃗k − p⃗∥ < ε for all k ≥ N . By Lemma 1.4, we therefore have

|xk,i − pi| ≤ ∥x⃗k − p⃗∥ < ε

for every k ≥ N and each 1 ≤ i ≤ n. Hence xk,i → pi.
Now suppose xk,i → pi for each 1 ≤ i ≤ n. Then, for every ε > 0, there

exist N1, N2, . . . , Nn > 0 such that

|xk,i − pi| <
ε√
n

for every k ≥ Ni. Let N be the maximum of N1, . . . , Nn. Then, for all k ≥ N

∥x⃗k − p⃗∥ =
√
(xk,1 − p1)2 + · · ·+ (xk,n − pn)2

<

√
ε2

n
+ · · ·+ ε2

n
=

√
ε2 = ε,

and hence x⃗k → p⃗.
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With this componentwise convergence in mind, we can still lift some results
from the one dimensional case, even without monotonicity. A great example is
the multivariable Bolzano-Weierstrauss theorem.

Theorem 1.6. Every bounded sequences of points in Rn has a convergent sub-
sequence.

Proof. We will prove this by induction on n. We have already seen the case for
n = 1, so let us assume the result holds in Rn−1 for some n > 1. Let {x⃗k} be a
bounded sequence in Rn, such that ∥x⃗k∥ ≤ R for every k ≥ 1. Denote by {t⃗k}
the sequence of points in Rn−1 with components tk,i = xk,i for 1 ≤ i ≤ n− 1.

Since
∥t⃗k∥2 = ∥x⃗k∥2 − x2k,n ≤ ∥x⃗k∥2 ≤ R2

the sequence {t⃗k} is bounded and hence has a convergent subsequence {t⃗jk},
converging to a point q⃗ ∈ Rn−1. Then, for any ε > 0 there exists an N1 > 0
such that for all jk ≥ N1, ∥t⃗jk − q⃗∥ < 1

2ε.
By the one dimensional Bolzano-Weierstrauss theorem, the sequence {xjk,n},

which is bounded by Lemma 1.4, has a convergent subsequence {xjkℓ
,n}, con-

verging to a real number r. Then, there exists N2 > 0 such that, for all jkℓ
≥ N2,

|xjkℓ
,n − r| < 1

2ε. Define p⃗ to be the element of Rn such that pi = qi for
1 ≤ i ≤ n− 1, and pn = r. Then, for all jkℓ

≥ max{N1, N2}, we have that

∥x⃗jkℓ
− p⃗∥2 = ∥t⃗jkℓ

− q⃗∥2 + (xjkℓ
,n − r)2 <

1

2
ε2

and hence
∥x⃗jkℓ

− p⃗∥ < ε√
2
< ε.

Therefore, the subsequence {x⃗jkℓ
} converges to the point p⃗.

1.1 Cauchy-Schwarz and Cauchy sequences in Rm

Definition 1.7. A sequence {x⃗n} in Rm is called Cauchy if for every ε > 0
there exists N > 0 such that ∥x⃗k − x⃗ℓ∥ < ε for every k, ℓ ≥ N .

In the one dimensional case, Cauchy sequences were exactly those sequences
that converge. Our next goal will be to show that this equivalence holds in Rm.
In order to prove this, we will need an analogue of the triangle inequality

|x+ y| ≤ |x|+ |y|

for the Euclidean norm. As an auxiliary step towards proving this, we will first
show the Cauchy-Schwarz inequality.

Proposition 1.8. Let x⃗, y⃗ ∈ Rm. Then |⟨x⃗, y⃗⟩| ≤ ∥x⃗∥∥y⃗∥ with equality if and
only if x⃗ is a scalar multiple of y⃗ or vice versa.
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Proof. First note that this statement is clearly true if y⃗ = 0, so we will assume
otherwise. Then note that, for all t ∈ R ∥tx⃗+ y⃗∥2 ≥ 0. But we can expand this
out in terms of the inner product to conclude that

0 ≤ ∥tx⃗+ y⃗∥2 = t2∥x⃗∥2 + 2t⟨x⃗, y⃗⟩+ ∥y⃗∥2

for all real t. As such, the quadratic equation

t2∥x⃗∥2 + 2t⟨x⃗, y⃗⟩+ ∥y⃗∥2 = 0

has at most one real root, and hence the discriminant is non-positive, that is to
say

(2⟨x⃗, y⃗⟩)2 − 4∥x⃗∥2∥y⃗∥2 ≤ 0

which can be rearranged to give

|⟨x⃗, y⃗⟩| ≤ ∥x⃗∥∥y⃗∥.

We get equality if and only if the quadratic polynomial has exactly one real
root, which occurs if and only if ∥tx⃗+ y⃗∥ = 0 for some real t, and since ∥v⃗∥ = 0
if and only if v⃗ = 0, we must therefore have equality if and only if y⃗ = −tx⃗ for
some real t.

Corollary 1.9. Let x⃗, y⃗ ∈ Rm. Then ∥x⃗+ y⃗∥ ≤ ∥x⃗∥+ ∥y⃗∥.

Proof. Note that

∥x⃗+ y⃗∥2 = ⟨x⃗+ y⃗, x⃗+ y⃗⟩
= ∥x⃗∥2 + 2⟨x⃗, y⃗⟩+ ∥y⃗∥2

≤ ∥x⃗∥2 + 2|⟨x⃗, y⃗⟩|+ ∥y⃗∥2

≤ ∥x⃗∥2 + 2∥x⃗∥∥y⃗∥+ ∥y⃗∥2

= (∥x⃗∥+ ∥y⃗∥)2

where the first inequality follows from z ≤ |z|, and the second is the Cauchy-
Schwarz inequality. The triangle inequality follows upon taking the square root.

Corollary 1.10. Let x⃗, y⃗ ∈ Rm. Then ∥x⃗− y⃗∥ ≥ ∥x⃗∥ − ∥y⃗∥.

Proof. Note that

∥x⃗∥ = ∥(x⃗− y⃗) + y⃗∥ ≤ ∥x⃗− y⃗∥+ ∥y⃗∥,

from which the reverse triangle inequality follows.

With these inequalities in mind, we can begin to say something about the
convergence of Cauchy sequences.

Lemma 1.11. Every Cauchy sequence in Rm is bounded.
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Proof. Let {x⃗n} be a Cauchy sequence. By the Cauchy property, there exists
N > 0 such that ∥x⃗k − x⃗ℓ∥ < 1 for every k, ℓ ≥ N . In particular, ∥x⃗k − x⃗N∥ < 1
for every k ≥ N . The reverse triangle inequality gives that

∥x⃗k∥ − ∥x⃗N∥ ≤ ∥x⃗k − x⃗N∥ < 1

and so ∥x⃗k∥ < ∥x⃗N∥+ 1 for every k ≥ N . Hence

∥x⃗n∥ ≤ max{∥x⃗1∥, ∥x⃗2∥, . . . , ∥x⃗N∥, ∥x⃗N∥+ 1}

for every n ≥ 1, and so the sequence is bounded.

And finally, we show that Cauchy and convergent sequences coincide.

Theorem 1.12. A sequence converges in Rm if and only if it is Cauchy.

Proof. Suppose {x⃗n} converges to a point p⃗ ∈ Rm. Then, for every ε > 0 there
exists N > 0 such that ∥x⃗n − p⃗∥ < ε

2 for every n ≥ N . In particular, for
k, ℓ ≥ N , we have that

∥x⃗k − x⃗ℓ∥ ≤ ∥x⃗k − p⃗∥+ ∥p⃗− x⃗ℓ∥ <
ε

2
+
ε

2
= ε

by the triangle inequality. Hence {x⃗n} is Cauchy.
Conversely, suppose that {x⃗n} is Cauchy. Then, by Lemma 1.11, {x⃗n} is

bounded. Hence by Theorem 1.6, it contains a convergent subsequence {x⃗jk}
that converges to a point p⃗ ∈ Rm. We claim {x⃗n} converges to p⃗.

Let ε > 0. By the Cauchy property, there exists N > 0 such that for all
k, ℓ ≥ N , the norm ∥x⃗k − x⃗ℓ∥ < ε

2 . Since x⃗jk → p⃗, there exists some jn > N
such that ∥x⃗jn − p⃗∥ < ε

2 . Therefore, by the triangle inequality,

∥x⃗k − p⃗∥ ≤ ∥x⃗k − x⃗jn∥+ ∥x⃗jn − p⃗∥ < ε

2
+
ε

2
= ε

for every k ≥ N . Hence x⃗n → p⃗.

The next step in analysis in several real variables would be to talk about
functions and continuity of functions in several real variables. But we have two
perspectives on continuity in the one variable case: one in terms of ε − δ, and
one in terms of open sets. It will be important for us to be able to consider
both, so we will spend a bit of time on the topology of Euclidean space first.

2 Open sets and topology on Rm

When discussing open sets in R, our basic open object was the open interval
(a, b). The natural analogue of this in higher dimensions is an open ball. This
will give us the structure we need, but we do need to be a bit more careful, as
the union of two intersecting open balls is not an open ball, as it would have
been for intervals. Still, essentially all the arguments will transfer over.
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Definition 2.1. Given a point p⃗ ∈ Rm and a positive real number r > 0, we
define the open ball of radius r, centred at p⃗ to be the set

B(p⃗, r) := {x⃗ ∈ Rm | ∥x⃗− p⃗∥ < r}.

We similarly define the corresponding closed ball as the set

B(p⃗, r) := {x⃗ ∈ Rm | ∥x⃗− p⃗∥ ≤ r}.

Analogously to the case of R, we will want unions of open sets to be open.
As such, we make the following definition.

Definition 2.2. A subset U ⊂ Rm is called open if for every x⃗ ∈ U , there exists
a real number rx > 0 such that B(x⃗, rx) ⊂ U

Remark 2.3. It is conventional and convenient to also define the empty set ∅
to be open.

Example 2.4. Let H = {(x, y) ∈ R2 | y > c} for some fixed real c. I claim H
is open: let q⃗ = (s, t) ∈ H. Then, as t > c, δ = t − c > 0. Suppose we have
x⃗ = (x, y) ∈ B(q⃗, δ). As

|t− y| ≤ ∥q⃗ − x⃗∥ < δ = t− c,

we have that
t− y < t− c⇒ c < y

and so x⃗ ∈ H. Hence B(q⃗, δ) ⊂ H. As q⃗ was arbitrary, we must have that H is
open.

Example 2.5. Let A = {x⃗ ∈ R2 | 1 < ∥x∥ < 2}. I claim A is open. Suppose
we have q⃗ ∈ A and let r = min(∥q⃗∥ − 1, 2 − ∥q⃗∥), and consider the open ball
B(q⃗, r). If x⃗ ∈ B(q⃗, r), then

∥x⃗∥ ≤ ∥x⃗− q⃗∥+ ∥q⃗∥ < r + ∥q⃗∥ ≤ 2− ∥q⃗∥+ ∥q⃗∥ = 2

and
∥x⃗∥ ≥ ∥q⃗∥ − ∥x⃗− q⃗∥ > ∥q⃗∥ − r ≥ ∥q⃗∥ − ∥q⃗∥+ 1 = 1.

Hence x⃗ ∈ A and so B(⃗(q), r) ⊂ A. As q⃗ was arbitrary, we have that A is open.

Example 2.6. The closed ball B(⃗0, 1) is not open, as there is no open ball
around (1, 0, . . . , 0) contained within B(⃗0, 1).

Lemma 2.7. The open ball is an open set.

Proof. Let p⃗ ∈ Rm and r > 0 be real. Suppose that q⃗ ∈ B(p⃗, r). Then ∥q⃗− p⃗∥ <
r, and so δ = r − ∥q⃗ − p⃗∥ > 0. I claim B(q⃗, δ) ⊂ B(p⃗, r). As q⃗ is arbitrary, this
will prove that B(p⃗, r) is open. Suppose we have x⃗ ∈ B(q⃗, δ). By the triangle
inequality

∥x⃗− p⃗∥ ≤ ∥x⃗− q⃗∥+ ∥q⃗ − p⃗∥ < r − ∥q⃗ − p⃗∥+ ∥q⃗ − p⃗∥ = r

and so x⃗ ∈ B(p⃗, r). Hence B(q⃗, δ) ⊂ B(p⃗, r), and so B(p⃗, r) is open.
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2.1 Open sets in subsets of Rm

Definition 2.8. Let X ⊂ Rm be a subset of Euclidean space. Given a point
p⃗ ∈ X, and a real number r > 0, we define the open ball in X of radius r,
centred at p⃗ to be the set

BX(p⃗, r) := {x⃗ ∈ X | ∥x⃗− p⃗∥ < r}.

We define the closed ball in X of radius r, centred at p⃗ to be the set

BX(p⃗, r) := {x⃗ ∈ X | ∥x⃗− p⃗∥ ≤ r}.

We call a subset U ⊂ X open in X if for every x⃗ ∈ U , there exists rx⃗ > 0 such
that BX(x⃗, rx⃗) ⊂ U . The empty set is open by convention.

Note that
BX(x⃗, r) = B(x⃗, r) ∩X.

As such, we have an immediate useful observation.

Lemma 2.9. If U is open in Rm, and X ⊂ Rm, then U ∩X is open in X.

Proof. This is by definition if U ∩X = ∅. Otherwise, suppose x⃗ ∈ U ∩X. As U
is open in Rm, there exists rx⃗ > 0 such that B(x⃗, rx⃗) ⊂ U . Hence

BX(x⃗, rx⃗) = B(x⃗, rx⃗) ∩X ⊂ U ∩X

for every x⃗ ∈ U ∩X, and so U ∩X is open in X.

Example 2.10. Similarly to Example 2.4, the set

H = {(x, y, z) ∈ R3 | z > 0}

is open in R3. Letting

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

be the unit sphere, we see that

V = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1 and z > 0} = H ∩ S2

is open in S2. However V is not open in R3, as there is no open ball in R3

centred at (0, 0, 1) contained in V . Openness is relative to the ambient space.

Corollary 2.11. Let X ⊂ Rm, and p⃗ ∈ X. Then, for any r > 0, the open ball
BX(p⃗, r) is open in X.

Proof. As note previously, BX(p⃗, r) = B(p⃗, r) ∩ X. As B(p⃗, r) is open in Rm,
Lemma 2.9 tells us that BX(p⃗, r) is open in X.

Lemma 2.12. Let X ⊂ Rm, p⃗ ∈ X and r > 0. Then the set

X \BX(p⃗, r) = {x⃗ ∈ X | ∥x⃗− p⃗∥ > r}

is open in X.

12



Proof. We will, for variety, prove this directly. Let q⃗ ∈ X\BX(p⃗, r). As ∥q⃗−p⃗∥ >
r, we have that δ = ∥q⃗ − p⃗∥ − r > 0. We claim that BX(q⃗, δ) ⊂ X \ BX(p⃗, r),
and hence that X \BX(p⃗, r) is open in X. Suppose x⃗ ∈ BX(q⃗, δ). Then, by the
reverse triangle inequality,

∥x⃗− p⃗∥ ≥ ∥p⃗− q⃗∥ − ∥x⃗− q⃗∥ > ∥q⃗ − p⃗∥ − δ = r

and hence x⃗ ∈ X \BX(p⃗, r), from which all other claims follow.

2.2 The topology of Euclidean space

Definition 2.13. A topology on a set X is a collection τ of subsets of X, called
open sets in X, such that

i) Both X and the empty set are open: ∅, X ∈ τ ,

ii) The union of any collection of open sets is open:

{Ui}i∈I ⊂ τ ⇒
⋃
i∈I

Ui ∈ τ,

iii) The intersection of any finite collection of open sets is open:

U1, . . . , Uk ∈ τ ⇒
n⋂

i=1

Ui ∈ τ.

Proposition 2.14. Let X ⊂ Rm. Then the collection of open sets in X is a
topology on X.

Proof. The empty set ∅ is open, by definition. Since BX(x⃗, r) ⊂ X for all x⃗ ∈ X
and r > 0, X must be open.

Let {Ui}i∈I be any collection of open sets in X, and suppose x⃗ ∈
⋃

i∈I Ui.
Then x⃗ ∈ Ui0 for some i0 ∈ I. Since Ui0 is open in X, there exists rx⃗ > 0 such
that

BX(x⃗, rx⃗) ⊂ Ui0 ⊂
⋃
i∈I

Ui.

Hence,
⋃

i∈I Ui is open in X.
Finally, let U1, . . . , Uk be a finite collection of open sets in X, and suppose

x⃗ ∈
⋂k

i=1 Ui. Then x⃗ ∈ Ui for each 1 ≤ i ≤ k. Since these are open in X, there
exist r1, . . . , rk > 0 such that

B(x⃗, ri) ⊂ Ui

for each 1 ≤ i ≤ k. Let r = min{r1, . . . , rk}. Then

BX(x⃗, r) ⊂ BX(x⃗, ri) ⊂ Ui

for each 1 ≤ i ≤ k, and so

BX(x⃗, r) ⊂
k⋂

i=1

Ui

and so the intersection is open.
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Example 2.15. The set

{(x, y) ∈ R2 | x2 + y2 < 4, y > 1} = B(⃗0, 2) ∩ {(x, y) ∈ R2 | y > 1}

is open in R2. The set

{(x, y) ∈ R2 | (x− n)2 + y2 < 1, n ∈ Z} =
⋃
n∈Z

B ((n, 0), 1)

is open in R2.

Example 2.16. For k ≥ 1, the set

{(x, y) ∈ R2 | k2(x2 + y2) < 1} =

k⋂
i=1

B(⃗0,
1

k
)

is open in R2, but
⋂∞

i=1B(⃗0, 1k ) = {⃗0} is not. Similarly, the set

{(x, y) ∈ R2 | (x2 + y2) < 1 + k−2} =

k⋂
i=1

B(⃗0,
√

1 + k−2)

is open in R2, but

{(x, y) ∈ R2 | (x2 + y2) ≤ 1} =

∞⋂
i=1

B(⃗0,
√
1 + k−2)

is not.

This properties give us an easier proof of a complete description of open sets
in X ⊂ Rm

Proposition 2.17. Suppose we have W ⊂ X ⊂ Rm. Then W is open in X if
and only if there exists U open in Rm such that W = U ∩X.

Proof. We have seen in Lemma 2.9 that if U is open in Rm, the set W = U ∩X
is open in X. Suppose we are given W open in X. Then for every x⃗ ∈ W ,
there exists rx⃗ > 0 such that BX(x⃗, rx⃗) ⊂ W . Define U =

⋃
x⃗∈W B(x⃗, rx⃗ to be

the union of the corresponding open balls in Rm. As this is a union of open
balls, which are open, this is open in Rm. I claim that U ∩X = W . Suppose
p⃗ ∈ U ∩X. Then p⃗ ∈ X, and p⃗ ∈ B(x⃗, rx⃗) for some x⃗ ∈W . Therefore

p⃗ ∈ B(x⃗, rx⃗) ∩X = BX(x⃗, rx⃗) ⊂W

because of how we chose rx⃗. Thus U ∩X ⊂W . Clearly

x⃗ ⊂ BX(x⃗, rx⃗) ⊂ B(x⃗, rx⃗) ⊂ U

for every x⃗ ∈ W , and so W ⊂ U and hence W ⊂ U ∩ X. Therefore W =
U ∩X.
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2.3 Closed sets

Definition 2.18. Let X ⊂ Rm. We call a subset F ⊂ X closed in X if and
only if X \ F is open in X.

