
MAU22103/33101 - Introduction to Number
Theory

Exercise Sheet 6

Trinity College Dublin

Course homepage

This is an entirely optional homework. If submitted, the best 5 out of 6
homeworks will be considered for your continuous assessment. Answers are

due for Friday November 29nd, 23:59
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 November’s not over yet!

In this, we will solve the Pell-Fermat equation

x2 − 11y2 = 1

for x, y ∈ Z.

1. (30 pts) Determine the continued fraction expansion
√
11 = [a0, a1, . . . , ar, b1, . . . , bs]

2. (30 pts) Hence, determine the fundamental solution of the above Pell-
Fermat equation

3. (30 pts) Determine a solution (x, y) to the Pell-Fermat equation with
y > 100
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4. (10 pts) Prove that there exists an infinite family of solutions (xn, yn)
such that 3|yn
Hint: Binomial expansion

Solution 1

1. We can check that
√
11 ≈ 3.3166, so a0 = 3. Proceeding with the

computation, we find that

x1 =
1√

11− 3
=

√
11 + 3

2
= 3.15831...

a1 = 3

x2 =
2√

11− 3
=

2
√
11 + 6

2
=

√
11 + 3 = 6.31662...

a2 = 6

x3 =
1√

11− 3
= x1.

Hence, everything will repeat from there. Thus
√
11 = [3, 3, 6]

2. We begin computing convergents of
√
11, until we find a solution.

(p0, q0) = (3, 1),

(p1, q1) = (3p0 + p−1, 3q0 + q−1) = (10, 3)

and we quickly find that

102 − 11(3)2 = 1

and so (x, y) = (10, 3) is the fundamental solution.

3. All other solutions are determined by the coefficients of (10 + 3
√
11)n.

We have that

(10 + 3
√
11)2 = 199 + 60

√
11

(10 + 3
√
11)3 = 3970 + 1197

√
11.

Thus (x, y) = (3970, 1197) gives an example of a solution with y > 100.
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4. We can define an infinite sequence of solutions by

xn + yn
√
11 = (10 + 3

√
11)n

and so it suffices to show that the coefficient of
√
11 in the right hand

side is divisible by 3

By the binomial theorem

(10 + 3
√
11)n =

n∑
k=0

(
n

k

)
10n−k

(
3
√
11
)k

.

Comparing the coefficients of
√
11, we see that

yn
√
11 =

∑
0≤2t+1≤n

(
n

2t+ 1

)
10n−2t−1

(
3
√
11
)2t+1

=

( ∑
0≤2t+1≤n

(
n

2t+ 1

)
10n−2t−1 × 32t+1 × 11t

)
√
11

as only the odd powers of
√
11 contribute. Hence

yn =
∑

0≤2t+1≤n

(
n

2t+ 1

)
10n−2t−1 × 32t+1 × 11t

= 3

( ∑
0≤2t+1≤n

(
n

2t+ 1

)
10n−2t−1 × 32t × 11t

)
which is clearly divisible by 3.

This was the only exercise that is required for your submission
to be considered. All remaining exercises are entirely optional and
are not worth any points

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.
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Exercise 2 Computing continued fraction expansions

Compute the complete continued fraction expansions of the following quadratic
irrationals

i)
√
13

ii)
√
17

iii) 11+
√
7

2

iv) 3+
√
8

2

v)
√
2

Solution 2

We know all these will be eventually periodic, so we just need to compute
until we loop around

i) a0 = ⌊
√
13⌋ = 3, and so

x1 =
1√

13− 3
=

√
13 + 3

4

a1 = 1

x2 =
1

√
13+3
4

− 1
=

4√
13− 1

=

√
13 + 1

3

a2 = 1

x3 =
3√

13− 2
=

√
13 + 2

3

a3 = 1

x4 =
3√

13− 1
=

√
13 + 1

4

a4 = 1

x5 =
4√

13− 3
=

√
13 + 3

a5 = 6
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x6 =
1√

13− 3
=

√
13 + 3

4
= x1

and so we have entered the loop. Thus
√
13 = [3, 1, 1, 1, 1, 1, 6].

