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Trinity College Dublin

Course homepage

Answers are due for Friday October 25th, 2pm.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 2021 was a better year for number theory (100 pts)

Oh to be teaching in a year with fewer factors.

1. (70pts) Determine the number of solutions to the equation

x2 − 5x+ 8 = 0

in

i) (20pts) Z/43Z,
ii) (20pts) Z/47Z,
iii) (30pts) Z/2021Z

Hint: 2021 = 43 × 47, and both 43 and 47 are prime, and in
particular coprime.
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2. (30pts) For that, given p ≥ 5, there exists x ∈ Z such that

p|x2 − x+ 3

if and only if there exists y ∈ Z such that

p|y2 − y + 25

Hint: When do these have solutions modulo p? And why specify that
p ≥ 5?

Solution 1

1. Solving this equation sounds hard, so we will use the fact that the num-
ber of roots is determined by the Legendre symbol for the discriminant

∆ = 25− 32 = −7

modulo the various primes.

i) We want to compute
(−7
43

)
. Via our various properties, we find

that (
−7

43

)
=

(
−1

43

)(
7

43

)
= (−1)21

(
7

43

)
= −(−1)21×3

(
43

7

)
=

(
43

7

)
=

(
1

7

)
= 1

Thus, there are two solutions to the quadratic equation in Z/43Z.
ii) Here, we want to compute

(−7
47

)
. Using the various properties, we

find that (
−7

47

)
=

(
−1

47

)(
7

47

)
= (−1)23

(
7

47

)
= −(−1)23×3

(
47

7

)
=

(
−2

7

)
=

(
−1

7

)(
2

7

)
= (−1)3 = −1

since 7 ≡ −1 (mod 8). Thus there are no solutions in Z/47Z.
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iii) It suffices to notice that if we had a solution in Z/2021Z, that
would imply we have a k ∈ Z such that 2021|k2−5k+8 and hence
47|k2 − 5k + 8, giving a solution in Z/47Z. As no such solution
exists, we cannot have a solution in Z/2021Z.
The following was not required for the question, but gives us a
more precise relationship between solutions modulo integers and
solutions modulo their factors

As gcd(43, 47) = 1, the Chinese remainder theorem gives a bijec-
tion between

Z/2021Z ∼= (Z/43Z)× (Z/47Z)

that I claim restricts to a bijection between solutions to x2 −
5x + 8 = 0 in Z/2021Z and pairs of solutions to the equation
in (Z/43Z)× (Z/47Z). Clearly, if

2021|(k2 − 5k + 8)

for some k ∈ Z, then

43|(k2 − 5k + 8) and 47|(k2 − 5k + 8)

so the map takes solutions in Z/2021Z to pairs of solutions in
(Z/43Z)× (Z/47Z). And since gcd(43, 47) = 1, if

43|(k2 − 5k + 8) and 47|(k2 − 5k + 8)

then
2021|(k2 − 5k + 8)

so every pair of solutions in (Z/43Z)× (Z/47Z) gives a solution in
Z/2021Z.
Thus, the number of solutions in Z/2021Z is the number of pairs
of solutions in (Z/43Z)× (Z/47Z), which is 2× 0 = 0.

2. Such an x exists if and only if
(

∆1

p

)
∈ {0, 1} where

∆1 = (−1)2 − 12 = −11.

Such a y exists if and only if
(

∆2

p

)
∈ 0, 1, where

∆2 = (−1)2 − 100 = −99.
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But then(
∆2

p

)
=

(
−99

p

)
=

(
3

p

)2(−11

p

)
=

(
3

p

)2(
∆1

p

)
.

As p ≥ 5,
(

3
p

)
= ±1, so

(
3
p

)2
= 1, and thus(

∆1

p

)
=

(
∆2

p

)
from which the claim follows.

This was the only exercise that you must submit before the
deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises marked with a star are the exercises I will try to
talk about in the tutorial lecture. If there are any exercises would
would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.

