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Answers are due for Friday October 11th, 2pm.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Some very big remainders (100pt)

The goal of this problem is to compute some very large remainders, and
practice computing the totient function. Part 1) will be useless for the rest.

1. (10 pts) Compute ϕ(2024).

2. (30 pts) Determine the remainder of 11(27
2024) on division by 17.

3. (30 pts) Determine the remainder of 11(27
2024) on division by 19.

4. (30 pts) By using the Chinese Remainder Theorem, determine the re-

mainder of 11(27
2024) on division by 323.

Hint: Recall that ka ≡ kb (mod n) if a ≡ b (mod ϕ(n)). You may also
use without proof that 9(17)− 8(19) = 1.

1

https://www.maths.tcd.ie/~keilthya/teaching/2024/NT/nt.html


Solution 1

1. We first find all prime factors of 2024. From our divisibility tricks, this
is divisble by 8: 2024 = 8(253). Checking what primes divide 253, we
find 253 = 11(23), both of which are prime. Hence

ϕ(2024) = 2024

(
1− 1

2

)(
1− 1

11

)(
1− 1

23

)
= 880.

2. From Fermat’s Little Theorem, we know that

2716 ≡ 1 (mod 17)

Indeed, as the hint states, 27a (mod 17) depends only on the equiva-
lence class of a (mod 16). Euler’s theorem gives us that

a8 = aϕ(16) ≡ 1 (mod 16).

As 8|2024, we therefore have that

272024 ≡ 1 (mod 16)

and so
1127

2024 ≡ 111 ≡ 11 (mod 17).

Then, as 0 ≤ 11 < 17, we must have that 11 is the remainder upon
division by 17.

3. The same arguments apply here. We note that ϕ(19) = 18 and ϕ(18) =
6. As 2024 ≡ 2 (mod 6), we must have that

272024 ≡ 92 ≡ 81 ≡ 9 (mod 18)

and hence
1127

2024 ≡ 119 (mod 19)

Now
113 ≡ 1 (mod 19)

so
1127

2024 ≡ 13 ≡ 1 (mod 19).

Thus, the remainder on division by 19 is 1.
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4. Note that 323 = 17 × 19 and hence the remainder on division by 323
will be the unique 0 ≤ r < 323 such that{

r ≡ 11 (mod 17)

r ≡ 1 (mod 19)

By the explicit bijection given in the Chinese remainder theorem, this
r satisfies

r ≡ 9(17)− 11(8)(19) ≡ −1519 ≡ 96 (mod 323).

Hence, the remainder on division by 323 is 96.

This was the only exercise that you must submit before the
deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises marked with a star are the exercises I will try to
talk about in the tutorial lecture. If there are any exercises would
would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.

Exercise 2 Practice with arithmetic and inverses

Evaluate the following modular arithmetic expressions, giving your answer
as a non-negative number less than the modulus.

i) (33)(6)− 8 in Z/9Z,

ii) 12 + (−2)(5) in Z/13Z,

iii) 729
729

in Z/8Z,

iv) 47
−1

in Z/111Z,

v) 33
−1

in Z/252Z.
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Solution 2

i) Note that 3|33 and 3|6, so 9|(33 × 6), so the first term vanishes. Then
−8 = 1 in Z/9Z.

ii) 12 +−10 = 2 in Z/13Z.

iii) Note that 729 = 91(8)+1, so 729 = 1 in Z/8Z, and so 729
729

= 1
729

= 1.

iv) We need to compute the multiplicative inverse of 47, and we do so via
Euclid’s algorithm

111 = 2(47) + 17

47 = 2(17) + 13

17 = 13 + 4

13 = 3(4) + 1,

which gives us that
26(47)− 11(111) = 1

and hence 47
−1

= 26 in Z/111Z.

v) Trick question! 33 is not invertible here, as gcd(33, 252) = 3 ̸= 1.

Exercise 3 Tricks for surviving the cube ⋆

For n ∈ N, prove the following:

i) 3|n if and only if 3 divides the sum of the digits of n,

ii) 9|n if and only if 9 divides the sum of the digits of n,

iii) 11|n if and only if 11 divides the alternating sum of the digits of n

For example 11 does not divide 252 as 11 does not divide 2−5+2 = −1.

iv) 7|n if and only if 7 divides the difference of the last 3 digits and the
number given by the remaining digits

For example, 7 divides 71092 since 7 divides 71− (092) = −21.
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Solution 3

i) We can write n in terms of its digits via

n = n0 + 10n1 + 100n2 + 1000n3 + · · · 10knk

where n is the number of digits of n. Note that 10k ≡ 1 (mod 3) for
every k ≥ 0. Thus

n ≡ n0 + n1 + · · ·+ nk (mod 3)

from which the claim follows.

ii) A similar argument holds, as 10k ≡ 1 (mod 9).

iii) Note that 10k ≡ (−1)k (mod 11). Thus

n ≡ n0 − n1 + n2 − · · · ± nk (mod 11)

from which the claim follows.

iv) Note that 1000 ≡ −1 (mod 7). So, letting A be the last 3 digits of n
and B be the number formed by the remaining digits, we have that

n ≡ 1000B + AequivA−B (mod 7)

from which the claim follows.