ii) a0 = 4, and so

x1 =
1√

17− 4
=

√
17 + 4

a1 = 8

x2 =
1√

17− 4
=

√
17 + 4 = x1

and so √
17 = [4, 8].

iii) We compute a0 = 6, and so

x1 =
2√
7− 1

=

√
7 + 1

3

a1 = 1

x2 =
3√
7− 2

=
√
7 + 2

a2 = 4

x3 =
1√
7− 2

=

√
7 + 2

3

a3 = 1

x4 =
3√
7− 1

=

√
7 + 1

2

a4 = 1

x5 =
2√
7− 1

=

√
7 + 1

3
= x1

and so
11 +

√
7

2
= [6, 1, 4, 1, 1]
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iv) a0 = 2, and

x1 =
2√
8− 1

=
2
√
8 + 2

7

a1 = 1

x2 =
7

2
√
8− 5

= 2
√
8 + 5

a2 = 10

x3 =
1

2
√
8− 5

=
2
√
8 + 5

7

a3 = 1

x4 =
7

2
√
8− 2

=
2
√
8 + 2

4
=

√
8 + 1

2

a4 = 1

x5 =
2√
8− 1

=
2
√
8 + 2

7
= x1

and so
3 +

√
8

2
= [2, 1, 10, 1, 1].

v) We have that a0 = 1 and

x1 =
1√
2− 1

=
√
2 + 1

a1 = 2

x2 =
1√
2− 1

=
√
2 + 1 = x1

and so √
2 = [1, 2].

Exercise 3 The battle of Hastings

The battle of Hastings, took place on October 14, 1066, is referred to in the
following fictional historical text, taken from Amusement in Mathematics (H.
E. Dundeney, 1917), refers to it:
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“The men of Harold stood well together, as their wont was, and formed
thirteen squares, with a like number of men in every square thereof. (. . . )
When Harold threw himself into the fray the Saxons were one mighty square
of men, shouting the battle cries ‘Ut!’, ‘Olicrosse!’, ‘Godemite!’.”

Use continued fractions to determine the minimal number of soldiers this
fictional historical text suggests Harold II had at the battle of Hastings.

Solution 3

Prior to Harold joining the battle, there are thirteen squares of men, so 13y2

men overall, for some y > 0. After Harold joins, there is one big square, so
x2 for some x > 0. Since Harold was the only mentioned addition, we must
have

13y2 + 1 = x2 ⇔ x2 − 13y2 = 1

Thus, it suffices to find the fundamental solution to this Pell-Fermat equation.
Using the continued fraction expansion computed in the previous exercise,
we compute the convergents of

√
13:

(p0, q0) = (3, 1)

(p1, q1) = (4, 1)

(p2, q2) = (7, 2)

(p3, q3) = (11, 3)

(p4, q4) = (18, 5)

(p5, q5) = (119, 33)

(p6, q6) = (137, 38)

(p7, q7) = (256, 71)

(p8, q8) = (393, 109)

(p9, q9) = (649, 180)

Checking all of these, we find that the first solution is

6492 − 13(180)2 = 1

Hence, (x, y) = (649, 180) is the minimal solution. We could have gotten
there slightly faster by noting that

182 − 13(5)2 = −1
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and deducing that a solution (a fundamental solution) must therefore corre-
spond to

(18 + 5
√
13)2.

Either way, Harold had 13(180)2 = 421, 200 soldiers other than himself,
roughly a fifth of the population of England at the time!

Exercise 4 Negative Pell Equations

Let d ∈ N be a non-square. Can we find integers x, y ∈ Z such that

x2 − dy2 = −1?

i) Show that if (x, y) is a solution to the negative Pell-Fermat equation,
then (z, w) = (x2 + dy2, 2xy) is a solution to the usual Pell-Fermat
equation

z2 − dw2 = 1

Hint: Norm

ii) Let (a, b) be the fundamental solution of

x2 − dy2 = 1.