Example 2.19. The closed ball

B(p⃗, r) = {x⃗ ∈ Rm | ∥x⃗− p⃗∥ ≤ r} = Rm \ {x⃗ ∈ Rm | ∥x⃗− p⃗∥ > r}

is closed in Rm.

Example 2.20. The set

{(x, y) ∈ R2 | y ≤ c} = R2 \ {(x, y) ∈ R2 | y > c}

is closed.

Example 2.21. The singleton sets

{p⃗} = Rm \ {x⃗ ∈ Rm | ∥x⃗− p⃗∥ > 0}

= Rm \
⋃
n≥1

{x⃗ ∈ Rm | ∥x⃗− p⃗∥ > 1

n
}

are closed.

Remark 2.22. It is really important to note that not open is not the same
as closed. Sets can be neither open nor closed, or both open and closed. For
example, the set [0, 1) is neither open nor closed in R, while the set (0, 1) is both
open and closed in (0, 1) ∪ (2, 3).

As closed sets are complementary, they satisfy dual properties to that of a
topology, analogous to those proved in Proposition 2.14.

Proposition 2.23. Let X ⊂ Rm. The collection of closed sets in X satisfies
the following properties:

i) The empty set ∅ and X are closed in X,

ii) The intersection of any collection of closed sets in X is closed in X,

iii) The union of any finite collection of closed sets in X is closed in X.

Proof. The set ∅ = X \X is open as X is open. Similarly, X = X \ ∅. Recall
that, for any collection of sets {Yi}i∈I of subsets of X

X \
⋂
i∈I

Yi =
⋃
i∈I

(X \ Yi) ,

X \
⋃
i∈I

Yi =
⋂
i∈I

(X \ Yi) .

(If you do not recall this, please prove it as an exercise)
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Hence, given any collection of closed sets {Fi}i∈I , we have that

X \
⋂
i∈I

Fi =
⋃
i∈I

(X \ Fi)

is a union of open sets and therefore open. Hence
⋂

i∈I Fi is closed. Similarly,

the finite union
⋃k

i=1 Fi of closed sets is the complement of a finite intersection

of open sets, which is open, and therefore
⋃k

i=1 Fi is closed.

2.4 Topology and convergence

Lemma 2.24. A sequence {x⃗n} of points in Rm converges to a point p⃗ if and
only if for any open set U containing p⃗, there exists N > 0 such that x⃗n ∈ U
for every n ≥ N .

Proof. Suppose that for any open U containing p⃗, there exists N > 0 such that
x⃗n ∈ U for every n ≥ N . Then, in particular, for every ε > 0, there exists
N > 0 such that x⃗n ∈ B(p⃗, ε) for every n ≥ N , or equivalently, ∥x⃗n − p⃗∥ < ε
for every n ≥ N . That is to say that limn→∞ x⃗n = p⃗.

Now suppose {x⃗n} converges to p⃗, and let U be an open set containing p⃗.
Since U is open, there exists r > 0 such that B(p⃗, r) ⊂ U . Since {x⃗n} converges
to p⃗, there exists N > 0 such that for all n ≥ N , ∥x⃗n − p⃗∥ < r, or equivalently
x⃗n ∈ B(p⃗, r) ⊂ U for all n ≥ N .

Lemma 2.25. Suppose X ⊂ Rm, and let F ⊂ X be closed in X. If {x⃗n} is a
sequence of points in F converging to a point p⃗ ∈ X, then p⃗ ∈ F .

Proof. Since F is closed, X\F is open. If the limit point p⃗ is in X\F , then X\F
is an open set containing p⃗ and hence there exists N ≥ 0 such that x⃗n ∈ X \ F
for all n ≥ N . But x⃗n ∈ F for every n ≥ 1, and so we must have p⃗ ∈ F .

Example 2.26. The set (0, 1) is open in R and contains { 1
n}, but not the limit

point 0. In contrast [0, 1] is closed in R and contains the limit point 0.

3 Continuous functions in several real variables

3.1 Continuity at a point

Definition 3.1. Let X ⊂ Rm and Y ⊂ Rn. A function φ : X → Y is called
continuous at a point p⃗ ∈ X if for every ε > 0, there exists δ > 0 such that
∥φ(x⃗)− φ(p⃗)∥ < ε for every x⃗ ∈ X with ∥x⃗− p⃗∥ < δ.

We say that φ : X → Y is continuous on X if φ is continuous at every point
p⃗ of X.

All of the expected properties of continuity hold in the setting of several
variables, and the proofs are largely similar to the one dimensional case. A very
useful fact is that the composition of continuous functions is continuous.
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Proposition 3.2. Let X ⊂ Rm, Y ⊂ Rn, Z ⊂ Rs, and suppose we have
functions φ : X → Y and ψ : Y → Z such that φ is continuous at p⃗ ∈ X and ψ
is continuous at ϕ(p⃗) ∈ Y . Then the composition

(ψ ◦ φ) : X → Z

is continuous at p⃗.

Proof. Let ε > 0 be given. Then, by continuity of ψ, there exists η > 0 such that
∥ψ(y⃗)−ψ(φ(p⃗))∥ < ε for all y⃗ ∈ Y such that ∥y⃗−φ(p⃗)∥ < η. By continuity of φ,
there exists δ > 0 such that ∥φ(x⃗)−φ(p⃗)∥ < η for all x⃗ ∈ X such that ∥x⃗−p⃗∥ < δ.
Thus, for all x⃗ ∈ X, with ∥x⃗ − p⃗∥ < δ, we have that ∥φ(x⃗) − φ(p⃗)∥ < η and
hence

∥(ψ ◦ φ)(x⃗)− (ψ ◦ φ)(p⃗)∥ = ∥ψ(φ(x⃗))− ψ(φ(p⃗))∥ < ϵ.

Hence, (ψ ◦ φ) is continuous at p⃗.

Continuity can also be classified in terms of limits, as described in the fol-
lowing two propositions.

Proposition 3.3. Let X ⊂ Rm and Y ⊂ Rn, and let φ : X → Y be a contin-
uous function, continuous at a point p⃗ ∈ X. Suppose {x⃗k} is a sequence in X
converging to the point p⃗. Then the sequence {φ(x⃗k)} converges to φ(p⃗) in Y .

Proof. Let ε > 0. By the continuity of φ, there exists δ > 0 such that ∥φ(x⃗)−
φ(p⃗) for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ. Since x⃗k → p⃗, there exists N > 0 such
that ∥x⃗k − p⃗∥ < δ for all k ≥ N . Hence, for all k ≥ N , ∥φ(x⃗k)−φ(p⃗)∥ < ε, and
so {φ(x⃗k)} converges to φ(p⃗).

Proposition 3.4. A function φ : X → Y , where X ⊂ Rm, Y ⊂ Rn is continu-
ous at a point p⃗ ∈ X if and only if for every sequence {x⃗k} in X converging to
p⃗, the sequence {φ(x⃗k)} converges to φ(p⃗).

Proof. One direction of the equivalence is follows from Proposition 3.3. To
prove the other, suppose that for every sequence {x⃗k} in X converging to p⃗, the
sequence {φ(x⃗k)} converges to φ(p⃗), but φ is not continuous at p⃗. If φ is not
continuous at p⃗, there must exist some ε > 0 such that, for every δ > 0, there
exists x⃗δ ∈ X such that ∥x⃗δ − p⃗∥ < δ, but ∥φ(x⃗δ) − φ(p⃗)∥ ≥ ϵ. In particular,
there will exist ε > 0 such that for every k > 0, there exists x⃗k with ∥x⃗k−p⃗∥ < 1

k ,
but ∥φ(x⃗k)− φ(p⃗)∥ ≥ ε.

Clearly the sequence {x⃗k} must converge to p⃗, and so the sequence {φ(x⃗k)}
must converge to φ(p⃗). But ∥φ(x⃗k) − φ(p⃗)∥ ≥ ε, and so it cannot converge to
φ(p⃗), a contradiction. Thus, φ must be continuous at p⃗.

Remark 3.5. As it gets a bit tedious to constantly state the assumption that
X ⊂ Rm and Y ⊂ Rn, we will usually omit it from this point onwards, unless
there is any risk of ambiguity.
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As convergence of sequences can be considered component-wise, we must
therefore be able to consider continuity in terms of components. Let X ⊂ Rm

and Y ⊂ Rn, and let φ : X → Y be a function between them. We can write

φ(x⃗) = (f1(x⃗), f2(x⃗), . . . , fn(x⃗))

and we call the functions fi : X → R the components of φ.

Lemma 3.6. Let πi : Rm → R be the function given by projection onto the ith

component. Then πi is continuous.

Proof. Let ε > 0. By Lemma 1.4, |xi − pi| ≤ ∥x⃗− p⃗∥ for each 1 ≤ i ≤ n. Hence

|πi(x⃗)− πi(p⃗)| = |xi − pi| ≤ ∥x⃗− p⃗∥ < ε

for all ∥x⃗ − p⃗∥ < ε. This πi is continuous at every p⃗ ∈ Rm, and is therefore
continuous.

Proposition 3.7. Let φ : X → Y have components fi, 1 ≤ i ≤ n. Then φ is
continuous at p⃗ ∈ X if and only if fi is continuous at p⃗ for each 1 ≤ i ≤ n.

Proof. If φ is continuous at p⃗, then fi = πi ◦ φ is the composition of functions
continuous at p⃗ and φ(p⃗), and is therefore continuous at p⃗.

Conversely, suppose fi is continuous at p⃗ for each 1 ≤ i ≤ n. Then, for any
ε > 0 there exist δi > 0 such that

|fi(x⃗)− fi(p⃗)| <
ε√
n

for all∥x⃗− p⃗∥ < δi.

Letting δ = min{δ1, . . . , δn}, we must have that, for all x⃗ ∈ X with ∥x⃗− p⃗∥ < δ,
that

∥φ(x⃗)− φ(p⃗∥2 =

n∑
i=1

(fi(x⃗)− fi(p⃗))
2 <

n∑
i=1

ε2

n
= ε2

and hence ∥φ(x⃗)− φ(p⃗)∥ < ε. Thus, φ is continuous at p⃗.

3.2 Combining continuous functions

Projection onto a component is one important example of a continuous function
that lets us deduce continuity properties of more general functions. Continuity
of arithmetic functions allows us to further simplify considerations.

Lemma 3.8. Let

s : R2 → R
(x, y) 7→ x+ y

be the sum function, and

m : R2 → R
(x, y) 7→ xy

be the multiplication function. Then both s and m are continuous.
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Proof. Let (u, v) ∈ R2, and let ε > 0 and δ = ε
2 . Then, if ∥(x, y)− (u, v)∥ < δ,

Lemma 1.4 tells us that

|x− u| < δ and |y − v| < δ.

Hence

|s(x, y)− s(u, v)| = |x+ y − u− v|
= |(x− u) + (y − v)|
≤ |x− u|+ |y − v|
< 2δ = ε

and so s is continuous at (u, v). Since (u, v) was arbitrary, s is continuous on
R2.

For multiplication, it is a bit more difficult to find δ. Suppose we have

∥(x, y)− (u, v)∥ < δ so |x− u|, |y − v| < δ

for some δ. Then

|m(x, y)−m(u, v)| = |xy − uv|
= |(x− u)(y − v) + u(y − v) + v(x− u)|
≤ |x− u||y − v|+ |u||y − v|+ |v||x− u|
< δ(δ + |u|+ |v|)

Without loss of generality, we can choose δ ≤ 1, so that

|m(x, y)−m(u, v) < δ(1 + |u|+ |v|)

which, given ε > 0, will be less than ε if

δ ≤ ε

1 + |u|+ |v|
.

Hence, given ε > 0, let δ = min(1, ε
1+|u|+|v| ) to fulfill the conditions of continuity

at (u, v).

Proposition 3.9. Let f, g : X → R be continuous functions. Then, for all real
a, b, af + bg and f · g are continuous functions. If g(x⃗) ̸= 0 for any x⃗ ∈ X, then
f
g is also continuous.

Proof. First note that the constant functions c(x⃗) := c for any c ∈ R are contin-
uous, and so the function af = m◦ (a, f) is continuous, as (a, f) has continuous
components, and m is continuous. Similarly, as af + bg = s ◦ (af, bg) is a com-
position of continuous functions, it is continuous, as is f ·g = m◦ (f, g). For the
final case, note that it suffices to show that for such g : X → R, the reciprocal
1
g is continuous. But we can easily show that

r : R \ 0 → R

t 7→ 1

t

is a continuous function, and hence 1
g = r ◦ g is continuous.
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Lemma 3.10. Let φ : X → Y be continuous. Then the map

|φ| : X → R
x⃗ 7→ ∥φ(x⃗)∥

is continuous.

Proof. Let ε > 0. Then, note that by the reverse triangle inequality

∥φ(x⃗)− φ(p⃗∥ ≥ ∥φ(x⃗)∥ − ∥φ(p⃗∥,
∥φ(p⃗)− φ(x⃗)∥ ≥ ∥φ(p⃗)∥ − ∥φ(x⃗)∥,

and hence

∥φ(x⃗)− φ(p⃗)∥ = ∥φ(p⃗)− φ(x⃗)∥ ≥
∣∣∣∣∥φ(x⃗)∥ − ∥φ(p⃗)∥

∣∣∣∣
for all x⃗, p⃗ ∈ X. Now, since φ is continuous, there exists δ > 0 such that
∥φ(x⃗)− φ(p⃗)∥ < ε for all ∥x⃗− p⃗∥ < δ, and hence∣∣∣∣∥φ(x⃗)∥ − ∥φ(p⃗)∥

∣∣∣∣ < ε

for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ.

Example 3.11. Consider the function φ : R2 \ {(0, 0)} → R given by

φ(x, y) =

(
x

x2 + y2
,

x− y

x2 + y2 + 3

)
.

This is continuous if and only if it has continuous components. All of f(x, y) =
x, f(x, y) = x− y, f(x, y) = x2 + y2, and f(x, y) = x2 + y2 + 3 are continuous,
and neither of the denominators are 0 on R2 \ {(0, 0)}. Thus φ is continuous.

3.3 Continuity and topology

Continuity on a set has a very nice definition in terms of how it interacts with
open sets, very similar to the situation with sequences. First, let us rephrase
the definition of continuity in terms of open balls. The condition that, for every
ε > 0 there exists a δ > 0 such that ∥φ(x⃗)− φ(p⃗)∥ < ε whenever ∥x⃗− p⃗∥ < δ is
equivalent to the statement that, for every ε > 0, there exists δ > 0 such that

φ(x⃗) ∈ BY (φ(p⃗), ε) for allx⃗ ∈ BX(p⃗, δ).

Recall also that for any map φ : X → Y , we define the preimage of V ⊂ Y
as the set

φ−1(V ) := {x⃗ ∈ X | φ(x⃗) ∈ V }.

Proposition 3.12. A function φ : X → Y is continuous if and only if φ−1(V )
is open in X for every V open in Y .
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Proof. Suppose φ is continuous, and let V ⊂ Y be open in Y . If φ−1(V ) = ∅, we
are done, as this is always open. Otherwise, suppose we have a point p⃗ ∈ ϕ−1(V ).
Since V is open, there exist ε > 0 such that BY (φ(p⃗), ε) ⊂ V . By continuity of
φ, there exists δ > 0 such that φ(x⃗) ⊂ BY (φ(p⃗), ε) whenever x⃗ ∈ BX(p⃗, δ). In
particular, φ(x⃗) ∈ V whenever x⃗ ∈ BX(p⃗, δ), and so

BX(p⃗, δ) ⊂ ϕ−1(V ).

We can find such a ball around every p⃗ ∈ ϕ−1(V ), and so ϕ−1(V ) is open. Let
p⃗ ∈ X. Then, given any ε > 0, the set V = BY (φ(p⃗), ε) is open in Y . Hence
ϕ−1(V ) is open in X, and so there exists δ > 0 such that

BX(p⃗, δ) ⊂ ϕ−1(V ).

As such, for any x⃗ ∈ BX(p⃗, δ), we have that

φ(x⃗) ∈ V = BY (φ(p⃗, ε)

and hence φ is continuous at p⃗ and therefore continuous on X.

Corollary 3.13. A function φ : X → Y is continuous if and only if φ−1(F ) is
closed in X for every closed set F in Y .

Corollary 3.14. Let f : X → R be continuous, and let a, b, c ∈ R with a < b.
Then the sets

{x⃗ ∈ X | f(x⃗) > c}, {x⃗ ∈ X | f(x⃗) < c},

{x⃗ ∈ X | a < f(x⃗) < b}, {x⃗ ∈ X | f(x⃗) ̸= c},

are all open in X, and the sets

{x⃗ ∈ X | f(x⃗) ≥ c}, {x⃗ ∈ X | f(x⃗) ≤ c},

{x⃗ ∈ X | a ≤ f(x⃗) ≤ b}, {x⃗ ∈ X | f(x⃗) = c},

are closed in X.

3.4 Extrema of functions f : X → R
In one real variable, a continuous function on a closed and bounded interval
[a, b] achieves both its minimum and maximum value on [a, b]. Our next goal is
to prove a higher dimensional analogue of this, via the following two lemmas.

Lemma 3.15. Let X be a non-empty, closed and bounded subset of Rm, and let
f : X → R be a continuous function. If the image f(X) is bounded above (resp.
below), then there exists u⃗ ∈ X such that f(u⃗) ≥ f(x⃗) (resp. f(u⃗) ≤ f(x⃗)) for
all x⃗ ∈ X.

21



Proof. First note that the bounded-below case follows from the bounded-above
case, by considering the continuous function −f . As such, we will only prove
the bounded-above case. Let L = sup{f(x⃗) | x⃗ ∈ X}. As this is the least upper
bound for f(X), there must be a sequence {x⃗k} of points in X such that

L− 1

k
< f(x⃗k) ≤ L

for all k ≥ 1. Since X is closed and bounded, the multi-dimensional Bolzano-
Weierstrass theorem tells us that this contains a convergent subsequence {x⃗jk}
converging to some point u⃗ ∈ Rm. In fact, as X is closed, Lemma 2.25 tells us
that u⃗ ∈ X. Furthermore, since

L− 1

jk
< f(x⃗jk) ≤ L,

we must have that

f (⃗(u)) = f( lim
k→∞

x⃗jk) = lim
k→∞

f(x⃗jk) = L,

where we have used the continuity of f to move the limit outside. Hence f(u⃗) =
L ≥ f(x⃗) for all x⃗ ∈ X, as L is an upper bound.