Exercise 2 Computing roots ⋆

i) Knowing that 127 is prime, how many elements a ∈ Z/127Z satisfy
a53 = 2? Compute them.

ii) How many elements satisfy a3 = 2?
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Solution 2

i) Clearly 0
53 ̸= 2, so it suffices to determine how many elements of

(Z/127Z)× satisfy the given condition. We know that the map a 7→ a53
is gcd(53, 126)-to-1. This greatest common divisor is gcd(53, 126) = 1,
as 53 is prime and does not divide 126. Hence there is a unique a such
that a53 = 2, and it must be given by 2

s
for some s ∈ Z such that

53s = 1 in Z/126Z.
To determine s, we apply Euclid’s algorithm:

126 = 2(53) + 20,

53 = 2(20) + 13,

20 = 13 + 7,

13 = 7 + 6,

7 = 6 + 1,

and so
1 = 8(126)− 19(53)

which implies that
53

−1
= −19 = 107

in Z/126Z and hence

a =
53
√
2 = 2

107

Noting that 2
7
= 128 = 1 in Z/127Z, we find that

2
107

= 2
7×15 · 22 = 4.

ii) The map a 7→ a3 is gcd(3, 126) = 3-to-1, so there are either 3 or 0 such
a, which we will not attempt to find all of, but we will need to check for
one. The easiest thing to do is to note that 127 = 125 + 2 = 53 + 2, so
2 = −5

3
= −5

3
. Hence, there are exactly three such a.

Exercise 3 Finding the floor

Prove the following properties of the floor function:

i) For any x, y ∈ R, ⌊x+ y⌋ ≥ ⌊x⌋+ ⌊y⌋,
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ii) For n ∈ N and x ∈ R ⌊
⌊x⌋
n

⌋
=
⌊x
n

⌋
,

iii) For any n ∈ N and x ∈ R,

⌊x⌋+ ⌊x+
1

n
⌋+ · · ·+ ⌊x+

n− 1

n
⌋ = ⌊nx⌋.

Solution 3

i) We first note that
⌊n+ x⌋ = n+ ⌊x⌋

for any integer n. Thus, writing

x = ⌊x⌋+ α, y = ⌊y⌋β

for α, β ∈ [0, 1), we see that

⌊x+ y⌋ = ⌊⌊x⌋+ ⌊y⌋+ α + β⌋ = ⌊x⌋+ ⌊y⌋+ ⌊α + β⌋ ≥ ⌊x⌋+ ⌊y⌋.

ii) Let x = ⌊x⌋+ α with α ∈ [0, 1), and let

⌊x⌋ = qn+ r, 0 ≤ r ≤ n− 1

so that q =
⌊
⌊x⌋
n

⌋
. Then x = qn+ r+ α, so x

n
= q + r+α

n
. But r ≤ n− 1

and α < 1, so r + α < n. Thus r+α
n

< 1 and x
n
< q + 1, so⌊x

n

⌋
= q =

⌊
⌊x⌋
n

⌋
.

Alternatively, note that for x > 0, both side count the number of positive
integers divisible by n, but not exceeding x, and hence must be equal.
A similar interpretation exists for negative x.

iii) Let x = ⌊x⌋ + α, with 0 ≤ α < 1. We must have that, for some
0 ≤ k ≤ n− 1,

k

n
≤ α <

k + 1

n
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Thus

⌊x+
s

n
⌋ =

{
⌊x⌋ if 0 ≤ s < n− k

⌊x⌋+ 1 if n− k ≤ s < n.

Hence the sum on the left hand side is equal to

n⌊x⌋+ k.

On the other side

n⌊x⌋+ k ≤ nx = n⌊x⌋+ nα < n⌊x⌋+ k + 1

so we must have n⌊x⌋+ k = n⌊x⌋, from which the claim follows.

Exercise 4 Computing Legendre symbols ⋆

Compute the following Legendre symbols:

(i)

(
39

47

)
(ii)

(
91

101

)
(iii)

(
261

2017

)
(iv)

(
3

1087

)
(v)

(
−6

10007

)
(vi)

(
24

191

)
(vii)

(
8000

17

)
(viii)

(
−10

1009

)

Solution 4

i) (
39

47

)
=

(
3

47

)(
13

47

)
= (−1)23+138

(
47

3

)(
47

13

)
= −

(
−1

3

)(
8

13

)
=

(
2

13

)3

= −1.

ii) (
91

101

)
=

(
−10

101

)
=

(
−1

101

)(
2

101

)(
5

101

)
= (−1)50(−1)