Show that there exists a solution to

x2 − dy2 = −1

if and only if √
a+ b

√
d ∈ Z[

√
d].

Hint: For the ⇐ implication, find a nice polynomial satisfied by the
square root. How many real roots does this have?

iii) Hence determine a solution to

x2 − 17y2 = −1

You may use that
332 − 17(8)2 = 1
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Remark 1. In practice, computing the square root of a fundamental solution
is not the best way to compute a solution to the negative Pell-Fermat equation.
A solution exists if and only if the continued fraction of

√
d has odd period,

and if such a solution exists, it will be (pn, qn) for some convergent before that
corresponding to the fundamental solution. As such, computing the square
root is only useful if you are given the fundamental solution - otherwise you’ll
solve the negative Pell-Fermat equation along the way to solving the positive
Pell-Fermat equation.

Solution 4

i) If (x, y) is a solution to the negative Pell-Fermat equation, that means
that

N(x+ y
√
d) = −1

and hence

N((x+ y
√
d)2) =

(
N(x+ y

√
d)
)2

= (−1)2 = 1

and so taking (z, w) defined by

z + w
√
d = (x+ y

√
d)2 = x2 + dy2 + 2xy

√
d

gives a solution to the usual Pell-Fermat equation.

ii) If (x, y) is a solution to the negative Pell-Fermat equation, then (x +
y
√
d)2 is a unit in Z[

√
d] and hence

(x+ y
√
d)2 = ±(a+ b

√
d)n

for some n ∈ Z. We can assume, without loss of generality, that x, y ≥ 0,
and hence we must have

(x+ y
√
d)2 = (a+ b

√
d)n

for some n ≥ 0. Then, if n = 2m

x+ y
√
d = (a+ b

√
d)m

and so x2 − dy2 = 1 ̸= −1, and so n = 2m+ 1 must be odd. Thus

x+ y
√
d = (a+ b

√
d)m
√

a+ b
√
d
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and so√
a+ b

√
d =

x+ y
√
d

(a+ b
√
d)m

= (x+ y
√
d)(a− b

√
d)m ∈ Z[

√
d]

In contrast, suppose that there exists α = x+ y
√
d ∈ Z[

√
d] such that

α2 = (x+ y
√
d)2 = a+ b

√
d.

Considering norms, we see that we must have

N(α) = x2 − dy2 = ±1.

If N(α) = 1, then we must have that there exists n ∈ Z such that

α = ±(a+ b
√
d)n = ±α2n

and so f(α) = 0 for f(z) = z2n + z or f(z) = z2n − z. Since α ̸= 0, this
means that α is a root of

g(z) = z2n−1 ± 1

which have at exactly one real root of z = ±1. Since α ̸= ±1, we cannot
have that N(α) = 1 and hence N(α) = −1, giving a solution to the
negative Pell-Fermat equation.

iii) We will determine x, y ∈ N such that

(x+ y
√
17)2 = 33 + 8

√
17

or equivalently, such that

x2 + 17y2 = 33 and 2xy = 8.

Since 2xy = 8, xy = 4 and so we have that

(x, y) ∈ {(1, 4), (2, 2), (4, 1)}.

Checking these, we see that x = 4, y = 1 is a desired pair. And we can
easily check that

42 − 17(1)2 = −1.
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Exercise 5 Fractions to series

Let x ∈ (0, 1) be an irrational real, and denote by [a0, a1, . . . , an] =
pn
qn

the
convergents of x. Show that

x =
∞∑
n=0

(−1)n

qnqn+1

Hint: Can we write (−1)n in terms of convergents?

Solution 5

Recall that qn+1pn − pn+1qn = (−1)n+1 and hence

(−1)n = pn+1qn − qn+1pn.

Then, for every N ≥ 0, we must have that

N∑
n=0

(−1)n

qnqn+1

=
N∑

n=0

pn+1qn − qn+1pn
qnqn+1

=
N∑

n=0

pn+1

qn+1

− pn
qn

=
pN+1

qN+1

− p0
q0
.