Lemma 3.16. Let X be a non-empty, closed and bounded subset of Rm, and
let f : X → R be a continuous function. Then there exists M > 0 such that
|f(x⃗)| ≤M for all x⃗ ∈ X, i.e f(X) ⊂ [−M,M ].

Proof. Define g : X → R by

g(x⃗) :=
1

1 + |f(x⃗)|

and note that this is continuous, as 1+|f(x⃗)| ≥ 1 is never zero and is continuous.
Furthermore, g(x⃗) ≥ 0 for all x⃗ ∈ X. Thus, by Lemma 3.15, there exists w⃗ ∈ X
such that g(x⃗) ≥ g(w⃗) for all x⃗ ∈ X. A bit of algebra gives that we must
therefore have

|f(x⃗)| ≤ |f(w⃗)| =:M

as claimed.

Theorem 3.17 (Extreme value theorem). Let X be a non-empty, closed and
bounded subset of Rm, and let f : X → R be a continuous function. Then there
exist u⃗, v⃗ ∈ X such that

f(u⃗) ≤ f(x⃗) ≤ f(v⃗) for all x⃗ ∈ X.

Proof. By Lemma 3.16, the set f(X) is bounded both above and below. Hence,
the existence of the points u⃗, v⃗ ∈ X as claimed follows from Lemma 3.15.
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3.5 Uniform continuity in several real variables

Definition 3.18. Let φ : X → Y be a function between two Euclidean spaces.
We call φ uniformly continuous if for any ε > 0, there exists δ > 0 such that
∥φ(u⃗) − φ(v⃗)∥ < ε for all u⃗, v⃗ ∈ X such that ∥u⃗ − v⃗∥ < δ. Note that δ cannot
depend on u⃗ or v⃗.

Example 3.19. For the sum function s : R2 → R, we took δ = ε
2 . As this works

for any pair of points in R2, we can conclude that s is uniformly continuous.
For the multiplication function m : R2 → R, we took

δ = min

(
1,

ε

1 + |u|+ |v|

)
to establish continuity at the point (u, v). This does not imply uniform conti-
nuity, but maybe a universal δ exists. I claim otherwise. If m were uniformly
continuous, there would exists δ > 0 such that

|xy − uv| < 1

2

for any pair of points (x, y), (u, v) such that

(x− u)2 + (y − v)2 < δ.

Consider the points (x, y) = ( δ2 , v) and (u, v) = (0, v), for some v ∈ R. These
clearly satisfy the above condition, but

|xy − uv| = |δ
2
||v| < 1

2

cannot possibly hold for all v. Hence m cannot be uniformly continuous.

Theorem 3.20. For φ : X → Y a continuous function on a non-empty, closed
and bounded set X, φ is uniformly continuous.

Proof. Let ε > 0, and suppose there does not exist δ > 0 such that ∥φ(u⃗) −
φ(v⃗)∥ < ε for every u⃗, v⃗ ∈ X such that ∥u⃗− v⃗∥ < δ. Then, for every δ > 0, there
exists a pair (u⃗δ, v⃗δ) ∈ X2 such that ∥u⃗δ − v⃗δ∥ < δ, but ∥φ(u⃗δ) − φ(v⃗δ)∥ ≥ ε.
In particular, we must have sequences {u⃗k} and {v⃗k} in X such that

∥u⃗k − v⃗k∥ <
1

k

for every k ≥ 0, but
∥φ(u⃗k)− φ(v⃗k)∥ ≥ ε.

As X is closed and bounded, the sequence {u⃗k} must contain a subsequence
{u⃗jk} converging to a point p⃗ ∈ X. Since

∥u⃗jk − v⃗jk∥ <
1

jk
→ 0
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we must have that {v⃗jk} also converges to p⃗. Thus, by continuity, the sequences

{φ(u⃗jk)} and {φ(v⃗jk)}

must both converge to φ(p⃗). But

∥φ(u⃗jk)− φ(v⃗jk)∥ ≥ ε,

giving a contradiction. Therefore, there must exist a δ > 0 for every ε > 0 such
that

∥u⃗− v⃗∥ < δ ⇒ ∥φ(u⃗)− φ(v⃗)∥ < ε

and so φ is uniformly continuous on X.

4 Limits of functions in several real variables

Definition 4.1. A point p⃗ ∈ Rm is called a limit point of a set X ⊂ Rm if for
all ε > 0 B(p⃗, ε)∩X contains a point other than p⃗, i.e. there exists x⃗ ∈ X such
that 0 < ∥x⃗− p⃗∥ < ε.

Example 4.2. The point 1 is a limit point of [0, 1), as is 1
2 . The point 0 is a

limit point of { 1
n}. The point (0, 0) is a limit point of

{(x, y) ∈ R2 | x, y > 0}.

Remark 4.3. Not every point in X is a limit point of X. Despite the fact that
0 ∈ Z 0 is not a limit point of Z. Points of X which are not limit points of X
are called isolated points.

Proposition 4.4. A set X ∈ Rm is closed if and only if X contains all its limit
points.

Proof. Suppose X ⊂ Rm is closed ad let p⃗ be a limit point of X that is not
contained in X. Then p⃗ ∈ Rm \ X is a point contained in an open set, and
hence there exists ε > 0 such that B(p⃗, ε) ⊂ Rm \X. But this means that

B(p⃗, ε) ∩X = ∅

and so p⃗ cannot be a limit point. This gives a contradiction and hence, X must
contain all its limit points.

Conversely, suppose that X contains all its limit points, but X is not closed.
Then Rm \ X is not open, and so there exists a point p⃗ ∈ Rm \ X with no
open ball around it contained within Rm \ X, i.e. for all ε > 0 B(p⃗, ε) ∩ X is
non-empty. Since p⃗ ̸∈ X, B(p⃗, ε) ∩ X contains a point other than p⃗, and so p⃗
is a limit point of X. This is a contradiction to our assumption, and we must
have that X is closed.
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Definition 4.5. Let X ⊂ Rm and let p⃗ ∈ Rm be a limit point of X. Suppose
we have a function ϕ : X → Rn and a point v⃗ ∈ Rn. The point v⃗ is called the
limit of ϕ(x⃗) as x⃗ tends to p⃗ if and only if for all ε > 0, there exists δ > 0 such
that ∥ϕ(x⃗)− v⃗∥ < ε for all x⃗ ∈ X satisfying 0 < ∥x⃗− p⃗∥ < δ. We write

lim
x⃗→p⃗

ϕ(x⃗) = v⃗

in this scenario.

Remark 4.6. Note that, if p⃗ ∈ X, we do not care about the behaviour of ϕ at
p⃗ when talking about the limit. The classical example is

f : [0,∞) → R

x 7→

{
1 if x > 0,

0 if x = 0

which has f(0) = 0, but limx→0 f(x) = 1.

As with every other property we have considered so far in this course, limits
of functions can be considered entirely componentwise.

Proposition 4.7. Let X ⊂ Rm have limit point p⃗, and let v⃗ = (v1, . . . , vn) ∈
Rn. A function

ϕ : X → Rn,

x⃗ 7→ (f1(x⃗), f2(x⃗), . . . , fn(x⃗)) ,

has the property that
lim
x⃗→p⃗

ϕ(x⃗) = v⃗

if and only if
lim
x⃗→p⃗

fi(x⃗) = vi

for each 1 ≤ i ≤ n.

Proof. Suppose limx⃗→p⃗ ϕ(x⃗) = v⃗, and let ε > 0. Then there exists δ > 0 such
that ∥ϕ(x⃗) − v⃗∥ < ε for every x⃗ ∈ X such that 0 < ∥x⃗ − p⃗∥ < δ. Then, by
Lemma 1.4,

|fi(x⃗)− vi| ≤ ∥ϕ(x⃗)− v⃗∥ < ε

for all x⃗ ∈ X such that 0 < ∥x⃗ − p⃗∥ < δ. Hence limx⃗→p⃗ fi(x⃗) = vi for each
1 ≤ i ≤ n.

Conversely, if limx⃗→p⃗ fi(x⃗) = vi for each 1 ≤ i ≤ n, then for any ε, there
exist δ1, . . . , δn such that

|fi(x⃗)− vi| <
ε√
n

for all x⃗ ∈ X such that 0 < ∥x⃗ − p⃗∥ < δi, for each 1 ≤ i ≤ n. Thus, for all
x⃗ ∈ X such that

0 < ∥x⃗− p⃗∥ < min{δ1, . . . , δn}
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we have that

∥ϕ(x⃗)− v⃗∥ =

(
n∑

i=1

(fi(x⃗)− vi)
2

) 1
2

<

(
n∑

i=1

ε2

n

) 1
2

= ε

and so limx⃗→p⃗ ϕ(x⃗) = v⃗.

Limits behave well with respect to linear combinations of functions, which
can make evaluation of limits much easier.

Proposition 4.8. Let X ⊂ Rm have limit point p⃗ ∈ Rm. Suppose we have two
functions ϕ, ψ : X → Rn such that

lim
x⃗→p⃗

ϕ(x⃗) = v⃗, and lim
x⃗→p⃗

ψ(p⃗) = w⃗

for some v⃗, w⃗ ∈ Rn. Then, for any c ∈ R, we have that

lim
x⃗→p⃗

(ϕ(x⃗) + ψ(x⃗)) = v⃗ + w⃗, and lim
x⃗→p⃗

(cϕ(x⃗)) = cv⃗.

Proof. Let ε > 0. Then there exist δ1, δ2 such that

∥ϕ(x⃗)− v⃗∥ < ε

2
for all x⃗ ∈ X such that 0 < ∥x⃗− p⃗∥ < δ1

and
∥ψ(x⃗)− w⃗∥ < ε

2
for all x⃗ ∈ X such that 0 < ∥x⃗− p⃗∥ < δ2.

Hence, for all x⃗ ∈ X such that 0 < ∥x⃗− p⃗∥ < min{δ1, δ2}, we have that

∥ϕ(x⃗) + ψ(x⃗)− v⃗ − w⃗∥ ≤ ∥ϕ(x⃗)− v⃗∥+ ∥ψ(x⃗)− w⃗∥

<
ε

2
+
ε

2
= ε

and hence
lim
x⃗→p⃗

(ϕ(x⃗) + ψ(x⃗)) = v⃗ + w⃗.

If c = 0, there is nothing to prove, so we will assume c ̸= 0. Then, for all
ε > 0, there exists δ > 0 such that

∥ϕ(x⃗)− v⃗∥ < ε

|c|

for all x⃗ ∈ X with 0 < ∥x⃗− p⃗∥ < δ. Hence, for all x⃗ ∈ X with 0 < ∥x⃗− p⃗∥ < δ,
we have that

∥cϕ(x⃗)− cv⃗∥ = |c|∥ϕ(x⃗)− p⃗∥ < |c| ε
|c|

= ε.

Thus, limx⃗→p⃗(cϕ(x⃗)) = cv⃗.

Limits and continuity are extremely closely related. As in the one dimen-
sional case, a function if continuous at a point if and only if limits at that point
behave nicely.
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Lemma 4.9. Let X ⊂ Rm have a limit point p⃗ contained within X. Then a
function ϕ : X → Rn is continuous at p⃗ if and only if limx⃗→p⃗ ϕ(x⃗) = ϕ(p⃗).

Proof. Suppose ϕ is continuous at p⃗. Then for every ε > 0, there exists δ > 0
such that ∥ϕ(x⃗) − ϕ(p⃗)∥ < ε for every x⃗ ∈ X such that ∥x⃗ − p⃗∥ < δ. In
particular, this inequality hold for every x⃗ ∈ X such that 0 < ∥x⃗− p⃗∥ < δ, and
hence limx⃗→p⃗ ϕ(x⃗) = ϕ(p⃗).

Conversely, if limx⃗→p⃗ ϕ(x⃗) = ϕ(p⃗), the only thing we need to check to see that
ϕ is continuous at p⃗ is that for every ε > 0, ∥ϕ(x⃗)− ϕ(p⃗)∥ < ε for ∥x⃗− p⃗∥ = 0,
i.e. for x⃗ = p⃗, which clearly holds.

Lemma 4.10. Let X ⊂ Rm have a limit point p⃗, and let Y ⊂ Rn contain a
point v⃗. If we have a function ϕ : X → Y such that

lim
x⃗→p⃗

ϕ(x⃗) = v⃗

and a function ψ : Y → Rs continuous at v⃗, then

lim
x⃗→p⃗

ψ(ϕ(x⃗)) = ψ(v⃗).

Proof. Let ε > 0. Then by continuity of ψ, there exists η > 0 such that
∥ψ(y⃗) − ψ(v⃗)∥ < ε for all y⃗ ∈ Y such that ∥y⃗ − v⃗∥ < η. From the limit
property, there exists δ > 0 such that ∥ϕ(x⃗) − v⃗∥ < η for all x⃗ ∈ X such that
0 < ∥x⃗ − p⃗∥ < δ. Hence, for all x⃗ ∈ X with 0 < ∥x⃗ − p⃗∥ < δ, we must have
∥ψ(ϕ(x⃗))− ψ(v⃗)∥ < ε, and so

lim
x⃗→p⃗

ψ(ϕ(x⃗)) = ψ(v⃗).

Remark 4.11. This lemma follows from Lemma 4.9 in the event that v⃗ is a
limit point of Y .

Finally, we can give a very neat collection of properties we can use to compute
componentwise limits.

Proposition 4.12. Let X ⊂ Rm have a limit point p⃗, and let f, g : X → R be
two functions such that

lim
x⃗→p⃗

f(x⃗) and lim
x⃗→p⃗

g(x⃗)

exist. Then both

lim
x⃗→p⃗

(f(x⃗) + g(x⃗)) and lim
x⃗→p⃗

(f(x⃗)g(x⃗))

exist and

lim
x⃗→p⃗

(f(x⃗) + g(x⃗)) = lim
x⃗→p⃗

f(x⃗) + lim
x⃗→p⃗

g(x⃗),

lim
x⃗→p⃗

(f(x⃗)g(x⃗)) =

(
lim
x⃗→p⃗

f(x⃗)

)(
lim
x⃗→p⃗

g(x⃗)

)
.
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If furthermore g(x⃗) ̸= 0 for all x⃗ ∈ X and limx⃗→p⃗ g(x⃗) ̸= 0, then

lim
x⃗→p⃗

f(x⃗)

g(x⃗)
exists and lim

x⃗→p⃗

f(x⃗)

g(x⃗)
=

limx⃗→p⃗ f(x⃗)

limx⃗→p⃗ g(x⃗)
.

Proof. Let a = limx⃗→p⃗ f(x⃗) and b = limx⃗→p⃗ g(x⃗). Define the function

ψ : X → R2,

x⃗ 7→ (f(x⃗), g(x⃗)).

Since limits are defined componentwise, limx⃗→p⃗ ψ(x⃗) exists and is equal to (a, b).
Recall the addition function s : R2 → R and the multiplication function m :
R2 → R:

f(x⃗) + g(x⃗) = (s ◦ ψ)(x⃗),
f(x⃗)g(x⃗) = (m ◦ ψ)(x⃗).

Thus, the claim follows from continuity of s and m, and Lemma 4.10. Similarly,
the quotient limit follows from continuity of the reciprocal function r : R\{0} →
R, and so

lim
x⃗→p⃗

1

g(x⃗)
=

1

b

and the claim follows from the multiplication limit result.

Remark 4.13. We can actually reduce the restrictions on g(x⃗) in order for the
quotient limit to exist to limx⃗→p⃗ g(x⃗) ̸= 0, as this would imply that g(x⃗) ̸= 0 in
some small open ball B in X centred at p⃗, and we can then apply Proposition
4.12 to ϕ|B.

5 Recapping one dimensional derivatives

Derivatives capture local information about “nice enough” functions. We see
this locality in the fact that almost every result about derivatives only needs a
function to be defined in some small open set around a point of interest. As
such, we cannot define derivatives for points too close to the boundary of the
domain of definition of a function.

Definition 5.1. Let D ⊂ Rm. A point s⃗ ∈ D is called an interior point of D if
there exists ε > 0 such that B(s⃗, ε) ⊂ D.

We say that a function ϕ : D → Rn is defined around s if s⃗ is an interior
point of D.

More generally, we talk about a function f being defined around s⃗ if s⃗ is an
interior point of the domain of f .

Remark 5.2. A function f is defined around a point s⃗ if and only if f is defined
on some open ball centred at s⃗.
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In R, a function f is defined around a real number s if and only if there is
some δ > 0 such that f is defined on (s − δ, s + δ). This is precisely the space
we need to define a derivative.

Definition 5.3. Let x0 ∈ R, and let f be a real-valued function defined around
x0. We say that f is differentiable at x0 with derivative f ′(x0) if and only if
the limit

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

exists and is well defined.

If the derivative is defined for f ′(x0 + h) is defined for small enough h, then
f ′ defines a function around x0. In this scenario, we can attempt to take a
second derivative, and beyond.

Definition 5.4. We say that f is k-times differentiable for k ≥ 1 if the (k−1)st

derivative exists around x0, and the limit

f (k) = lim
h→0

f (k−1)(x0 + h)− f (k−1)(x0)

h

exists and is well defined.

Remark 5.5. It is notationally convenient to define the zero-th derivative of f
by f (0) = f .

It is very straightforward to show that derivatives are linear: if f and g are
defined around x0 and have derivatives at x0, then the derivative of f + g and
cf exist for any c ∈ R, and are given by

(f + g)′(x0)) = f ′(x0) + g′(x0), and (cf)′(x0) = cf ′(x0).

Some other very important properties of derivatives for f and g as described
include:

Proposition 5.6 (Product Rule). The product function f · g is differentiable
at x0 with derivative

(f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

Proof. We only consider h small enough that f(x0+h) and g(x0+h) are defined.
We can then write

f(x0 + h)g(x0 + h)− f(x0)g(x0)

h

=

(
f(x0 + h)− f(x)

h

)
g(x0 + h) + f(x0)

(
g(x0 + h)− g(x0)

h

)
.
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Since a function differentiable at x0 is continuous at x0, our existing results on
limits give that

lim
h→0

f(x0 + h)g(x0 + h)− f(x0)g(x0)

h

= lim
h→0

(
f(x0 + h)− f(x)

h

)
lim
h→0

g(x0 + h) + f(x0) lim
h→0

(
g(x0 + h)− g(x0)

h

)
and hence

(f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

Proposition 5.7 (Quotient Rule). For g(x) ̸= 0 for all x sufficiently close to
x0, and g(x0) ̸= 0, the quotient function f

g is differentiable at x0, with derivative(
f

g

)′

(x0) =
f ′(x0)g(x0)− f(x0)g

′(x0)

g(x0)2

Proof. For h sufficiently small, we can write

1

h

(
f(x0 + h)

g(x0 + h)
− f(x0)

g(x0)

)
=

1

h

(
f(x0 + h)g(x0)− f(x0)g(x0 + h)

g(x0 + h)g(x0)

)
=

(
f(x0 + h)− f(x)

h

)
g(x0)

g(x0 + h)g(x0)
− f(x0)

g(x0 + h)g(x0)

(
g(x0 + h)− g(x0)

h

)
.