(
5

101

)
= −

(
101

5

)
= −

(
1

5

)
= −1.
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iii) (
261

2017

)
=

(
3

2017

)2(
29

2017

)
=

(
2017

29

)
=

(
16

29

)
=

(
2

29

)4

= 1.

iv) (
3

1087

)
= −

(
1087

3

)
= −

(
1

3

)
= −1.

v) (
−6

10007

)
=

(
−1

10007

)(
2

10007

)(
3

10007

)
= (−1)5003(+1)(−1)5003

(
10007

3

)
=

(
−1

3

)
= −1.

vi) (
24

191

)
=

(
2

191

)3(
3

191

)
= (−1)95

(
191

3

)
=

(
−1

3

)
= 1.

vii) (
8000

17

)
=

(
2

17

)6(
5

17

)3

=

(
5

17

)
=

(
17

5

)
=

(
2

5

)
= −1.

viii) (
−10

1009

)
=

(
−1

1009

)(
2

1009

)(
5

1009

)
=

(
5

1009

)
=

(
1009

5

)
=

(
4

5

)
= 1.
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Exercise 5 Factorials and floors

Let n ∈ N and let p ∈ N be prime. Show that

vp(n!) =
∞∑
k=1

⌊ n
pk

⌋.

Hint: How many multiples of pk can we find in the product n!?. Also,
note that this is actually a finite sum!.

Solution 5

To compute the power of p dividing n, note that we get a factor of p from
every multiple of p less than or equal to n. We get an additional factor of
p from every multiple of p2, having already counted them once among the
multiples of p. We get an additional factor of p from every multiple of p3,
having already counted them once among the multiples of p and once among
them multiples of p2. Repeating this argument, it becomes clear that

vp(n!) =
∞∑
k=1

#{1 ≤ m ≤ n | pk|m}

The number of multiples of pk less than or equal to n is equal to the largest
non-negative q ∈ Z such that qpk ≤ n. This is precisely the definition of
⌊ n
pk
⌋, from which the claim follows.

Exercise 6 Sums of Legendre symbols

Let p ∈ N be an odd prime.

i) Compute
∑p−1

a=0

(
a
p

)
.

ii) Compute
p−1∑
a=0

(
a

p

)(
x+ 1

p

)
Hint: For all non-zero a, write a(a+ 1) = a2(1 + a−1).
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Solution 6

i) We know that
(

0
p

)
= 0, and we showed that, among 1, . . . , p− 1, there

are exactly p−1
2

squares and p−1
2

non squares. As such

p−1∑
a=0

(
a

p

)
=

∑
a a square

1 +
∑

a a non-square

−1 =
p− 1

2
− p− 1

2
= 0

ii) For a = 0, the corresponding term is 0, so we can omit it. Otherwise,
considering the Legendre symbol as a function on (Z/pZ)×, we have that(

a

p

)(
a+ 1

p

)
=

(
a(a+ 1)

p

)
=

(
a

p

)2(
1 + a−1

p

)
=

(
1 + a−1

p

)
.

The map a 7→ a−1 is a bijection

(Z/pZ)× → (Z/pZ)×

and so the map

(Z/pZ)× → Z/pZ
a 7→ 1 + a−1

as image (Z/pZ)× + 1, i.e

{2, 3, . . . , p− 1, p = 0.

Thus

p−1∑
a=0

(
a

p

)(
a+ 1

p

)
=

p−1∑
a=1

(
1 + a−1

p

)

=

p∑
a=2

(
a

p

)
=

p=1∑
a=2

(
a

p

)
= 0−

(
1

p

)
= −1.
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Exercise 7 Primes of the form 6k + 1 ⋆

Let p > 3 be a prime.

i) Prove that −3 is a square in Z/pZ if and only if p ≡ 1 (mod 6).

ii) Using the identity x3 − 1 = (x− 1)(x2 − x + 1), determine the number
of solutions of x3 − 1 = 0 in Z/pZ in terms of p (mod 6).

iii) Suppose there are finitely many primes p1, . . . , pk such that pi ≡ 1
(mod 6). By considering

N = 12(p1 . . . pk)
2 + 1

derive a contradiction to conclude there are infinitely many such primes.