Thus
∞∑
n=0

(−1)n

qnqn+1

= lim
N→∞

pN+1

qN+1

− p0
q0

= x− p0
q0
.

But p0
q0

= a0 = ⌊x⌋ = 0 and x ∈ (0, 1).

Exercise 6 Pellish equations modulo p

If we want to find integer solutions to something like x2−11y2 = 14, continued
fractions are less helpful to us. We could use a same norm argument construct
a solution from solutions to

x2 − 11y2 = 2 and x2 − 11y2 = 7

but solving these is non-trivial. Working modulo various primes, at least lets
us check whether an integer solution is even possible. In fact, we can reduce
it to checking finitely many primes.
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i) Show that, modulo any prime p ̸= 11, there exist x, y ∈ Z such that

x2 − 11y2 ≡ 14 (mod p)

Hint: How many possible values in Z/pZ can x2 take? How many pos-
sible values can 11y2 + 14 take? Must the two sets of possible values
overlap?

ii) Give a necessary and sufficient condition for there to exist x, y ∈ Z such
that

x2 − 11y2 ≡ 14 (mod 11).

Determine if such a pair exist.

iii) Show that, for any integers d, n ∈ Z and p ∤ d, there exist x, y ∈ Z such
that

x2 − dy2 ≡ n (mod p)

Remark 2. Using a variation on Hensel’s Lemma (from the second problem
sheet), you can show that for all odd primes p ∤ d and p ∤ n, there exists a
solution to

x2 − dy2 ≡ n (mod pk)

for all k ≥ 1. If there exist solutions to

x2 − dy2 ≡ n (mod pk)

for all primes p and all k ≥ 1, a result called the Hasse principle says that
there exist x, y ∈ Q such that

x2 − dy2 = n

Combined with the results from above and some variations on Hensel’s
Lemma, you can reduce showing the existence of rational solutions to checking
for “nice” solutions in Z/pZ for the finitely many odd primes p such that
p|dn, and a “nice” solution in Z/2kZ for some hopefully small k. Usually
k = 3 is good enough.
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Solution 6

1. We know that the map

(Z/pZ)× → (Z/pZ)×

x 7→ x2

is 2-to-1, and hence takes p−1
2

values. If we include 0, we see that the
map

Z/pZ → Z/pZ
x 7→ x2

takes p+1
2

distinct values as x ranges over Z/pZ.
As 11 is invertible modulo p ̸= 11, multiplication by 11 gives a bijection

Z/pZ → Z/pZ

and hence 11y2 takes p+1
2

distinct values as y ranges over Z/pZ. Sim-

ilarly, addition of 14 is also a bijection, and so 11y2 + 14 takes p+1
2

distinct values as y ranges over Z/pZ.
If the p+1

2
distinct possible values of x2 and the p+1

2
distinct possible

values of 11y2+14 in Z/pZ did not have any common values, this would
implies there are p+1

2
+ p+1

2
= p + 1 distinct elements in Z/pZ. But

Z/pZ is a set of size p, so this is impossible. Hence there must exist a
choice of x, y ∈ Z/pZ such that

x2 ≡ 11y2 + 14 (mod p)

2. The existence of such x, y is equivalent to being able to solve

x2 ≡ 14 ≡ 3 (mod 11)

which is in turn equivalent to(
3

11

)
= 1

We can easily compute(
3

11

)
= −

(
11

3

)
= −

(
−1

3

)
= 1

so a solution does indeed exist.
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3. Similarly to before, x2 p+1
2

distinct values as x ranges over Z/pZ. As

p ∤ d, multiplication by d is a bijection, and so dy2+n takes p+1
2

distinct
values as y ranges over Z/pZ.
Thus, by the same reasoning as in part (i), there must exist x, y ∈ Z
such that

x2 ≡ dy2 + n (mod p)

for every p ∤ d.