Taking limits, we get that

lim
h→0

1

h

(
f(x0 + h)

g(x0 + h)
− f(x0)

g(x0)

)
=
f ′(x0)g(x0)− f(x0)g

′(x0)

g(x0)2
.

Proposition 5.8 (Chain Rule). Let x0 ∈ R, f be a function defined around and
differentiable at x0, and let g be a function defined around and differentiable at
f(x0). Then g ◦ f is differentiable at x0, and

(g ◦ f)′(x0) = g′(f(x0))f
′(x0).

Proof. Let y0 = f(x0), and let

G(y) =

{
g(y)−g(y0)

y−y0
if y ̸= y0,

g′(y0) if y = y0.

We can easily check that

g(f(x0 + h))− g(f(x0)) = G(f(x0 + h)) (f(x0 + h)− f(x0)) .
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As G(y) is continuous at y0, limh→0G(f(x0 + h)) = g′(f(x0)), and hence

lim
h→0

g(f(x0 + h))− g(f(x0))

h
= lim

h→0
G(f(x0 + h)) lim

h→0

(
f(x0 + h)− f(x0)

h

)
and hence

(g ◦ f)′(x0) = g′(f(x0))f
′(x0).

5.1 Rolle and the Mean Value Theorem

Theorem 5.9 (Rolle’s Theorem). Let f : [a, b] → R be continuous on [a, b]
and differentiable on (a, b). Suppose further that f(a) = f(b). Then there exists
c ∈ (a, b) such that f ′(c) = 0.

Proof. If f(x) = 0 for all x ∈ [a, b], there is nothing to prove. So suppose there
exists x ∈ (a, b) such that f(x) ̸= 0. Without loss of generality, we can assume
that f(x) > 0 for some x ∈ (a, b). By the extreme value theorem, f therefore
achieves its maximum value on [a, b] at some point c ∈ (a, b). We claim that
f ′(c) = 0. From the maximality of f(c),

f(c+ h)− f(c) ≤ 0 for h < 0,

f(c+ h)− f(c) ≤ 0 for h > 0,

and so

f(c+ h)− f(c)

h
≥ 0 for h < 0,

f(c+ h)− f(c)

h
≤ 0 for h > 0.

As such, we must have that

f ′(c) ≤ 0 and f ′(c) ≥ 0,

and so f ′(c) = 0.

The mean value theorem is a quick corollary of this.

Theorem 5.10 (Mean Value Theorem). Let f : [a, b] → R be continuous on
[a, b] and differentiable on (a, b). Then there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Proof. Define

g(x) = f(x)− b− x

b− a
f(a)− x− a

b− a
f(b).

31



The function g satisfies the conditions of Rolle’s theorem and so there exists
c ∈ (a, b) such that g′(c) = 0, and so

0 = f ′(c) +
1

b− a
f(a)− 1

b− a
f(b)

and so

f ′(c) =
f(b)− f(a)

b− a
.

Corollary 5.11. Let f : [a, b] → R be as above. If f ′(x) > 0 for all x ∈ (a, b),
then f(b) > f(a).

Corollary 5.12. Let f : [a, b] → R be as above. If f ′(x) = 0 for all x ∈ (a, b),
then f(x) = f(a) for all x ∈ [a, b].

Corollary 5.13. Let f : [a, b] → R be as above, and let M ∈ R. If f ′(x) ≤ M
for all x ∈ (a, b), then f(x) ≤ f(a) +M(x− a) for all x ∈ [a, b].

Corollary 5.14. Let f : [a, b] → R be as above, and let M ∈ R. If |f ′(x)| ≤M
for all x ∈ (a, b), then |f(b)− f(a)| ≤M |b− a|.

5.2 Real Analytic Functions

Definition 5.15. We call a function f : (a, b) → R real analytic on (a, b) if the
nth derivative f (n)(x) exists for all x ∈ (a, b) and n ≥ 0, and for every x ∈ (a, b)
there exists δ > 0 such that

f(x+ h) =

∞∑
n=0

f (n)(x)
hn

n!

for all |h| < δ. This power series is called the Taylor series of f around x.

Most functions we care about are real analytic on their domain of definition.
This includes polynomials, trigonometric functions, exponentials, the natural
logarithm, and rational functions. But not every function is real analytic, even
if it has derivatives of every order. The classical counter example is

f(x) =

{
e−

1
x2 for x ̸= 0,

0 otherwise.

This has f (n)(0) = 0 for every n ≥ 0, and so the Taylor series around 0 converges
everywhere and is uniformly 0, while f(x) is decidedly non-zero away from 0.
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5.2.1 Taylor’s theorem and extrema

Lemma 5.16. Let x0, h ∈ R and let f be a k-times differentiable function
defined on an open interval containing both x0 and x0 +h. Let c0, . . . , ck−1 ∈ R
and define

p(t) = f(x0 + th)−
k−1∑
n=0

cnt
n

for all t in some open interval D containing [0, 1] such that f(x0+ th) is defined
for all t ∈ D. Then p(n) = 0 for all 0 ≤ n < k if and only if cn = f (n)(x0)

hn

n!
for all 0 ≤ n < k.

Proof. Differentiating p(t) s times, we see that

p(s)(t) = hsf (s)(x0 + th)−
k−1∑
n=s

n!

(n− s)!
cnt

n−s.

Evaluating this at t = 0, we see that p(s)(0) = 0 if and only if

hsf (s)(x0)− s!cs = 0

which is to say that cs = f (s)(x0)
hs

s! . Hence, the claim follows.

Theorem 5.17. Let x0, h ∈ R and let f be a k-times differentiable function
defined on an open interval containing both x0 and x0 + h. Then

f(x0 + h) =

k−1∑
n=0

f (n)(x0)
hn

n!
+ f (k)(x0 + θh)

hk

k!

for some θ ∈ (0, 1).

Proof. Let D be an open interval containing [0, 1] such that f(x0+th) is defined
for all t ∈ D, and define

p(t) = f(x0 + th)−
k−1∑
n=0

f (n)(x0)
(th)n

n!

for all t ∈ D. By Lemma 5.16, p(n)(0) = 0 for n = 0, 1, . . . , k − 1. Also define
for t ∈ D

q(t) = p(t)− p(1)tk.

Then q(n)(0) = p(n)(0) = 0 for each n = 0, 1, . . . , k − 1 and q(1) = 0. By
Rolle’s theorem there exists θ1 ∈ (0, 1) such that q′(θ1) = 0. Hence, by Rolle’s
theorem, there exists θ2 ∈ (0, θ1) such that q(2)(θ2) = 0. Repeating this process,
we construct a sequence

0 < θk < θk−1 < · · · < θ1 < 1
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such that q(n)(θn) = 0 for each n = 1, 2, . . . , k. In particular, for n = k, we get
that

0 = q(k)(θk) = p(k)(θk)− k!p(1) = f (k)(x0 + θkh)h
k − k!p(1).

Thus, evaluating p(1) in terms of derivatives of f , we get that

f(x0 + h) = p(1) +

k−1∑
n=0

f (n)(x0)
hn

n!
=

k−1∑
n=0

f (n)(x0)
hn

n!
+ f (k)(x0 + θkh)

hk

k!
.

Corollary 5.18. Let f : (a, b) → R be a k-times continuously differentiable
function, and let x0 ∈ (a, b). Then, for any ε > 0, there exist δ > 0 such that∣∣∣∣f(x0 + h)−

k∑
n=0

f (n)(x0)
hn

n!

∣∣∣∣ < ε|h|k

for all h such that x0 + h ∈ (a, b) and |h| < δ.

Proof. The kth derivative is continuous at x0, and so for all ε > 0 there exists
δ > 0 such that x0 + h ∈ (a, b) and

|f (k)(x0 + h)− f (k)(x0)| < k!ε

for all h such that |h| < δ. In particular, if |h| < δ and 0 < θ < 1, we have that

|f (k)(x0 + θh)− f (k)(x0)| < k!ε.

Choosing θ to be the value from Taylor’s Theorem, we have that∣∣∣∣f(x0 + h)−
k∑

n=0

f (n)(x0)
hn

n!

∣∣∣∣ = ∣∣∣∣ k−1∑
n=0

f (n)(x0)
hn

n!
+ f (k)(x0 + θh)

hk

k!
−

k∑
n=0

f (n)(x0)
hn

n!

∣∣∣∣
=

|h|k

k|
|f (k)(x0 + θh)− f (k)(x0)| < ε|h|k.

Taylor’s theorem applied to twice-differentiable functions gives us a useful
criteria for determining whether a point is a local maximum or minimum.

Lemma 5.19. Let f : (x0 − c, x0 + c) :→ R be a twice differentiable function,
and suppose that f (2)(x0 + h) > 0 for all h ∈ (−c, c). Then

f(x0 + h) ≥ f(x0) + f ′(x0)h

for all h ∈ (−c, c).
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Proof. Taylor’s theorem tells us that

f(x0 + h) = f(x0) + f ′(x0)h+ f (2)(x0 + θh)
h2

2

for some θ ∈ (0, 1). By the hypotheses of the lemma, f (2)(x0 + θh) ≥ 0, and
h2

2 > 0, and so the claim follows.

Corollary 5.20. Let f : (a, b) → R be a twice differentiable function and let
x0 ∈ (a, b) be such that f ′(x0) = 0 and f (2)(x) > 0 (f (2)(x) < 0) for all x in a
small interval around x0. Then x0 is a local minimum (maximum respectively).

Proof. We consider only the case of the positive second derivative. From Lemma
5.19, we have that

f(x0 + h) ≥ f(x0) + f ′(x0)h = f(x0)

for all small enough h, and hence f(x0) is a local minimum.

6 Derivatives of functions in several real vari-
ables

6.1 Directional derivatives and partial derivatives

Before we define a notion of a total derivative for a function φ : X → Y for
X ⊂ Rm and Y ⊂ Rn, we should spend a bit of time defining derivatives in
terms of rates of changes in a certain direction, and the implications for the
growth and continuity of the function.

Definition 6.1. Let X ⊂ Rm and let f : X → R be a function defined around
a point x⃗0 ∈ X. Let v⃗ ∈ Rm be a unit vector. The directional derivative of f
(in the direction of v⃗) at x⃗0 is the limit

∂v⃗f(x⃗0) := lim
h→0

f(x⃗0 + hv⃗)− f(x⃗0)

h

assuming the limit exists.
Letting {e⃗1, . . . , e⃗m} be the standard basis of Rm. We define the partial

derivatives of the function

f(x⃗) = f(x1, . . . , xm)

with respect to xi to be the directional derivative

∂if(x⃗0) := ∂e⃗if(x⃗0).

Written in terms of the coordinates (x1, . . . , xm), the partial derivatives are

∂f

∂xi
(x⃗0) = lim

h→0

f(x0,1, . . . , x0,i + h, . . . , x0,m)− f(x0,1, . . . , x0,i, . . . , x0,m)

h
.
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Essentially every major result about derivatives of one variable has an ana-
logue for partial derivatives, including the product, quotient, and chain rules.

While partial derivatives provide a substantial amount of information about
the local behaviour of functions of several real functions, knowledge of the par-
tial derivatives is weaker than knowledge of derivatives of functions in one vari-
able. For example, for functions of one real variable, being differentiable at a
point implies being continuous at that point. This is not the case for partial
derivatives!

Example 6.2. Let f : R2 → R be defined by

f(x, y) =

{
2xy

x2+y2 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

If (x, y) ̸= (0, 0), then the partial derivatives of f are well defined at (x, y), and
are given by

∂f

∂x
=

2y(x2 − y2)

(x2 + y2)2
, and

∂f

∂y
=

−2x(x2 − y2)

(x2 + y2)2
.

We can also compute the partial derivatives at (0, 0):

∂f

∂x
(0, 0) = lim

h→0

0− 0

h
= 0,

∂f

∂y
(0, 0) = lim

h→0

0− 0

h
= 0,

as f(x, 0) = f(0, y) = 0. Thus, the partial derivatives of f exist everywhere, but
note that f(x, x) = 1 for all x ̸= 0, and so f is not continuous at (0, 0).

We can even have that the restriction of a function to any line is continuous,
and that the partial derivatives exist and are well defined everywhere, but that
the function fails to be continuous everywhere.

Example 6.3. Let f : R2 → R be defined by

f(x, y) =

{
2x2y
x4+y2 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

We can again check that this is differentiable at every point of R2. Also note
that for (u, v) ̸= (0, 0) and t ̸= 0

f(tu, tv) =
2tu2v

t2u4 + v2

and
lim
t→0

f(tu, tv) = 0,

so the limit as (x, y) approaches the origin along any line is 0. But f(t, t2) = 1
for all t ̸= 0, and so f cannot be continuous at (0, 0).
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6.2 Growth of functions with bounded partial derivatives

For functions defined on sets containing straight lines, it is possible to give
analogues of results such as Rolle’s theorem and the mean value theorem, and
in particular the results on the growth of functions.

Lemma 6.4. Let u⃗ and v⃗ be points of Rm. Then

m∑
i=1

|ui − vi| ≤
√
m∥u⃗− v⃗∥.

Proof. Define a vector s⃗ ∈ Rm in terms of its components by

si :=

{
|ui−vi|
ui−vi

if ui ̸= vi,

1 if ui = vi.

Then

⟨u⃗− v⃗, s⃗⟩ =
m∑
i=1

|ui − vi|

and ∥s⃗∥ =
√
m. Hence, by the Cauchy-Schwarz inequality,

m∑
i=1

|ui − vi| = ⟨u⃗− v⃗, s⃗⟩ ≤ ∥u⃗− v⃗∥ · ∥s⃗∥ =
√
m∥u⃗− v⃗∥

Remark 6.5. In the following discussion, whenever a derivative appears, there
is the implicit assumption that it exists and is well defined at all points that we
evaluate it at. We will not usually spell this out explicitly.

Proposition 6.6. Let X be a open subset of Rm, and let f : X → R. Let
u⃗ ̸= v⃗ ∈ X be such that

(1− t)u⃗+ tv⃗ ∈ X

for all t ∈ [0, 1]. Suppose there exists a positive constant M > 0 such that

|∂n⃗f((1− t)u⃗+ tv⃗)| ≤M

for every t ∈ [0, 1] where n⃗ is the unit vector in the direction v⃗ − u⃗. Then

|f(u⃗)− f(v⃗)| ≤M∥u⃗− v⃗∥.

Proof. Define a function F : [0, 1] → R by

F (t) = f(u⃗+ t∥v⃗ − u⃗∥n⃗).

It follows immediately that

F ′(t) = ∂n⃗f(u⃗+ t∥v⃗ − u⃗∥n⃗)∥u⃗− v⃗∥.
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From the hypothesis of the theorem, this is bounded in absolute value, and so
by Corollary 5.14, we have that

|F (0)− F (1)| ≤M∥u⃗− v⃗∥

and thus
|f(u⃗)− f(v⃗)| ≤M∥u⃗− v⃗∥.

Corollary 6.7. Let X be a product of open intervals in Rm, and let f : X → R
be a function which has partial derivatives defined everywhere in X. Suppose
there exists a positive constant M > 0 such that∣∣∣∣ ∂f∂xi (x⃗)

∣∣∣∣ ≤M

for every x⃗ ∈ X and each 1 ≤ i ≤ m. Then

|f(u⃗)− f(v⃗)| ≤
√
mM∥u⃗− v⃗∥

for every u⃗, v⃗ ∈ X.

Proof. It follows immediately if u⃗ = v⃗. Otherwise, we can find {(ai, bi)}mi=1 such
that ai < ui, vi < bi for each i. For each 0 ≤ k ≤ m, define

w⃗k = (wk,1, . . . , wk,m)

by

wk,i =

{
ui if i > k,

vi if i ≤ k.

This gives a collection of points in X such that w⃗0 = u⃗, w⃗m = v⃗ and w⃗k−1 and
w⃗k differ only in the kth coordinate. The line segment joining each w⃗k−1 and
w⃗k is contained entirely within X, so by Proposition 6.6

|f(w⃗k−1)− f(w⃗k)| ≤M∥w⃗k−1 − w⃗k∥ =M |uk − vk|

for each k = 1, . . . ,m. The triangle inequality gives

|f(u⃗)− f(v⃗)| = |f(w⃗0)− f(w⃗m)| ≤
m∑

k=1

|f(w⃗k−1)− f(w⃗k)|

and the result then follows on applying Lemma 6.4.

Example 6.8. This bound is the best we can do in general! For example, take

f : Rm → R,
(x1, . . . , xm) 7→ x1 + · · ·+ xm.
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This has partial derivatives ∂f
∂xi

= 1 for each i at every point of Rm. Thus, for
every u⃗, v⃗, we have that

|f(u⃗)− f(v⃗)| ≤
√
m∥u⃗− v⃗∥.

Taking u⃗ = (0, 0, . . . , 0) and v⃗ = (1, 1, . . . , 1), we see that this bound is achieved.

This corollary can be extended to a result about functions mapping to Rn

and gives us our first conditions for continuity in terms of partial derivatives.

Corollary 6.9. Let X ⊂ Rm be a product of open intervals, and let φ : X → Rn

have components φ(x⃗) = (f1(x⃗), . . . , fn(x⃗)). Suppose there exists a positive
constant M > 0 such that ∣∣∣∣∂fj∂xi

∣∣∣∣ ≤M

at every point of X, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then

∥φ(u⃗)− φ(v⃗)∥ ≤
√
mnM∥u⃗− v⃗∥

for every u⃗, v⃗ ∈ X.

Proof. This follows immediately from applying Corollary 6.7 to each term of

∥φ(u⃗)− φ(v⃗)∥2 =

n∑
j=1

(fj(u⃗)− fj(v⃗))
2.

Corollary 6.10. Let X ⊂ Rm be an open set and let φ(x⃗) = (f1(x⃗), . . . , fn(x⃗))
be a function φ : X → Rn. Suppose there exists a positive constant M > 0 such
that ∣∣∣∣∂fj∂xi

∣∣∣∣ ≤M

at every point of X, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then φ is continuous
on X.

Proof. Let p⃗ ∈ X. Since X is open, there exists c > 0 such that B(p⃗, c) ⊂ X.
Let V be the product of the open intervals

(p1 −
c√
2
, p1 +

c√
2
)× (p2 −

c√
2
, p2 +

c√
2
)× · · · × (pm − c√

2
, pm +

c√
2
)

and note that
B(p⃗,

c

2
) ⊂ V ⊂ B(p⃗, c).