Solution 7

i) If p > 3, then p = 6k ± 1 for some k. We then have that(
−3

p

)
=

(
−1

p

)(
3

p

)
If p = 6k + 1, then we have that(

−3

6k + 1

)
= (−1)3k

(
3

6k + 1

)
= (−1)3k+3k×1

(
6k + 1

3

)
=

(
1

3

)
= 1.

If p = 6k − 1, then(
3

6k − 1

)
= (−1)3k−1

(
3

6k − 1

)
= (−1)6k−2

(
6k − 1

3

)
=

(
−1

3

)
= −1.

Thus, the claim follows.

ii) Clearly 1 is a solution. Thus, if k ̸= 1 is a distinct solution, it is a
solution of x2 − x + 1 = 0. The number of solutions of this depends on
whether −3 is a square modulo p. Based on the previous part of the
question, we get that we have 3 solutions if p ≡ 1 (mod 6) and just 1
solution otherwise, for p > 3.
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iii) N is an integer and must have a prime factor p. As N is not divisible
by any of 2, 3, p1, . . . , pk, p must be of the form 6t − 1. But since p|N ,
that means that

12(p1 . . . pk)
2 ≡ −1 (mod p)

and so
(6p1 . . . pk)

2 ≡ 36(p1 . . . pk)
2 ≡ −3 (mod p).

But that means −3 is a square modulo p, which cannot occur if p ≡ −1
(mod 6). This gives a contradiction, and so we must have infinitely
many primes congruent to 1 modulo 6.

Exercise 8 Primitive roots and Legendre symbols

Let p be an odd prime, and let g ∈ (Z/pZ)× be a primitive root. Show that(
g
p

)
= −1

Solution 8

As g ̸= 0, we must have that
(

g
p

)
= ±1. If

(
g
p

)
= 1, then g = h

2
for some

h ∈ (Z/pZ)×, and hence

g
p−1
2 = h

p−1
= 1

by Fermat’s little theorem. But this implies that

p− 1 = MO(g) ≤ p− 1

2

which is nonsense. Thus
(

g
p

)
= −1.

Exercise 9 When Euler doesn’t apply

Define tn = 2
n
in Z/40Z. As gcd(2, 40) = 2 ̸= 1, Euler’s theorem does not

apply, so we do not immediately get periodicity. However, we must get that
the sequence is ultimately periodic. We want to compute the period and the
length of the tail.

i) Give a formula for tn = 2
n
in Z/5Z in terms of n (mod 4).

ii) Give a formula for tn = 2
n
in Z/8Z.
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iii) Deduce a formula for tn = 2
n
in Z/40Z. What is the period? What is

the length of the initial tail?

Solution 9

i) From Fermat’s Little Theorem,

25 ≡ 2 (mod 5)

so tn (mod 5) is periodic with period 4. Specifically, we have that in
Z/5Z

tn =


2 if n ≡ 1 (mod 4),

4 if n ≡ 2 (mod 4),

3 if n ≡ 3 (mod 4),

1 if n ≡ 0 (mod 4).

ii) Clearly in Z/8Z

tn =


1 if n = 0,

2 if n = 1,

4 if n = 2,

0 otherwise.

iii) We use the Chinese remainder theorem to compute that in Z/40Z

tn =



1 if n = 0,

2 if n = 1,

4 if n = 2,

8 if n ≥ 3 and n ≡ 3 (mod 4),

16 if n ≥ 3 and n ≡ 0 (mod 4),

32 if n ≥ 3 and n ≡ 1 (mod 4),

24 if n ≥ 3 and n ≡ 2 (mod 4).

Thus tn is ultimately periodic with period 4 in Z/40Z, and there is a
tail of length 3 (if we count t0).
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Exercise 10 A test for higher powers ⋆

Let p ∈ N be prime, k ∈ N be a positive integer, g = gcd(k, p − 1), and
s = p−1

g
. Finally, let a ∈ (Z/pZ)×.

i) Prove that a is a kth power if any only if as ≡ 1 (mod p),

ii) Is 9 a cube in Z/19Z? What about 7?

iii) Show that as is a solution of xg−1 in Z/pZ for any element a ∈ (Z/pZ)×.

iv) Choose a primitive root r ∈ (Z/pZ)×, and define a pseudo-Legendre
symbol by (

a

p

)
k

:=

{
0 if a = 0,

e
2πist
p−1 if a = rs.