Exercise 7 Approximations

Without computing the convergents of the irrational in question, determine
whether the following rational approximations are convergents of the given
irrational α

1.
√
2 ≈ 3

2

2.
√
40 ≈ 20

3

3.
√
72 ≈ 17

2

4. π ≈ 22
7

5. e ≈ 27
10

Hint: Try to bound the true value of |qα − p| above or below by taking a
close bound to α.

Solution 7

We will use that if |qα− p| < 1
2q
, then p

q
is a convergent.

i) We need to check what |2
√
2 − 3| is to the accuracy of 1

4
= 0.25.. As√

2 ≈ 1.414 > 1.4,

3− 2
√
2 < 3− 2.8 = 0.2 < 0.25

and so 3
2
is a convergent.
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ii) We need to check whether

|3
√
40− 20| < 1

6

We have that √
40 ≈ 6.324555 <

19

3

and so

20− 3
√
40 > 20− 19 = 1 >

1

6

so 20
3
is not a convergent.

iii) We have that
√
72 ≈ 8.48, and so 8.4 <

√
72 < 8.5. Hence

0.2 = 17− 16.8 > 17− 2
√
72 > 17− 17 = 0

and 0.2 < 1
4
, so 17

2
is a convergent.

iv) We know that π ≈ 3.14, so 3.1 < π < 3.2. Hence

0.4 = 7(3.2)− 22 > |7π − 22| < 22− 7(3.1) = 0.7

neither of give a tight enough bound for us to say either way. Lets try
the bound of

|7π − 22| < 7(3.15)− 22 = 0.05 < 0.07 <
1

14

and so 22
7
is a convergent.

v) I know that e ≈ 2.718, so 2.71 < e and hence

|10e− 27| > 0.1 >
1

20

so 27
10

is not a convergent of e.
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Exercise 8 Continued fractions for near-squares

We will now prove a formula for the continued fraction of n2 + 1, and more
generally certain quadratic irrationals

i) Prove that
√
n2 + 1 is irrational for all n ≥ 1

ii) Prove that if x2 = n2 + 1 and x > 0, then

x = [n, x+ n]

iii) Hence show that √
n2 + 1 = [n, 2n].

iv) Suppose that
x2 + bx+ c = 0

has irrational roots β < 0 < α, and

x2 + bx+ c− 1

has integer roots t < 0 < s ∈ Z, then

α = [s, s− t]

Solution 8

i) If
√
n2 + 1 is rational, it must be an integer m. Then

m2 − n2 = 1

and so
(m− n)(m+ n) = 1.

Since ±1 are the only divisors of 1, and m,n are integers, we must have

m− n = m+ n = ±1

and hence n = −n, which implies n = 0. Hence,
√
n2 + 1 is irrational

for all n ≥ 1

16



ii) If x2 = n2 + 1, then

x2 − n2 = 1,

(x− n)(x+ n) = 1,

x− n =
1

x+ n
,

x = n+
1

x+ n
.

Since x > 0, x + n ≥ 1, and so we can use the extended notation for
continued fractions to write

x = [n, x+ n]

iii) x =
√
n2 + 1 is the positive solution to x2 = n2+1, and as such satisfies

x = [n, x+ n]

Hence

x+ n = n+
1

x+ n
+ n = 2n+

1

x+ n

and so
x+ n = [2n, x+ n]

which we can iterated to get

x+ n = [2n, x+ n] = [2n, 2n, x+ n] = · · · [2n]

and hence
x = [n, x+ n] = [n, 2n].

iv) Similarly to above, if x2 + bx+ c = 0, we must have that

(x− s)(x− t) = 1

and hence

x = s+
1

x− t
= [s, x−t] = [s, s−t, x−t] = [s, s−t, s−t, x−t] = · · · = [s, s− t]

is a continued fraction expansion for one of the roots of x2 + bx + c, as
s− t > 0. Since β < 0, and [s, s− t] > 0, we must have

α = [s, s− t]
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