Then, for all x⃗ ∈ B(p⃗, c2 ) ⊂ V , by Corollary 6.9, we have that

∥φ(x⃗)− φ(p⃗)∥ ≤
√
mnM∥x⃗− p⃗∥

and hence, for any ε > 0, we can take

δ =
min( c2 ,

ε
2 )√

mnM

to prove continuity at p⃗.
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Remark 6.11. The results of Corollary 6.7, and hence Corollaries 6.9 and
6.10, can be extended to convex open sets by covering the line segment joining
two points with products of open intervals. I recommend drawing some pictures
in two dimensions to illustrate this argument.

6.3 Functions with continuous partial derivatives and first
order approximation

As we have seen, just having partial derivatives is not sufficient to guarantee
continuity of a function at a point. This is reflective of the failure of the gra-
dient to give a first order approximation of the function around a point. In
contrast, when we have continuous partial derivatives, we obtain quite a strong
approximation result.

Definition 6.12. Let X be an open set in Rm, and let f : X → R be a function
whose first order partial derivatives are defined at a point p⃗ ∈ X. The gradient
of f at p⃗ is the element of Rm given by

(∇f)p⃗ = (∂1f(p⃗), ∂2f(p⃗), . . . ∂mf(p⃗)) .

Proposition 6.13. Let X ⊂ Rm be open, and let f : X → R be such that all
its first order partial derivatives exist at all points of X and are continuous at
a point p⃗ ∈ X. Then, for any ε > 0, there exists δ > 0 such that

|f(u⃗)− f(v⃗)− ⟨(∇f)p⃗, u⃗− v⃗⟩| ≤ ε∥u⃗− v⃗∥

for all u⃗, v⃗ ∈ X such that ∥u⃗− p⃗∥ < δ and ∥v⃗ − p⃗∥ < δ.

Proof. Let p⃗ = (p1, . . . , pm) and define g : X → R by

g(x⃗) = f(x⃗)− f(p⃗)− ⟨(∇f)p⃗, x⃗− p⃗⟩.

Then, the function g has first order partial derivatives

∂ig(x⃗) = ∂if(x⃗)− ⟨(∇f)p⃗, e⃗i⟩

that are continuous at p⃗. Furthermore, g(p⃗) = ∂ig(p⃗) = 0 for each 1 ≤ i ≤ m.
Given ε > 0, the continuity of ∂ig at p⃗ and openness of X ensures that we

can find δ small enough such that the product of open intervals

{x⃗ ∈ Rm | |xi − pi| < δ for each 1 ≤ i ≤ m}

is a subset of X, and such that for all x⃗ ∈ X satisfying ∥x⃗− p⃗∥ < δ,

|∂ig(x⃗)| ≤
ε√
m

for each 1 ≤ i ≤ m. As ∥u⃗− p⃗∥ < δ implies (by Lemma 1.4) |ui − pi| < δ, and
similarly ∥v⃗ − p⃗∥ < δ implies that |vi − pi| < δ, we can apply Corollary 6.7 to
obtain that

|g(u⃗)− g(v⃗)| < ε∥u⃗− v⃗∥
for all u⃗, v⃗ ∈ X such that ∥u⃗ − p⃗∥ < δ and ∥v⃗ − p⃗∥ < δ. The result follows
immediately.
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Corollary 6.14. Let X ⊂ Rm be open, and let f : X → R be such that all its
first order partial derivatives exist at all points of X and are continuous at a
point p⃗ ∈ X. Then

lim
x⃗→p⃗

|f(x⃗)− f(p⃗)− ⟨(∇f)p⃗, x⃗− p⃗⟩|
∥x⃗− p⃗∥

= 0

We extend the notion of a gradient to functions valued in Rn by defining the
output as a matrix rather than a vector.

Definition 6.15. Let X ⊂ Rm be open, and suppose φ : X → Rn is a function
with components

φ(x⃗) = (f1(x⃗), . . . , fn(x⃗)) .

Suppose further that the partial derivatives ∂jfi exist at a point p⃗ ∈ X for each
1 ≤ i ≤ n and 1 ≤ j ≤ m. Define the Jacobian of φ at p⃗ to be the (n×m)-matrix
with components (

(Jφ)p⃗

)
i,j

:= ∂jfi(p⃗).

Corollary 6.16. Let X ⊂ Rm be open and let

φ(x⃗) = (f1(x⃗), . . . , fn(x⃗))

be a function φ : X → Rn such that the partial derivatives ∂jfi exist in X and
are continuous at a point p⃗ ∈ X for each 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Treating the Jacobian matrix (Jφ)p⃗ as a linear transformation Rm → Rn,
then for any ε > 0 there exists δ > 0 such that∥∥∥φ(u⃗)− φ(v⃗)− (Jφ)p⃗ (u⃗− v⃗)

∥∥∥ ≤ ε∥u⃗− v⃗∥

for all u⃗, v⃗ ∈ X such that ∥u⃗− p⃗∥ < δ and ∥v⃗ − p⃗∥ < δ.

Proof. Note that

∥φ(u⃗)− φ(v⃗)− (Jφ)p⃗ (u⃗− v⃗)∥2

=

n∑
j=1

(fj(u⃗)− fj(v⃗)− ⟨(∇fj)p⃗, u⃗− v⃗⟩)2.

The result then follows immediately from applying Proposition 6.13 for ε√
n
.

Corollary 6.17. Let X ⊂ Rm be open, and let

φ(x⃗) = (f1(x⃗), . . . , fn(x⃗))

be a function φ : X → Rn such that the partial derivatives ∂jfi exist in X and
are continuous at a point p⃗ ∈ X for each 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then

lim
x⃗→p⃗

∥∥∥φ(u⃗)− φ(v⃗)− (Jφ)p⃗ (u⃗− v⃗)
∥∥∥

∥x⃗− p⃗∥
= 0
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6.4 Derivatives of functions of several real variables

It turns out that these inequalities, and their associated limits, are precisely
what we need to best define a good notion of differentiability of a function
φ : X → Rn – a function will be differentiable at a point if it can be well
approximated by an (affine-)linear function at that point.

Definition 6.18. Let X ⊂ Rm be an open set, and let φ : X → Rn be a
function. Let T : Rm → Rn be a linear transformation, and let p⃗ ∈ X be a
point. We say that φ is differentiable at p⃗ with derivative T if and only if

lim
x⃗→p⃗

φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)

∥x⃗− p⃗∥
= 0.

Given a map φ : X → Rn that is differentiable at p⃗ ∈ X, we usually denote
its derivative at p⃗ by (Dφ)p⃗, and call this the total derivative of φ at p⃗. If φ is
differentiable at every point of X, we say φ is differentiable on X.

Lemma 6.19. Let T : Rm → Rn be a linear transformation. Then T is differ-
entiable at every point p⃗ ∈ Rm with derivative (DT )p⃗ = T .

Proof. This is immediate as

T x⃗− T p⃗− T (x⃗− p⃗) = 0

for all x⃗, p⃗ ∈ Rm.

Lemma 6.20. Let X ⊂ Rm be an open set, and let φ : X → Rn be a function
on X. Then φ is differentiable at a point p⃗ ∈ X, with derivative T if and only
if for every ε > 0, there exists δ > 0 such that

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥ ≤ ε∥x⃗− p⃗∥

for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ.

Remark 6.21. Observe that this is one of the few times we do not demand a
strict inequality. This is basically to allow us to include the case x⃗ = p⃗, without
having to consider it as a special case.

Proof. Suppose that for every ε > 0, there exists such a δ. Then, for every
ε > 0, there exists δ > 0 such that

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥ ≤ ε

2
< ε

for all x⃗ ∈ X such that ∥x⃗ − p⃗∥ < δ, and in particular for all x⃗ ∈ X such that
0 < ∥x⃗− p⃗∥ < δ. Hence

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥
∥x⃗− p⃗∥

< ε
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for every x⃗ ∈ X such that 0 < ∥x⃗− p⃗∥ < δ, which is precisely to say that

lim
x⃗→p⃗

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥
∥x⃗− p⃗∥

= 0

and hence

lim
x⃗→p⃗

φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)

∥x⃗− p⃗∥
= 0.

Conversely, if φ is differentiable at p⃗ with derivative T , then for every ε > 0,
there exists δ > 0 such that

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥
∥x⃗− p⃗∥

=

∣∣∣∣∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥
∥x⃗− p⃗∥

− 0

∣∣∣∣ < ε

for all x⃗ ∈ X such that 0 < ∥x⃗− p⃗∥ < δ. Hence

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥ < ε∥x⃗− p⃗∥

for all x⃗ ∈ X such that 0 < ∥x⃗− p⃗∥ < δ and

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥ ≤ ε∥x⃗− p⃗∥

for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ

Lemma 6.22. Let X ⊂ Rm be open, p⃗ ∈ X, and φ : X → Rn a function
differentiable at p⃗. Then φ is continuous at p⃗.

Proof. Denote the derivative of φ at p⃗ by (Dφ)p⃗. From Lemma 6.20, there
exists c > 0 such that

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥ ≤ ε∥x⃗− p⃗∥ ≤ ∥x⃗− p⃗∥

for all 0 < ∥x⃗− p⃗∥ < c. Thus, for any ε > 0, let δ = min(c, ε) to obtain that

[∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)∥ ≤ ε∥x⃗− p⃗∥ ≤ 1

2
∥x⃗− p⃗∥ < δ ≤ ε

for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ. Hence

lim
x⃗→p⃗

φ(x⃗)− φ(p⃗)− (Dφ)p⃗ = 0

and so
lim
x⃗→p⃗

φ(x⃗) = φ(p⃗) + lim
x⃗→p⃗

(Dφ)p⃗(x⃗− p⃗).

From tutorial sheet 3, we know that linear transformations are continuous, so

lim
x⃗→p⃗

(Dφ)p⃗(x⃗− p⃗) = (Dφ)p⃗

(
lim
x⃗→p⃗

x⃗− p⃗

)
= 0⃗.

By Lemma 4.9, φ is therefore continuous at p⃗.
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6.4.1 Determining the derivative

From results such that Corollary 6.17, it is clear that for nice enough φ, the
derivative must be given by Jacobian. We will show this formally, and then go
on to show that this is essentially the only possibility.

Proposition 6.23. Let X ⊂ Rm be open, let p⃗ ∈ X be a point, and let φ : X →
Rn be the function

φ(x⃗) = (f1(x⃗), f2(x⃗), . . . , fn(x⃗)).

Suppose that the partial derivatives ∂jfi(x⃗) are defined around p⃗ and continuous
at p⃗. Then, φ is differentiable at p⃗ with derivative (Dφ)p⃗ = (Jφ)p⃗.

Proof. From Corollary 6.17, we know that for φ as in the proposition statement

lim
x⃗→p⃗

∥∥∥φ(u⃗)− φ(v⃗)− (Jφ)p⃗ (u⃗− v⃗)
∥∥∥

∥x⃗− p⃗∥
= 0

and hence

lim
x⃗→p⃗

φ(u⃗)− φ(v⃗)− (Jφ)p⃗ (u⃗− v⃗)

∥x⃗− p⃗∥
= 0.

Therefore, φ is differentiable at p⃗ with derivative (Jφ)p⃗.

An important result that we have yet to show, and have implicitly been
assuming is that the derivative of a differentiable function is uniquely defined.
Fortunately, all our results still hold is we replace “the derivative” with “a
derivative”, but it will be better to show that the derivative is indeed uniquely
determined by φ.

Proposition 6.24. Let X ⊂ Rm be open, p⃗ ∈ X, and let φ : X → Rn be a
function differentiable at p⃗. Then, for every v⃗ ∈ Rm

(Dφ)p⃗v⃗ = lim
t→0

φ(p⃗+ tv⃗)− φ(p⃗)

t
,

and the derivative (Dφ)p⃗ is uniquely determined by φ.

Proof. Let v⃗ ∈ Rm, and suppose we are given ε > 0. We should (and totally
could) now separate out the case where ∥v⃗∥ = 0, but to get around this, we will
introduce an auxiliary ε1 > 0, chosen such that

ε1∥v⃗∥ < ε.

Differentiability of φ at p⃗, and openness of X, ensures that there exists δ1 > 0
such that

∥φ(x⃗)− φ(p⃗)− (Dφ)p⃗(x⃗− p⃗)∥ ≤ ε1∥x⃗− p⃗∥

and x⃗ ∈ X for all x⃗ such that ∥x⃗ − p⃗∥ < δ1. We then choose δ > 0 such that
δ∥v⃗∥ < δ1. Then, for 0 < |t| < δ, ∥(p⃗+ tv⃗)− p⃗∥ < δ1 and so

∥φ(p⃗+ tv⃗)− φ(p⃗)− t(Dφ)p⃗v⃗∥ ≤ ε1|t|∥v⃗∥ < ε|t|
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and hence
∥φ(p⃗+ tv⃗)− φ(p⃗)− t(Dφ)p⃗v⃗∥

|t|
< ε

for all 0 < |t| < δ. This implies that

lim
t→0

∥φ(p⃗+ tv⃗)− φ(p⃗)− t(Dφ)p⃗v⃗∥
|t|

= 0

and hence

lim
t→0

φ(p⃗+ tv⃗)− φ(p⃗)

t
= (Dφ)p⃗v⃗.

With this result, we can give an adjacent result to Proposition 6.23, where we
trade the assumption of continuous partial derivatives near p⃗ for an assumption
of differentiability at p⃗.

Corollary 6.25. Let X ⊂ Rm be open, p⃗ ∈ X, and let φ : X → Rn be
differentiable at p⃗. Suppose further that

φ(x⃗) = (f1(x⃗), . . . , fn(x⃗)

has components such that ∂jfi(p⃗) exists. Then (Dφ)p⃗ = (Jφ)p⃗.

Proof. Denote by e⃗1, . . . , e⃗m the standard basis of Rm. The linear transforma-
tion (Dφ)p⃗ is uniquely determined by its action on the elements of this basis.
Writing it as a matrix with respect to the standard bases of Rm and Rn, we see
that the (i, j)-entry of (Dφ)p⃗ is the ith component of

(Dφ)p⃗e⃗j = lim
t→0

φ(p⃗+ te⃗j)− φ(p⃗)

t
.

As limits can be computed componentwise, the ith component of this is

lim
t→0

fi(p⃗+ te⃗j)− fi(p⃗)

t
= ∂jfi(p⃗)

which is precisely the (i, j)-entry of (Jφ)p⃗.

Example 6.26. We will compute the derivative at a point p⃗ = ( pq ) of

φ

(
x
y

)
=

(
x2 − y2

2xy

)
via limits, and verify that it is equal to the Jacobian

(Jφ)p⃗ =

(
2p −2q
2q 2p

)
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in the standard basis. Since the Jacobian has continuous entries everywhere,
this follows immediately from Proposition 6.23, but it is good practice to do it
the old fashioned way. The goal will essentially to be to write

φ

(
x
y

)
− φ

(
p
q

)
in the form

T

(
x− p
y − q

)
+ E(x, y)

where E(x, y) is some function such that of quadratic order in the difference.

φ

(
x
y

)
− φ

(
p
q

)
=

(
x2 − p2 − y2 + q2

2xy − 2pq

)
=

(
(x− p)(x+ p)− (y − q)(y + q)

2(x− p)(y − q) + 2q(x− p) + 2p(y − q)

)
=

(
(x− p)(x− p+ 2p)− (y − q)(y − q + 2q)
2(x− p)(y − q) + 2q(x− p) + 2p(y − q)

)
(
(x− p)2 + 2p(x− p)− (y − q)2 − 2q(y − q)
2(x− p)(y − q) + 2q(x− p) + 2p(y − q)

)
=

(
2p −2q
2q 2p

)(
x− p
y − q

)
+

(
(x− p)2 − (y − q)2

2(x− p)(y − q)

)
.

Hence∥∥∥∥φ(xy
)
− φ

(
p
q

)
−
(
2p −2q
2q 2p

)(
x− p
y − q

)∥∥∥∥ =

∥∥∥∥((x− p)2 − (y − q)2

2(x− p)(y − q)

)∥∥∥∥.
The right hand side is equal to√

((x− p)2 − (y − q)2)
2
+ 4(x− p)2(y − q)2 =

√
(x− p)4 + 2(x− p)2(y − q)2 + (y − q)4

=

√
((x− p)2 + (y − q)2)

2
= (x− p)2 + (y − q)2

= ∥x⃗− p⃗∥2.

Thus, letting T =
( 2p −2q
2q 2p

)
, we see that

lim
x⃗→p⃗

∥φ(x⃗)− φ(p⃗)− T (x⃗− p⃗)

∥x⃗− p⃗∥
= lim

x⃗→p⃗
∥x⃗− p⃗∥ = 0

and hence (Dφ)p⃗ = T = (Jφ)p⃗.

6.5 Properties of total derivatives

Proposition 6.27. Let X ⊂ Rm be open, and let φ : X → Rn and ψ : X → Rn

be functions differentiable at a point p⃗ ∈ X. Then, for any c ∈ R, φ+ψ and cφ
are differentiable at p⃗ with total derivatives

(D(φ+ ψ))p⃗ = (Dφ)p⃗ + (Dψ)p⃗
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and
(D(cφ))p⃗ = c(Dφ)p.

Proof. Since limits are linear, assuming everything involved converges, we have
that

lim
x⃗→p⃗

φ(x⃗) + ψ(x⃗)− φ(p⃗)− ψ(p⃗)− ((Dφ)p⃗ + (Dφ)p⃗) (x⃗− p⃗)

∥x⃗− p⃗∥

= lim
x⃗→p⃗

φ(x⃗)− φ(p⃗)− (Dφ)p⃗(x⃗− p⃗)

∥x⃗− p⃗∥
+ lim

x⃗→p⃗

ψ(x⃗)− ψ(p⃗)− (Dφ)p⃗(x⃗− p⃗)

∥x⃗− p⃗∥
=0

from which the first claim follows. The second is similar.

There are also analogues of the product and chain rule, at least where such
things make sense, but in order to prove that we need some auxiliary results.

6.5.1 Operators norms and growth of differential operators

In the first homework, we saw a norm ∥ · ∥HS on matrices, called the Hilbert-
Schmidt norm. Absolutely everything in this second can be done using the
Hilbert-Schmidt norm, as all we need is a norm on linear operators such that

∥T x⃗∥ ≤ ∥T∥op∥x⃗∥

for every vector x⃗ on which T acts. However, in order to keep these notes mostly
self contained, we will introduced an additional norm that can be used in more
general contexts and is independent of a choice of basis.

Definition 6.28. Let T : Rm → Rn be a linear transformation. Define

∥T∥op = sup
∥x⃗∥=1

{∥T x⃗∥}

This is well defined, as the unit sphere is closed and bounded and linear trans-
formations are continuous. Thus, by the extreme value theorem, the supremum
exists and is attained.

Note that, for non-zero x⃗

∥T x⃗∥ = ∥x⃗∥
∥∥∥∥T x⃗

∥x⃗∥

∥∥∥∥ ≤ ∥T∥op∥x⃗∥.