Show that this is well defined, and that(
ab

p

)
k,φ

=

(
a

p

)
k,φ

(
b

p

)
k,φ

, and

(
−1

p

)
k,φ

= (−1)s.

This type of map is often called a character. In order to perform any
useful computations with this pseudo-Legendre symbol though, we would
need a reciprocity law. Such a reciprocity law exists, coming from the
much more general Artin reciprocity law, which arguably spawned a huge
area of modern number theory and is hopelessly beyond the scope of this
course.

Solution 10

i) If a = b
k
, then

as = b
ks

= b
p−1

= 1.

Thus, every kth power is a root of xs − 1. We know there are at most s
such roots, and that there are exactly

p− 1

gcd k, p− 1
= s

kth powers in (Z/pZ)×. Hence they make up all the roots, from which
the claim follows.
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ii) First note that gcd(3, 18) = 3, so a is a cube if and only if a3 = 1. We
can quickly check that

9
6
= 5

3
= 11

so 9 is not a cube. In contrast

7
6
= 11

3
= 1331 = 1

so 7 is a cube.

iii)
(as)g = asg = ap−1 = 1

iv) To see that this is well defined, it suffices to show that if rb = rc, then

e
2πsb
p−1 = e

2πsc
p−1 . The former occurs if and only if b ≡ c (mod p − 1). The

latter occurs if and only if p−1|(sb−sc), which is clearly true if p−1|b−c.
The first remaining property follow by easily by noting that if a = ru

and b = rv, then(
ab

p

)
k

= e
2πis(u+v)

p−1 = e
2πisu
p−1 e

2πisv
p−1 =

(
a

p

)
k

(
b

p

)
k

and a similar calulation holds if a = 0 or b = 0. The final result holds
because for a primitive root r, −1 = r

p−1
2 , so(

−1

p

)
k

= esπi = (−1)s.

Exercise 11 Easy square roots

i) Let p = 4k− 1 be prime. Show that for non-zero a ∈ Z/pZ, exactly one
of a and −a can be a square.

ii) Let p = 4k − 1 be prime, and let a ∈ Z/pZ be a non-zero quadratic

residue (i.e.
(

a
p

)
= 1). Show that ak is a square root of a, that is to say

a2k = a.

iii) Use this result to explicitly solve the equation of the first part of Exercise
1 in Z/43Z and Z/47Z.
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Solution 11

i) Note that(
a

p

)
=

(
−1

p

)(
−a

p

)
= (−1)

p−1
2

(
−a

p

)
= −

(
−a

p

)
and so the two symbols cannot simultaneously be 1 or −1. They must
have opposite signs, and so exactly one of a and −a is a square.

ii) Note that

a2k = a
p+1
2 = a

p−1
2 a =

(
a

p

)
a = a

in Z/pZ.

iii) In Z/43Z, the square root of −7 is given by

(−7)11 = (6)5 · −7 = 6

.

The inverse of 2 is 22. Thus, the solutions are given by

x = 22
(
5± 6

)
which work out as

x = 27 or x = −22.

In Z/47Z, there are no solutions.

Exercise 12 Wilson’s theorem

Show that for p a prime number

(p− 1)! ≡ −1 (mod p).

Hint: Try to pair 1, 2, . . . , p−1 up with their multiplicative inverse modulo
p. Consider p = 2 separately.
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Solution 12

If p = 2, (p− 1)! = 1 ≡ −1 (mod 2). If p > 2, then consider the product

1× 2× · · · × (p− 1)

in Z/pZ. Every term of the product is invertible, and every invertible element
appears in this product. Thus, for every factor k, there is a corresponding

factor k
−1
. If these are distinct, they will multiply to give 1, so we only need

to consider those factors which are their own multiplicative inverse.

If k = k
−1
, then k

2
= 1, and so k = 1 or k = −1. Thus, every factor in

1× 2× · · · × (p− 1)

will cancel with its multiplicative inverse except for 1 and −1 = p− 1 and
so we have that

1× 2× · · · × (p− 1) = 1× (p− 1) = −1

and hence (p− 1)! ≡ −1 (mod p).
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