This inequality also clearly holds for x⃗ = 0⃗, so the norm of T bounds the growth
its image.

Lemma 6.29. Let T : Rm → Rn be a linear transformation, which we will
identify with its matrix with respect to the standard bases of Rm and Rn. Then
A = TTT is a real symmetric (m×m)-matrix with real eigenvalues. Denote by
λmax the maximal eigenvalue of A. Then λmax ≥ 0 and ∥T∥op =

√
λmax.
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Proof. Since A is real symmetric, there exists an orthonormal change of basis of
Rm diagonalising A, i.e. there exists an orthonormal matrix R such that RTAR
is diagonal. Let b⃗1, . . . , b⃗m be the associated basis with eigenvalues λ1, . . . , λm,
so that

⟨⃗bj , A⃗bi⟩ =

{
0 if i ̸= j,

λi if i = j.

Then, for any x⃗ =
∑m

i=1 ui⃗bi of unit norm, we have that

∥T x⃗∥2 = ⟨T x⃗, T x⃗⟩
= ⟨x⃗, TTT x⃗⟩

=

m∑
i,j=1

uiuj ⟨⃗bj , A⃗bi⟩

=

m∑
i=1

λiu
2
i ≤ λmax

m∑
i=1

u2i = λmax,

Thus ∥T x⃗∥2 ≤ λmax for all unit vectors x⃗. Taking x⃗ to be a unit eigenvector
associated to λmax, we see that this upper bound is attained, and hence we
must have

T∥2op = sup
∥x⃗∥=1

{∥T x⃗∥2} = λmax.

Proposition 6.30. Let X ⊂ Rm be open, let p⃗ ∈ X and let φ : X → Rn be a
function differentiable at p⃗. Choose M > ∥(Dφ)p⃗∥op. Then there exists δ > 0
such that

∥φ(x⃗)− φ(p⃗)∥ ≤M∥x⃗− p⃗∥

for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ.

Proof. Differentiability implies that there exists δ > 0 such that

∥φ(x⃗)− φ(p⃗)− (Dφ)p⃗(x⃗− p⃗) ≤ (M − ∥(Dφ)p⃗∥op) ∥x⃗− p⃗∥

for all x⃗ ∈ X such that ∥x⃗ − p⃗∥ < δ. By the reverse triangle inequality, we
therefore have

∥φ(x⃗)− φ(p⃗)∥ − ∥(Dφ)p⃗(x⃗− p⃗)∥ ≤ (M − ∥(Dφ)p⃗∥op) ∥x⃗− p⃗∥

and hence

∥φ(x⃗)− φ(p⃗)∥ ≤ (M − ∥(Dφ)p⃗∥op) ∥x⃗− p⃗∥+ ∥(Dφ)p⃗(x⃗− p⃗)∥
≤ (M − ∥(Dφ)p⃗∥op) ∥x⃗− p⃗∥+ ∥(Dφ)p⃗∥op∥(x⃗− p⃗)∥
≤M∥x⃗− p⃗∥

for all ∥x⃗− p⃗∥ < δ.
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Remark 6.31. As mention, an operator norm such as the Hilbert-Schmidt
norm would work here, but will generally give a worse bound, and requires both
finite dimensionality and a choice of basis. In contrast, the operator norm here
is independent of a choice of basis, and can be generalised to infinite dimensional
vector spaces with relatively few changes.

We can now prove versions of the product and chain rule.

6.5.2 Product rule

Proposition 6.32. Let X ⊂ Rm be open, and let p⃗ ∈ X. If f, g : X → R are
differentiable at p⃗, then so is fg, with derivative

(D fg)p⃗ = g(p⃗)(D f)p⃗ + f(p⃗)(D g)p⃗.

Proof. By Proposition 6.30, there exist M,N, δ > 0 such that

|f(x⃗)− f(p⃗)| ≤M∥x⃗− p⃗∥,
|g(x⃗)− g(p⃗)| ≤ N∥x⃗− p⃗∥

for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ.
We can write

f(x⃗)g(x⃗) = f(p⃗)g(x⃗) + g(p⃗)f(x⃗)− f(p⃗)g(p⃗) + (f(x⃗)− f(p⃗)) (g(x⃗)− g(p⃗)) ,

so by linearity of derivatives, it suffices to show that

h(x⃗) := (f(x⃗)− f(p⃗)) (g(x⃗)− g(p⃗))

is differentiable at p⃗ with derivative 0, as if h is differentiable at p⃗, then

(D fg)p⃗ = g(p⃗)(D f)p⃗ + f(p⃗)(D g)p⃗ + (Dh)p⃗.

Noting that h(p⃗ = 0, and that for all 0 < ∥x⃗− p⃗∥ < δ,

|h(x⃗)|
∥x⃗− p⃗∥

=
|f(x⃗)− f(p⃗)||g(x⃗)− g(p⃗)|

∥x⃗− p⃗∥
≤MN∥x⃗− p⃗∥

we conclude that

0 ≤ lim
x⃗→p⃗

h(x⃗)− h(p⃗)|
∥x⃗− p⃗∥

≤MN lim
x⃗→p⃗

∥x⃗− p⃗∥ = 0

and hence (Dh)p⃗ = 0.

6.5.3 Chain rule

Proposition 6.33. Let X ⊂ Rm, Y ⊂ Rn be open sets, and let p⃗ ∈ X. Let
φ : X → Y be differentiable at p⃗ and let ψ : Y → Rs be differentiable at φ(p⃗).
Then the composition

(ψ ◦ φ) : X → Rs
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is differentiable at p⃗ with derivative

(D(ψ ◦ φ))p⃗ = (Dψ)φ(p⃗) ◦ (Dϕ)p⃗.

The derivative of a composition is the composition of the derivatives.

Proof. From Proposition 6.30, there exist M,N, δ1, η1 > 0 such that for all
x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ1

∥φ(x⃗)− φ(p⃗)∥ ≤M∥x⃗− p⃗∥

and for all y⃗ ∈ Y such that ∥vecy − φ(p⃗)∥ < η1,

∥ψ(y⃗)− ψ(φ(p⃗))∥ ≤ N∥y⃗ − ⃗φ(p)∥.

More precisely, we have that M > ∥(Dφ)p⃗∥op and N > ∥(Dψ)φ(p⃗)∥op.
Suppose we are given ε > 0. Then there exists η2, which we can take to be

such that η2 ≤ η1, such that

∥ψ(y⃗)− ψ(φ(p⃗))− (Dψ)φ(p⃗)(y⃗ − φ(p⃗)∥ ≤ ε

2M
∥y⃗ − φ(p⃗)∥

for all y⃗ ∈ Y such that ∥y⃗−φ(p⃗)∥ < η2. We can also find 0 < δ2 ≤ δ1 such that
Mδ2 ≤ η2. Then, for x⃗ ∈ X satisfying ∥x⃗− p⃗∥ < δ2, then

∥φ(x⃗)− φ(p⃗)∥ ≤M∥x⃗− p⃗∥ < Mδ2 ≤ η1.

Thus, if ∥x⃗− p⃗∥ < δ2,

∥ψ(φ(x⃗))− ψ(φ(p⃗))− (Dψ)φ(p⃗)(φ(x⃗)− φ(p⃗))∥ ≤ ε

2M
∥φ(x⃗)− φ(p⃗)∥

≤ ε

2
∥x⃗− p⃗∥.

We can also find 0 < δ < δ2 such that

∥φ(x⃗)− φ(p⃗)− (Dφ)p⃗(x⃗− p⃗)∥ ≤ ε

2N
∥x⃗− p⃗∥

for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ.
Now, since

∥(Dψ)φ(p⃗)w⃗∥ ≤ ∥(Dψ)φ(p⃗)∥op∥w⃗∥ ≤ N∥w⃗∥

for all w⃗ ∈ Rn, we have that

∥(Dψ)φ(p⃗)φ(x⃗)− (Dψ)φ(p⃗)φ(p⃗)− (Dψ)φ(p⃗) ◦ (Dφ)p⃗(x⃗− p⃗)∥
≤ N∥φ(x⃗)− φ(p⃗)− (Dφ)p⃗(x⃗− p⃗)∥

≤ ε

2
∥x⃗− p⃗∥
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for all ∥x⃗− p⃗∥ < δ. Thus, for all x⃗ ∈ X such that ∥x⃗− p⃗∥ < δ, we have that

∥ψ(φ(x⃗))− ψ(φ(p⃗))− (Dψ)φ(p⃗) ◦ (Dφ)p⃗(x⃗− p⃗)∥
= ∥ψ(φ(x⃗))− ψ(φ(p⃗))− (Dψ)φ(p⃗)(φ(x⃗)− φ(p⃗))

+ (Dψ)φ(p⃗)φ(x⃗)− (Dψ)φ(p⃗)φ(p⃗)− (Dψ)φ(p⃗) ◦ (Dφ)p⃗(x⃗− p⃗)∥
≤ ∥ψ(φ(x⃗))− ψ(φ(p⃗))− (Dψ)φ(p⃗)(φ(x⃗)− φ(p⃗))∥

+ ∥(Dψ)φ(p⃗)φ(x⃗)− (Dψ)φ(p⃗)φ(p⃗)− (Dψ)φ(p⃗) ◦ (Dφ)p⃗(x⃗− p⃗)∥

≤ ε

2
∥x⃗− p⃗∥+ ε

2
∥x⃗− p⃗∥ = ε∥x⃗− p⃗∥.

Thus, by Lemma 6.20, (ψ ◦ ϕ) is differentiable at p⃗ with derivative

(D(ψ ◦ φ))p⃗ = (Dψ)φ(p⃗) ◦ (Dϕ)p⃗.

Example 6.34. The majority of classical differential rules can be viewed as a
consequence of chain rule for total derivatives. Lets see a few examples, where we
will take our functions to be differentiable everywhere, although differentiability
at appropriate points is sufficient.

Let f : Rm → R be a differentiable function, and let g1, . . . , gm : R → R be a
collection of differentiable functions. Then the function

F (t) := f(g1(t), . . . , gm(t))

is differentiable with derivative

dF

dt
(t) =

m∑
i=1

∂f

∂xi
(g1(t), . . . , gm(t))× dgi

dt
(t).

To see this, note that

F = f ◦


g1
g2
...
gm

 =: f ◦G.

Since limits, and hence derivatives, can be computed componentwise, we compute
the derivatives

(D f)x⃗ =
(

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xm

)
and

(DG)t =


dg1
dt
dg2
dt
...

dgm
dt

 .
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Hence, by chain rule

dF

dt
(t) = (DF )t = (D f)G(t)(DG)t =

m∑
i=1

∂f

∂xi
(g1(t), . . . , gm(t))× dgi

dt
(t).

A particular choice of f includes

f(x1, . . . , xm) = x1 + · · ·+ xm

which is differentiable everywhere, and hence

d

dt
(g1 + · · ·+ gm) =

(
1 · · · 1

)
dg1
dt
...

dgm
dt

 =
dg1
dt

+ · · ·+ dgm
dt

and so linearity of differentiation follows from chain rule.
Similarly, product rule is a consequence of chain rule. Let f : R2 → R be

f(x1, x2) = x1x2.

Chain rule implies that

d

dt
(g1g2) =

(
g2 g1

)(dg1
dt
dg2
dt

)
= g2

dg1
dt

+ g1
dg2
dt
.

7 The Inverse and Implicit Function Theorems

7.1 Contraction mappings and a fixed point theorem

Definition 7.1. Let X ⊂ Rm. We call a function φ : X → Rm a contraction
if there exists 0 ≤ λ < 1 such that

∥φ(u⃗)− φ(v⃗)∥ ≤ λ∥u⃗− v⃗∥

for all u⃗, v⃗ ∈ X.

Remark 7.2. A contraction is automatically continuous. It is a good exercise
to prove why this is the case!

Theorem 7.3 ((Weak) Banach Fixed Point Theorem). Let F ⊂ Rm be a closed
subset, and let φ : F → F be a contraction. Then there is a unique point p⃗ ∈ F
such that φ(p⃗) = p⃗.

Proof. As φ is a contraction, there exists λ ∈ [0, 1) such that

∥φ(u⃗)− φ(v⃗)∥ ≤ λ∥u⃗− v⃗∥

for all u⃗, v⃗ ∈ F . Choose any x⃗0 ∈ F and define a sequence by x⃗n+1 = φ(x⃗n) for
every n ≥ 0. Then

∥x⃗n+1 − x⃗n∥ = ∥φ(x⃗n)− φ(x⃗n−1∥ ≤ λ∥x⃗n − x⃗n−1∥ ≤ · · · ≤ λn∥x⃗1 − x⃗0∥
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for all n ≥ 0. Then, for any k > j > 0

∥x⃗k − x⃗j∥ = ∥x⃗k − x⃗k−1 + x⃗k−1 − x⃗k−2 + · · ·+ x⃗j+1 − x⃗j∥

≤
k−1∑
m=j

∥x⃗m+1 − x⃗m∥ ≤
k−1∑
m=j

λm∥x⃗1 − x⃗0∥

=
λj − λk

1− λ
∥x⃗1 − x⃗0∥ ≤ λj

1− λ
∥x⃗1 − x⃗0∥.

As limj→0 λ
j = 0 for λ ∈ [0, 1), for any ε > 0, there exists N > 0 such that

λj

1− λ
∥x⃗1 − x⃗0∥ < ε

for all j ≥ N . Hence, for all k > j ≥ N ,

∥x⃗k − x⃗j∥ < ε

and so {x⃗n} is a Cauchy sequence. Therefore {x⃗n} converges to a point p⃗ ∈ Rm.
As F is closed and x⃗n ∈ F for every n ≥ 0, the limit p⃗ ∈ F . Thus

p⃗ = lim
n→∞

x⃗n+1 = lim
n→∞

φ(x⃗n+1) = φ( lim
n→∞

x⃗n) = φ(p⃗)

as φ is continuous on F . SO φ has a fixed point in F . To see that this point is
unique, suppose there exists q⃗ ∈ F such that φ(q⃗) = q⃗. Then

∥q⃗ − p⃗∥ = ∥φ(q⃗)− φ(p⃗)∥ ≤ λ∥q⃗ − p⃗∥ < ∥q⃗ − p⃗∥

unless ∥q⃗ − p⃗∥ = 0, i.e. p⃗ = q⃗. Thus the fixed point is unique.

Remark 7.4. This holds much more generally in any complete metric space: a
set with a sensible notion of distance, in which every Cauchy sequence converges.

7.2 A pre-inverse function theorem

Lemma 7.5. Let X ⊂ Rm be open, let φ : X → Rn be differentiable at a point
p⃗ ∈ X. Suppose there exists a constant K > 0 such that

∥x⃗− p⃗∥ ≤ K∥φ(x⃗)− φ(p⃗)∥

for all x⃗ ∈ X. Then, for all w⃗ ∈ Rm

∥vecw∥ ≤ K∥(Dφ)p⃗w⃗∥

Proof. Take w⃗ ∈ Rm. Then, for all t ̸= 0 small enough such that p⃗ + tw⃗ ∈ X,
we have that

|t|∥w⃗∥ = ∥p⃗+ tw⃗ − p⃗∥ ≤ K∥φ(p⃗+ tw⃗)− φ(p⃗)∥.
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Thus, for all sufficiently small 0 < |t|, we have that

∥w⃗∥ ≤ K

∥∥∥∥φ(p⃗+ tw⃗)− φ(p⃗)

t

∥∥∥∥
and hence

∥w⃗∥ ≤ lim
t→0

K

∥∥∥∥φ(p⃗+ tw⃗)− φ(p⃗)

t

∥∥∥∥ = K∥(Dφ)p⃗w⃗∥

using Proposition 6.24 and continuity of the norm.

Proposition 7.6. Let X ⊂ Rm be an open set and let φ : X → Rm be a
differentiable function. Let Y ⊂ φ(X) be a non-empty open set in Rm, and
suppose there exists a constant K > 0 such that

∥u⃗− v⃗∥ ≤ K∥φ(u⃗)− φ(v⃗)∥

for all u⃗, v⃗ ∈ X. Then there is a differentiable function µ : Y → Rm such that
φ(µ(y⃗)) = y⃗ for all y⃗ ∈ Y . Furthermore µ(Y ) is open in Rm and (Dφ)p⃗ is
invertible with inverse (Dµ)φ(p⃗ for all p⃗ ∈ µ(Y ).

Proof. As Y ⊂ φ(X), given y⃗ ∈ Y , there exists at least one x⃗ ∈ X such that
φ(x⃗) = y⃗. I claim there can be at most one such point: if x⃗1, x⃗2 ∈ X are such
that φ(x⃗1) = φ(x⃗2) = y⃗, then

∥x⃗1 − x⃗2∥ ≤ K∥φ(x⃗1)− φ(x⃗2) = K∥y⃗ − y⃗∥ = 0

so x⃗1 = x⃗2. Thus, there is a unique function µ : Y → Rm defined by µ(y⃗) is the
unique x⃗ ∈ X such that φ(x⃗) = y⃗. Clearly φ(µ(y⃗)) = y⃗ for every y⃗ ∈ Y , so it
remains to show that µ(Y ) is open in Rm, µ is differentiable, and to determine
its derivative.

To see that µ(Y ) is open, we first note that p⃗ ∈ µ(Y ) implies that there exists
y⃗ ∈ Y such that y⃗ = φ(p⃗), and hence µ(Y ) ⊂ φ−1(Y ). And if p⃗ ∈ φ−1(Y ), then
φ(p⃗) ∈ Y , and so p⃗ = µ(φ(p⃗)) by definition. Hence p⃗ ∈ µ(Y ), and so we must
have that µ(Y ) = φ−1(Y ).

As φ is differentiable on X, it is continuous on X, and so µ(Y ) = φ−1(Y ) is
open in X. Hence, for all p⃗ ∈ µ(Y ), there exists δ1 > 0 such that BX(p⃗, δ1) ⊂
µ(Y ). As X is open in Rm, there exists δ2 > 0 such that B(p⃗, δ2) ⊂ X. Thus,
letting δ = min(δ1, δ2), we must have that B(p⃗, δ) ⊂ µ(Y ). Therefore µ(Y ) is
open in Rm.

To see that (Dφ)p⃗ is invertible for all p⃗ ∈ µ(Y ), note that Lemma 7.5 implies
that

∥w⃗∥ ≤ K∥(Dφ)p⃗w⃗∥

for all w⃗ ∈ Rm. Thus, if (Dφ)p⃗w⃗ = 0⃗, we must have w⃗ = 0⃗. Hence (Dφ)p⃗ is an
injective map Rm → Rm and is therefore invertible.

Finally, we want to show that µ is differentiable with derivative

(Dµ)φ(p⃗) = (Dφ)−1
p⃗

54



for all p⃗ ∈ µ(Y ).
Let q⃗ ∈ Y and let p⃗ = µ(q⃗) so that q⃗ = φ(p⃗). Suppose we are given ε > 0.

As φ is differentiable and X is open, we can find δ > 0 such that x⃗ ∈ X and

∥φ(x⃗)− φ(p⃗)− (Dφ)p⃗(x⃗− p⃗)∥ ≤ ε

K2
∥x⃗− p⃗∥

for all ∥x⃗− p⃗∥ < Kδ. By reducing δ as needed, we can assume that B(q⃗, δ) ⊂ Y .
Let y⃗ ∈ B(q⃗, δ), and let x⃗ = µ(y⃗). Then

∥x⃗− p⃗∥ ≤ K∥φ(x⃗)− φ(p⃗)∥ = K∥y⃗ − q⃗| < Kδ.

Hence

∥y⃗ − q⃗ − (Dφ)p⃗(µ(y⃗)− µ(p⃗))∥ = ∥φ(x⃗)− φ(p⃗)− (Dφ)p⃗(x⃗− p⃗)∥

≤ ε

K2
∥x⃗− p⃗∥ ≤ ε

K
∥y⃗ − q⃗∥.

This implies, via Lemma 7.5, that

∥µ(y⃗)− µ(q⃗)− (Dφ)−1
p⃗ (y⃗ − p⃗)∥ ≤ K∥(Dφ)p⃗

(
µ(y⃗)− µ(q⃗)− (Dφ)−1

p⃗ (y⃗ − p⃗)
)
∥

= K∥y⃗ − p⃗− (Dφ)p⃗(µ(y⃗)− µ(q⃗))∥
≤ ε∥y⃗ − q⃗∥

for all y⃗ ∈ Y such that ∥y⃗ − q⃗∥ < δ.
Hence µ is differentiable at q⃗ with derivative

(Dµ)q⃗ = (Dµ)φ(p⃗) = (Dφ)−1
p⃗ .

7.3 The inverse function theorem

Definition 7.7. A function φ : X → Rn defined on a open subset X ⊂ RRm is
called continuously differentiable if it is differentiable with continuous first order
partial derivatives throughout X.

Remark 7.8. By Proposition 6.23, any function with continuous first order
partial derivatives throughout X is continuously differentiable on X.

Theorem 7.9 (Inverse function theorem). Let X ⊂ Rm be open, and let φ :
X → Rm be a continuously differentiable function. Let p⃗ ∈ X be a point such
that (Dφ)p⃗ is invertible. Then there exists an open Y ⊂ Rm containing φp⃗ and
a continuously differentiable function µ : Y → Rm such that µ(Y ) is open in
Rm, p⃗ ∈ µ(Y ) and φ(µ(y⃗)) = y⃗ for every y⃗ ∈ Y .

Proof. We essentially need to prove that (Dφ)p⃗ being invertible implies the
inequality assumed in Proposition 7.6, but this will require us restricting to small
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open sets. Let q⃗ = φ(p⃗) and let T+(Dφ)−1
p⃗ . Define a constantK = 2∥T∥op > 0,

so that

∥Tw⃗∥ ≤ 1

2
K∥w⃗∥

for all w⃗ ∈ Rm.
We first need to find an open set U ⊂ X on which the inequality of Propo-

sition 7.6 holds. In order to achieve this, we will introduce some auxiliary
functions.

Define ψ : X → Rm by

ψ(x⃗) = x⃗− T (φ(x⃗)− q⃗).

Via chain rule, ψ is differentiable at all points of X, with derivative

(Dψ)x⃗ = I − T (Dφ)x⃗.

In particular, we note that (Dψ)p⃗ = 0.
As φ, and therefore ψ, have continuous first order derivatives p⃗, there exists

r > 0 such that, for all ∥x⃗− p⃗∥ < 2r, x⃗ ∈ X and

∥ψ(u⃗)− ψ(v⃗)∥ = ∥ψ(u⃗)− ψ(v⃗)− (Dψ)p⃗(u⃗− v⃗)∥ ≤ 1

2
∥u⃗− v⃗∥

for all u⃗, v⃗ ∈ B(p⃗, 2r) ⊂ X. Thus, for all u⃗, v⃗ ∈ B(p⃗, 2r),

∥u⃗− v⃗ − T (φ(u⃗)− φ(v⃗))∥ ≤ 1

2
∥u⃗− v⃗∥.

By the reverse triangle inequality, we therefore have that

∥u⃗− v⃗∥ ≤ 2∥T (φ(u⃗)− φ(v⃗)∥ ≤ K∥φ(u⃗)− φ(v⃗)∥

for all u⃗, v⃗ ∈ B(p⃗, 2r). If the image of this open ball contained an open set
containing φ(p⃗), we would be done. We don’t yet know such an open set exists.

Pick a point y⃗ ∈ B(q⃗, r
K ). We will show that there exists x⃗ ∈ B(p⃗, r) such

that φ(x⃗) = y⃗, and hence B(q⃗, r
K ) ⊂ φ (B(p⃗, r)).

Consider the function θy⃗ : B(p⃗, r) → Rm defined by

θy⃗(x⃗) = ψ(x⃗) + T (y⃗ − q⃗) = x⃗+ T (y⃗ − φ(x⃗)).

Note that θy⃗(x⃗) = x⃗ if and only if T (φ(x⃗) − y⃗) = 0⃗, which occurs if and only
if φ(x⃗) = y⃗. So if we can show that θy⃗ has a fixed point in B(p⃗, r), we are
essentially done.

Note that

∥θy⃗(x⃗)− p⃗∥ = ∥θy⃗(x⃗)− p⃗− T (y⃗ − q⃗) + T (y⃗ − q⃗)∥
≤ ∥θy⃗(x⃗)− p⃗− T (y⃗ − q⃗)∥+ ∥T (y⃗ − q⃗)∥

≤ ∥x⃗− p⃗− T (φ(x⃗)− φ(p⃗))∥+ 1

2
K∥y⃗ − q⃗∥

= ∥ψ(x⃗)− ψ(p⃗)∥+ 1

2
K∥y⃗ − q⃗∥

≤ 1

2
∥x⃗− p⃗∥+ 1

2
K∥y⃗ − q⃗∥ < r
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for x⃗ ∈ B(p⃗, r), y⃗ ∈ B(q⃗, r
K ).

Thus, θy⃗ : B(p⃗, r) → B(p⃗, r) is a map from the closed ball to the open ball.
We also note that

∥θy⃗(u⃗)− θy⃗(v⃗)∥ = ∥ψ(u⃗)− ψ(v⃗)∥ ≤ 1

2
∥u⃗− v⃗∥

and so θy⃗ is a contraction on a closed set. Thus, there exists x⃗ ∈ B(p⃗, r) such
that θy⃗(x⃗) = x⃗. Since θy⃗ maps into the open ball, x⃗ is contained in the open
ball, as needed.

Thus, we have a continuously differentiable map φ : B(p⃗, r) → Rm and
non-empty open Y = B(q⃗, r

K ) ⊂ φ (B(p⃗, r)) such that

∥u⃗− v⃗∥ ≤ K∥φ(u⃗)− φ(v⃗)∥

for all u⃗, v⃗ ∈ B(p⃗, r). Therefore, by Proposition 7.6, there exists differentiable
µ : Y : Rm such that µ(Y ) is open, φ(µ(y⃗)) = y⃗, and (Dµ)y⃗ = (Dφ)−1

µ(y⃗) for all

y⃗ ∈ Y .
Furthermore, as φ is continuously differentiable, (Dφ)µ(y⃗) = (Jφ)µ(y⃗) has

entries that are continuous functions on Y . Therefore

(Jµ)y⃗ = (Dµ)y⃗ = (Dφ)−1
µ(y⃗)

has entries that are continuous functions on Y , and so µ is continuously differ-
entiable on Y .

Example 7.10. Consider the function F : R2 → R2 defined by

F (x, y) =

(
x2 − y2

x2 + y2

)
This is continuously differentiable, with derivative(

2x −2y
2x 2y

)
which has determinant 8xy. Hence, this derivative is invertible for all (x, y) for
which x ̸= 0 and y ̸= 0. This implies that for any x, y ̸= 0, there is some open
set containing (x, y) on which F has a continuously differentiable inverse. For
example, near (1, 1), an inverse is given by

F−1(u, v) =

√u+v
2√

v−u
2


This does not extend to having an inverse on

R2 \ {(x, y) ∈ R2 | x = 0 or y = 0}

as F (x, y) = F (±x,±y), so F is not injective.
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Example 7.11. Consider the function F : R2 → R2 defined by

F (x, y) =

(
ex cos y
ex sin y

)
This is continuously differentiable, with derivative(

ex cos y −ex sin y
ex sin y ex cos y

)
which has determinant ex ̸= 0 for any (x, y) ∈ R2. Hence F has a continuously
differentiable inverse on some open set around any point of R2.

Note that this does not extend to having an inverse on R2: F (x, y) = F (x, y+
2π), so F is very much not injective and hence not invertible. The existence of
an inverse is strictly local.

7.4 The implicit function theorem

Consider the equation x2+ y2−1 = 0 defining a circle. Near to the point (0, 1),
this equation defines y as an implicit function of x: every point (x, y) satisfying
x2 + y2 − 1 = 0 near (0, 1) satisfies y =

√
1− x2. We can exploit the inverse

function theorem to generalise this to describe when we can express the set of
points satisfying a set of equations as functions of a subset of our variables, at
least locally.

Lemma 7.12. Let U ⊂ Rm be open, and let (p1, . . . , pm) be a point of U . Then,
for each 1 ≤ k < m, the set

Uk = {(xk+1, . . . , xm) ∈ Rm−k | (p1, . . . , pk, xk+1, . . . , xm) ∈ U}

is open.

Proof. Suppose q⃗ ∈ Uk. Then, as (p1, . . . , pk, q⃗) ∈ U , there exists δ > 0 such
that B((p1, . . . , pk, q⃗), δ) ⊂ U . It is then easy to check that B(q⃗, δ) ⊂ Uk, as
∥x⃗− q⃗∥ < δ implies that

∥(p1, . . . , pk, x⃗)− (p1, . . . , pk), q⃗∥ < δ

and so (p1, . . . , pk, x⃗) ∈ U , implying that x⃗ ∈ Uk.

Theorem 7.13 (Implicit function theorem). Let X ⊂ Rm be open, f1, . . . , fk :
X → R be continuously differentiable functions on X, with k < m. Define

S = {x⃗ ∈ X | fi(x⃗) = 0 for all 1 ≤ i ≤ k}

and let p⃗ ∈ S. Suppose that the matrix

J(x⃗) = (∂jfi(x⃗))
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has rank at least k at p⃗. Without loss of generality, we assume that the first k
columns are independent, reordering the variables x1, . . . , xm if needed. Then
there exists open V ⊂ X containing p⃗, and continuously differentiable func-
tions g1, . . . , gk : U → R defined on some open set U ⊂ Rm−k containing
(pk+1, pk+2. . . . , pm) such that

S ∩ V = {(g1(x⃗′)), . . . , gk(x⃗′), xk+1, . . . , xm) | x⃗′ = (xk+1, . . . xm) ∈ U}

Proof. Define F : Rm → Rm by

F (x⃗) = (f1(x⃗), . . . , fk(x⃗), xk+1, . . . , xm).

The function F is continuously differentiable, with derivative

(DF )p⃗ =



∂1f1(p⃗) · · · ∂kf1(p⃗) ∂k+1f1(p⃗) · · · ∂mf1(p⃗)
...

. . .
...

...
. . .

...
∂1fk(p⃗) · · · ∂kfk(p⃗) ∂k+1fk(p⃗) · · · ∂mfk(p⃗)

0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1


where the lower right is the (m−k)×(m−k) identity matrix. By the assumption
of the theorem, the upper left hand matrix has rank k, and so this matrix has
rank m and is therefore invertible.

Thus, by the inverse function theorem, there exists an open set Y ⊂ Rm

containing

F (p⃗) = (f1(p⃗), . . . , fk(p⃗), pk+1, . . . , pm) = (0, . . . , 0, pk+1, . . . , pm)

and a continuously differentiable function µ : Y → Rm such that µ(Y ) is an
open set p⃗ ∈ µ(Y ) and F (µ(y⃗) = y⃗) for all y⃗ ∈ Y .

By looking at the last m− k components, we see that µ must be of the form

µ(y⃗) = (G1(y⃗), G2(y⃗), . . . , Gk(y⃗), yk+1, . . . , ym)

for some continuously differentiable functions G1, . . . , Gk : Y → R. Further-
more, we have that

fi(G1(y⃗), . . . Gk(y⃗), yk+1, . . . , ym) = yi

for each 1 ≤ i ≤ k. Thus

S ∩ µ(Y ) = {x⃗ ∈ µ(Y ) | f1(x⃗) = · · · = fk(x⃗) = 0}
= {x⃗ = (G1(y⃗), . . . , Gk(y⃗), yk+1, . . . , ym) | y⃗ ∈ Y, y1 = · · · = yk = 0, }

Let V = µ(Y ). Applying Lemma 7.12, we have an open set U ⊂ Rm−k

U = {(yk+1, . . . , ym) | (0, . . . , 0, yk+1, . . . , ym) ∈ Y }.
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For 1 ≤ i ≤ k, define

gi(yk+1, . . . , ym) = Gi(0, . . . , 0, yk+1, . . . , ym).

Then

S ∩ V = {(g1(y⃗′), . . . , gk(y⃗′), yk+1, . . . , ym) | y⃗′ = (yk+1, . . . , ym) ∈ U}

Remark 7.14. Note that, when the implicit function theorem applies, the map

π : V ∩ S → U

(x1, . . . , xk, xk+1, . . . , xm) 7→ (xk+1, . . . , xm)

is a bijection with inverse

π−1(xk+1, . . . , xm) = (g1(xk+1, . . . , xm), . . . , gk(xk+1, . . . , xm), xk+1, . . . , xm).

The map π is continuous, and in fact continuously differentiable, and the
implicit function theorem tells us that π−1 is continuously differentiable. Hence
π is a homeomorphism V ∩ S ∼= U . In fact, it is a diffeomorphism, which is a
continuously differentiable map with continuously differentiable inverse.

Example 7.15. Consider the function f(x, y) = x2 + y2 − 1. This satisfies all
the differentiability requirements, and has J(x, y) = (2x, 2y), which has rank 1 at
every point on the unit circle. Let (x0, y0) be a point on the circle. When x0 ̸= 0,
the first column has rank 1, and so the set of (x, y) satisfying x2 + y2 − 1 =
0 can be given as a continuously differentiable function of y in a small open
around y0 and similarly, when y0 ̸= 0, we can define the set of (x, y) satisfying
x2 + y2 − 1 = 0 can be given as a continuously differentiable function of x in a
small open around y0.

8 Multiple integrals and Fubini’s theorem

Integration will play a much larger role next term, no analysis course would
be complete without at least touching upon integrals. In our case, we will not
discuss integrals over general domains or Lebesgue integration. Instead we shall
focus on integration over rectangular domains, and the conditions under which
such integrals can be computed using iterated one dimensional integrals.

8.1 An informal recap of one dimensional Riemann inte-
grals

Definition 8.1. A partition of an interval [a, b] is a finite sequence P =
(x0, . . . , xn) such that

a = x0 < x1 < · · · < xn = b.
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A tagged partition of [a, b] is a partition P of [a, b] and a choice of ti ∈
[xi, xi+1] for each 0 ≤ i ≤ n. We denote by Pn([a, b]) the set of tagged partitions
of [a, b] into n parts.

Definition 8.2. A function f : [a, b] → R is called Riemann integrable if

lim
n→∞

sup
P∈Pn([a,b])

n−1∑
i=0

f(ti)(xi+1 − xi) = lim
n→∞

inf
P∈Pn([a,b])

n−1∑
i=0

f(ti)(xi+1 − xi).

The integral
∫ b

a
f(x) dx is given by this common value.

Fact 8.3. If f : [a, b] → R is continuous, it is Riemann integrable.

Fact 8.4. Whenever the integrals involved are well defined, integration satisfies∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx∫ b

a

f(x) dx =

∫ b

a

f(x) dx+

∫ b

c

f(x) dx∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx

and if f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

8.2 Integration in several variables

In order to integrate a function of several variables over a rectangular domain,
we have two main options:

1. Define a partition of a product of intervals, construct m-dimensional ana-
logues of Riemann sums, and define the integral as the common value
of the supremum and infinimum of these Riemann sums over the set of
tagged partitions.,

2. Define it as an iterated integral of one dimensional functions, as follows∫
[a1,b1]×···×[am,bm]

g(x1, . . . , gm) dxm . . . dx1

:=

∫
[a1,b1]×···×[am−1,bm−1]

(∫ bm

am

g(x1, . . . , xm−1, t) dt

)
dxm−1 . . . dx1.

The first approach is arguably more useful theoretically, as we can easily
derive the m-dimensional analogues of Fact 8.4, and this common value is what
is normally meant by the Riemann integral of a function f . However, it is not
particularly well suited to computation. The second is much more practical for
actually calculating things, but a priori depends on the order of integration.
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Example 8.5. Define a function f : R2 → R be

f(x, y) :=

{
4xy(x2−y2)
(x2+y2)3 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Note that this is not continuous on [0, 1] × [0, 1], even though it is continuous
on (0, 1] × (0, 1]. Let us compute its integral using the second method for both
orders.

Letting u = x2 + y2, we find that∫ 1

0

(∫ 1

0

f(x, y) dy

)
dx =

∫ 1

0

(∫ x2+1

x2

2x(2x2 − u2)

u3
du

)
dx

=

∫ 1

0

(∫ x2+1

x2

4x3

u3
− 2x

u2
du

)
dx

=

∫ 1

0

2x

(x2 + 1)2
dx

=

∫ 2

1

1

v2
dv = 1− 1

2
=

1

2
.

Noting that f(x, y) = −f(y, x), we must have that∫ 1

0

(∫ 1

0

f(x, y) dx

)
dy = −

∫ 1

0

(∫ 1

0

f(y, x) dx

)
dy

= −
∫ 1

0

(∫ 1

0

f(u, v) dv

)
du

= −1

2

where we may the substitutions v = x and u = y. Thus, the two integrals do not
agree!

Thus, using iterated integrals can only define the integral for a certain class
of functions, for which the order does not matter. Otherwise f(x, y) = xy and
g(x, y) = f(y, x) = xy could have different integrals! This class of functions
turns out to be functions continuous on the entire rectangular domain of inte-
gration.

Proposition 8.6. Let m > 1 be an integer, a1, . . . , am, b1, . . . , bm ∈ R be real
numbers such that ai < bi for each 1 ≤ i ≤ m, and let

f : [a1, b1]× [a2, b2]× · · · × [am, bm] → R

be a continuous function. Then

g : [a1, b1]× · · · × [am−1, bm−1] → R,

(x1, . . . , xm−1) 7→
∫ bm

am

f(x1, . . . , xm−1, t) dt

is continuous.
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Proof. Suppose we are given ε > 0, and choose ε0 > 0 such that (bn−an)ε0 < ε.
Since f is continuous on a closed and bounded set, it is uniformly continuous
by Theorem 3.20. Hence, there exists δ > 0 such that

|f(x1, . . . , xm−1, t)− f(u1, . . . , um−1, t)| < ε0

for all reals with ai ≤ xi, ui ≤ bi for 1 ≤ i ≤ m− 1 satisfying√√√√m−1∑
i=1

(xi − ui)2 < δ,

and all t ∈ [am, bm]. Then, for such (x1, . . . , xm−1) and (u1, . . . , um−1),

|g(x1, . . . , xm−1)− g(u1, . . . , um−1)| =

∣∣∣∣∣
∫ bm

am

f(x1, . . . , xm−1, t)− f(u1, . . . , um−1, t) dt

∣∣∣∣∣
≤
∫ bm

am

|f(x1, . . . , xm−1, t)− f(u1, . . . , um−1, t)| dt

≤
∫ bm

am

ε0 dt = (bm − am)ε0 < ε.

Hence, g is continuous.

We will only prove that the order of our integrating variables does not mat-
ter in the two dimensional case. The m-dimensional case follows via repeated
applications of the two dimensional case, since transpositions generated the
symmetric group.

Theorem 8.7 (Fubini’s Theorem). Let f : [a1, b1]× [a2, b2] → R be continuous.
Then ∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy =

∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx.

Furthermore, if f is Riemann integrable, in the sense of limiting values of
double Riemann sums, then its Riemann integral equal to the common value of
the iterated integrals.

Proof. We first consider the iterated integrals. Since f is continuous on a closed
and bounded set, f is uniformly continuous. Thus, given any ε > 0, there exists
δ > 0 such that

|f(x, y)− f(u, v)| < ε

for all a1 ≤ x, u ≤ b1, a2 ≤ y, v ≤ b2 such that

|x− u| < δ and |y − v| < δ.

This follows by choosing δ such that√
(x− u)2 + (y − v)2 <

√
2δ
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implies our ε-bound.
Let P = (u0, . . . , up) be a partition of [a1, b1] and Q = (v0, . . . , vq) be a

partition of [a2, b2] such that

uj+1 − uj < δ and vk+1 − vk < δ

for all 0 ≤ j ≤ p − 1, 0 ≤ k ≤ q − 1. Then, whenever x ∈ [uj , uj+1] and
y ∈ [vk, vk+1], our δ-bound is satisfied and so

|f(x, y)− f(uj , vk)| < ε.

Now, by linearity of the integral∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy =

p−1∑
j=0

q−1∑
k=0

∫ vk+1

vk

(∫ uj+1

uj

f(x, y) dx

)
dy

≤
∑
j,k

∫ vk+1

vk

(∫ uj+1

uj

f(uj , vk) + ε dx

)
dy

=
∑
j,k

(f(uj , vk) + ε)(uj+1 − uj)(vk+1 − vk)

= S + ε(b1 − a1)(b2 − a2)

where

S =

p−1∑
j=0

q−1∑
k=0

f(uj , vk)(uj+1 − uj)(vk+1 − vk).

Similarly ∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy ≥ S − ε(b1 − a1)(b2 − a2)

and so ∣∣∣∣∣
∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy − S

∣∣∣∣∣ ≤ ε(b1 − a1)(b2 − a2)

As p and q are finite, it does not matter whether we sum over j first or k
first:

p−1∑
j=0

q−1∑
k=0

=

q−1∑
k=0

p−1∑
j=0

,

and so the same argument shows that∣∣∣∣∣
∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx− S

∣∣∣∣∣ ≤ ε(b1 − a1)(b2 − a2)
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and hence, by the triangle inequality∣∣∣∣∣
∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy −

∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx

∣∣∣∣∣ ≤ 2ε(b1 − a1)(b2 − a2).

This holds for every ε > 0, but the left hand side is constant and has no
dependence on ε or δ. As we can take ε arbitrarily small, this can only hold if∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy =

∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx.

Now, suppose that f is Riemann integrable, and consider a partition

P = ((x0, x1, . . . , xp); (y0, y1, . . . , yq))

of [a1, b1]× [a2, b2] into rectangles Rj,k = [xj , xj+1]× [yk, yk+1]. As each Rj,k is
closed and bounded, and f is continuous, f achieves a minimum and maximum
value in Rj,k. Let (sj,k, tj,k) be a point in Rj,k for which f is minimal, and
(Sj,k, Tj,k) be a point in Rj,k for which f is maximal. Then we have that

f(sj,k, tj,k)(xj+1 − xj)(yk+1yk) ≤
∫ yk+1

yk

∫ xj+1

xj

f(x, y) dx dy

and ∫ yk+1

yk

∫ xj+1

xj

f(x, y) dx dy ≤ f(Sj,k, Tj,k)(xj+1 − xj)(yk+1yk)

for every 0 ≤ j ≤ p− 1, 0 ≤ k ≤ q − 1. Summing over all possible j and k, we
get that ∑

j,k

f(sj,k, tj,k)(xj+1 − xj)(yk+1yk) ≤
∫ b2

a2

∫ b1

a1

f(x, y) dx dy

and ∫ b2

a2

∫ b1

a1

f(x, y) dx dy ≤
∑
j,k

f(Sj,k, Tj,k)(xj+1 − xj)(yk+1yk).

In particular, we must have that

inf
Pp,q([a1,b1]×[a2,b2])

∑
j,k

f(zj,k, wj,k)(xj+1 − xj)(yk+1yk) ≤
∫ b2

a2

∫ b1

a1

f(x, y) dx dy

and∫ b2

a2

∫ b1

a1

f(x, y) dx dy ≤ sup
Pp,q([a1,b1]×[a2,b2]

∑
j,k

f(zj,k, wj,k)(xj+1 − xj)(yk+1yk).

where we take the supremum/infimum over tagged partitions. But, by the
assumption that f is Riemann integrable, the limit of these as we consider
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partitions with increasingly many parts are both equal to some real number∫
[a1,b1]×[a2,b2]

f(x, y) dA. Thus∫
[a1,b1]×[a2,b2]

f(x, y) dA ≤
∫ b2

a2

∫ b1

a1

f(x, y) dx dy ≤
∫
[a1,b1]×[a2,b2]

f(x, y) dA

and so we must have equality.

9 Counterexamples in Analysis

The following is just a collection of functions that display counter-intuitive be-
haviour, or otherwise demonstrate the importance of certain assumptions in
analysis. We begin with some examples illustrating the difference between two
dimensional limits and iterated limits.

Example 9.1. Let

f(x, y) =

{
x2−y2

x2+y2 if (x, y) ̸= (0, 0),

0 otherwise.

Then, for x ̸= 0

lim
y→0

f(x, y) =
x2

x2
= 1

and hence
lim
x→0

lim
y→0

f(x, y) = lim
x→0

1 = 1

as limits depend only on the values away from the limit point.
Similarly, for y ̸= 0

lim
x→0

f(x, y) =
−y2

y2
= −1

and hence
lim
y→0

lim
x→0

= lim
y→0

−1 = −1.

Thus, the two ordered limits do not agree, and we cannot possibly have a two
dimensional limit.

Example 9.2. Even if the two ordered limits do agree, this does not guarantee
that the two dimensional limit will exist. Consider

f(x, y) =

{
1 if xy ̸= 0,

0 if x = 0 or y = 0.

Then

lim
y→0

f(x, y) =

{
1 if x ̸= 0,

0 if x = 0
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and

lim
x→0

f(x, y) =

{
1 if y ̸= 0,

0 if y = 0

Hence
lim
x→0

lim
y→0

f(x, y) = 1 = lim
y→0

limx→ 0f(x, y)

but for all δ > 0 there exists points (x, y) within δ of the origin such that
f(x, y) = 0 and points such that f(x, y) = 1. Thus, f(x, y) cannot approach a
meaningful limit as (x, y) → (0, 0). Thus, the two dimensional limit does not
exist.

Next we will give some examples of unusual behaviour with partial deriva-
tives and total derivatives.

Example 9.3. Let

f(x, y) =


x2 sin

(
1
x

)
+ y2 sin

(
1
y

)
if x, y ̸= 0,

x2 sin
(
1
x

)
if x ̸= 0, y = 0,

y2 sin
(

1
y

)
if x = 0, y ̸= 0,

0 otherwise.

We can easily compute the partial derivatives

∂f

∂x
(x, y) =

{
2x sin

(
1
x

)
− cos

(
1
x

)
if x ̸= 0,

0 otherwise

and

∂f

∂y
(x, y) =

{
2y sin

(
1
y

)
− cos

(
1
y

)
if y ̸= 0,

0 otherwise.

Neither of these are continuous at (0, 0), but f is differentiable at (0, 0) with
(D f)(0,0) = 0. We can see that

f(h, k)− f(0, 0) =


h2 sin

(
1
h

)
+ k2 sin

(
1
k

)
if h, k ̸= 0,

h2 sin
(
1
h

)
if h ̸= 0, k = 0,

k2 sin
(
1
k

)
if h = 0, k ̸= 0.

Since | sin(α)| ≤ 1 for every α ∈ R, we can see that in each of these cases, we
must have that

|f(h, k)− f(0, 0)| ≤ h2 + k2 = ∥(h, k)∥2.

Thus ∣∣∣∣f(h, k)− f(0, 0)

∥(h, k)∥

∣∣∣∣ ≤ ∥(h, k)∥

which tends to 0 as (h, k) → (0, 0), as needed.
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Example 9.4. Let
X = R2 \ {(x, 0) ∈ R2 | x ≥ 0}

be the open set obtained by removing the non-negative real axis. Define f : X →
R by

f(x, y) =

{
x2 if x, y > 0,

0 otherwise.

Then
∂f

∂x
(x, y) =

{
2x if x, y > 0,

0 otherwise

and ∂f
∂y (x, y) = 0. These are both continuous on X, so f is continuously differ-

entiable on X with everywhere vanishing y-derivative, but f is not independent
of y:

f(1, 1) = 1 ̸= 0 = f(1,−1).

Next, we consider some functions with interesting relationships to continuity
and differentiability.

Example 9.5. The function

f(x) =

{
x if x ∈ Q,
−x if x ∈ R \Q

is continuous only at 0. For p ∈ Q, p ̸= 0, and any δ > 0, we can find x ∈ R\Q
such that |x− p| < δ, but

|f(x)− f(p)| = p+ x ≥ max(2p− δ, p)

which cannot be made arbitrarily small by making δ smaller. Similarly, f is not
continuous at any p ∈ R \Q. But at p = 0,

|f(x)− f(p)| = |x|

which can be made arbitrarily small, by considering |x| < ε for any given ε > 0.

Example 9.6. The function

f(x) =

{
x2 sin

(
1
x

)
if x ̸= 0,

0 if x = 0

is continuous and differentiable everywhere, but its derivative is not continuous.
The function f is clearly continuous away from 0, and it is continuous at 0, as
we can squeeze it between ±x2:

0 = lim
x→0

−x2 ≤ lim
x→0

f(x) ≤ lim
x→0

x2 = 0.
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The derivative is given by

f ′(x) =

{
2x sin

(
1
x

)
− cosx if x ̸= 0,

limh→0
h2 sin( 1

x )
h = 0 if x = 0.

But limx→0 f
′(x) = −1 ̸= f ′(0), so f ′ is not continuous at 0.

Example 9.7. The function

f(x) =

{
e

−1
x if x > 0,

0 if x ≤ 0

if infinitely differentiable (smooth) at x = 0, but f (k)(0) = 0 for every k ≥ 0, so
the associated Taylor series gives the 0 function!

To see that the derivatives are 0 at 0, we first show that for all k ≥ 0,

f (k)(x) =
pk(x)

x2k
e

−1
x

for all x > 0. This is true for k = 0, so we will proceed by induction and assume
it holds true for some k ≥ 0. Then

f (k+1)(x) =
p′k(x)

x2k
e

−1
x − 2kpk(x)

x2k+1
e

−1
x − pk(x)

x2k+2
e

−1
x

which simplifies to

f (k+1)(x) =
pk+1(x)

x2k+2
e

−1
x

where
pk+1(x) = x2p′k(x)− (2kx+ 1)pk(x)

is a polynomial.
Next we show that f (k)(0) = 0 for all k ≥ 0. It is easy to check that this

holds for k = 0, so suppose it holds for some k ≥ 0.

f (k+1)(0) = lim
h→0+

f (k)(h)− f (k)(0)

h

= lim
h→0+

pk(h)

h2k+1
e

−1
h .

We have restricted to the limit from the positive direction, as the negative direc-
tion is clearly 0. As limh→0+ pk(h) = pk(0) definitely exists, it suffices to show
that

lim
h→0+

h−2k−1e
−1
h = 0

or, even better, that there exists M2k+1 such that

h−2k−1e
−1
h ≤M2k+1h ⇔ h−2k−2e

−1
h ≤M2k+1
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for all h > 0, as then the result would follow from the squeeze theorem. Let
gk(x) = e−xx2k+2. This has derivative

g′k(x) = (2k + 2)e−xx2k+1 − e−xx2k+2 = e−xx2k+1(2k + 2− x)

which is positive for x < 2k + 2 and negative for x > 2k + 2. Hence gk has a
global maximum M2k+1 at x = 2k + 2, which is to say that

gk(x) = x2k+2e−x ≤M2k+1

for all x ∈ R. In particular, gk(
1
h ) ≤M2k+1 for all h > 0, as needed.

Remark 9.8. Having functions like this is actually a good thing! The related
function

f(x) =

{
e

−1

1−x2 if x ∈ (−1, 1),

0 otherwise

gives a really good smooth approximation to the indicator function

χ(−1,1)(x) =

{
1 if x ∈ (−1, 1),

0 otherwise

which allows us to extend many results about convergence of Fourier series and
transforms to “nice” discontinuous functions, a result with finds many applica-
tions in both physics and analytic number theory!

Example 9.9. The Weierstrass function

f(x) =

∞∑
n=0

cos(2nx)

2n

can be shown to be continuous everywhere using the Weierstrass M-test, which
is a combination of the comparison test (to establish both pointwise and uniform
convergence) and a result about uniform convergence of sequences of continu-
ous functions. However, it is too bumpy, exhibiting fractal-ish behaviour, to be
differentiable at any point.

The last two examples also illustrate some unexpected or unpleasant be-
haviour involving derivatives.

Example 9.10. The sequence of functions {fn(x) = sin(nx)
n } is a sequence of

continuously differentiable functions. Furthermore this sequence convergences
uniformly to the zero function. However, the sequence of derivatives

{f ′n(x) = cos(nx)}

does not even converge pointwise to a function.
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Example 9.11. Cantor’s function,

c : [0, 1] → R

sometimes called the Devil’s Staircase, is an example of a non-constant mono-
tonically increasing continuous function, which is differentiable almost every-
where. Almost-everywhere differentiability is something that we would formally
define using measures, but for now it is sufficient to think of it as only failing
to be differentiable on a subset of [0, 1] containing no open intervals as a subset
- the points are “almost discrete”.

What is bizarre about this function is that c(0) = 0, c(1) = 1, but c′(x) = 0
everywhere it is defined. How do we define c? Well, to define c(x), we begin
by writing x in base 3. If the base 3 expansion of x contains a 1, we discard
all digits after the first 1. If the base 3 expansion contains only 2s and 0s, we
replace all the 2s with 1s. We then read the obtained sequence of 0s and 1s as
though it were a binary number, giving c(x).
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10 Summary of main results

As a possible study aid, we summarise here the major results from each section of
the course. It is not a comprehensive list, but should provide a good start point.
It notably does not include definitions or examples, or every useful corollary.

Chapter 0

• Theorem 0.17 - Bounded monotonic sequences converge

• Bolzano-Weierstrass Theorem - Theorem 0.18 - Bounded sequences con-
tain monotonic subsequences

Chapter 1

• Lemma 1.4 - Components are bounded by norm

• Lemma 1.5 - Sequences converge iff their components do

• Bolzano-Weierstrass Theorem - Theorem 1.6 - Bounded sequences have
convergent subsequences

• Proposition 1.8 - The Cauchy-Schwarz inequality

• Corollary 1.9 - The triangle inequality

• Theorem 1.12 - Cauchy sequences converge

Chapter 2

• Corollary 2.11 - Open balls are open

• Proposition 2.14 - Open sets form a topology

• Lemma 2.25 - Convergent sequences in closed sets converge in the closed
set

Chapter 3

• Proposition 3.2 - Composition of continuous functions is continuous

• Proposition 3.3 - Continuous functions commute with limits

• Lemma 3.6 - Coordinate maps are continuous

• Proposition 3.7 - A function is continuous iff its components are.

• Lemma 3.8 - Sums and products are continuous - You might be asked to
prove that sums of continuous functions are continuous without use of this
lemma
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• Proposition 3.12 - The inverse image of open sets is open for continuous
functions

• Corollary 3.14 - Special cases of Proposition 3.12

• Extreme Value Theorem - Theorem 3.17 - Continuous functions on closed
and bounded sets achieve their extrema

• Theorem 3.20 - Continuous functions on closed and bounded sets are uni-
formly continuous

Chapter 4

• Proposition 4.4 - A closed set contains all its limit points

• Proposition 4.7 - Limits can be computed in terms of components

• Proposition 4.8 - Linear combinations of limits are limits of linear combi-
nations

• Lemma 4.10 - Limits commute with continuous functions

Chapter 5

• Rolle’s Theorem - Theorem 5.9 - Derivatives vanish if a function turns
around

• Mean Value Theorem - Theorem 5.10 - The average slope is attained

• Taylor’s Theorem - Theorem 5.17 - Taylor series mostly work!

Chapter 6

• Corollary 6.10 - Bounded partial derivaitves imply continuity

• Lemma 6.19 - The derivative of a linear map is linear

• Lemma 6.20 - Differentiable functions satisfy inequalities

• Lemma 6.22 - Differentiable functions are continuous

• Proposition 6.23 - Continuous partial derivatives implies differentiable
with derivative given by the Jacobian

• Proposition 6.24 - Directional derivatives are determined by total deriva-
tives

• Corollary 6.25 - If a function is differentiable and has partial derivatives,
the derivatives is the Jacobian

• Proposition 6.30 - Differentiable functions have bounded growth

• Chain Rule - Proposition 6.33 - Derivatives of compositions of functions.
Definitely a named theorem
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Chapter 7

• Banach Fixed Point Theorem - Theorem 7.3 - Contractions have fixed
points

• The Inverse Function Theorem - Theorem 7.9 - Continuously differentiable
functions with non-vanishing derivative have local inverses

• The Implicit Function Theorem - Theorem 7.13 - Nice level sets can be
parametrised

Chapter 8

• Example 8.5 - A counterexample in which order of integration matters

• Fubini’s Theorem - Theorem 8.7 - Order of integration does not matter
for continuous functions

Chapter 9

Chapter 9 contains no examinable material, just interesting examples.
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