Exercise 4 Chinese remainder practice ⋆

Find a solution in Z/456Z to the simultaneous congruences{
x ≡ 57 (mod 8)

x ≡ 8 (mod 57)
.

Solution 4

We first note that 8 and 57 are coprime, and so a solution exists. We will
also simplify the system to{

x ≡ 1 (mod 8)

x ≡ 8 (mod 57)
.
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We now present two constructions of a solution. The first uses the bijection
from the proof of the Chinese remainder theorem. We note that

1 = 57− 7(8)

and hence

x ≡ 8× (−7)× 8 + 57 ≡ 8 + 57 ≡ 65 (mod 456)

is the solution.
Alternatively, we note that if x ≡ 8 (mod 57), then there exists k ∈ Z

such that x = 57k + 8. Substituting this into the second congruence gives

x ≡ 57k + 8 ≡ k ≡ 1 (mod 8)

and so there exists ℓ ∈ Z such that k = 8ℓ+ 1, and so x = 57(8ℓ+ 1) + 8 =
456ℓ+ 65. Thus x ≡ 65 (mod 456) is the solution.

Exercise 5 More divisibility

i) Prove that 120|(n5 − 5n3 + 4n) for every n ∈ N,

ii) Determine the remainder on division by 8 of

1! + 2! + · · ·+ 60!,

iii) Let p be prime and

a

b
= 1 +

1

2
+

1

3
+ · · · 1

p− 1

be such that gcd(a, b) = 1. Show that p|a
Hint: Note that p ∤ b, and argue that

ab
−1

= 1 + 2
−1

+ · · ·+ p− 1
−1

in Z/pZ, and not that inversion is a bijection.
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Solution 5

i) Let f(n) = n5 − 5n3 + 4n. It suffices to show that 3|f(n) and 4|f(n)
and 5|f(n) as 120 = 3× 4× 5 and these are pairwise coprime. Also note
that f(n) (mod 3) will have period 3, etc, so we just need to check that
these statements hold for n = 0, 1, 2, 3, 4.

f(0) = f(1) = f(2) = 0, f(3) = 120 f(4) = 720

all of which are clearly divisible by 3,4, and 5.

ii) Note that (4!)|(n!) for every n ≥ 4 and 8|(4!) = 24. Hence n! ≡ 0
(mod 8) for every n ≥ 4. Thus

1! + 2! + · · ·+ 60! ≡ 1 + 2 + 6 ≡ 1 (mod 8),

so the remainder is 1 on division by 8.

iii) First note that, by taking a common denominator, we must have that
b|(p − 1)! and hence gcd(b, p)|gcd((p − 1)!, p) = 1. Thus, b is invertible
in Z/pZ. Rearranging

a

b
= 1 +

1

2
+

1

3
+ · · · 1

p− 1

we get that

a

p−1∏
k=1

k = b

p−1∑
k=1

∏
1≤ℓ≤p−1

ℓ̸=k

k


which is an integer equation and can be reduced modulo p. Multiplying
both sides of the reduced equation by

b
−1 ∏

k=1

k
−1

we get that the reduced equation is equivalent to

ab
−1

= 1 + 2
−1

+ · · ·+ p− 1
−1
.

Since the map k 7→ k
−1

is a bijection, the right hand side is just a
permuted version of

1 + 2 + · · ·+ p− 1
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which is equal to
p(p− 1)

2
= 0.

and so ab
−1

= 0. Multiplying both sides by b shows that p|a.

Exercise 6 Digit sums ⋆

Let A = 44444444 and let B be the sum of digits of A. Let C be the sum of
digits of B and let D be the sum of digits of C.

i) Determine D (mod 9).

ii) Prove that D ≤ 14

Hint: 44444444 has at most 20, 000 digits. How many could B have?

iii) Determine D.

Solution 6

i) From Exercise 3, we know that A is congruent to its digit sum modulo
9, and so A ≡ B (mod 9). Similarly B ≡ C and C ≡ D so

D ≡ A ≡ 44444444 ≡ (4 + 4 + 4 + 4)4444 ≡ 74444 (mod 9).

Then, noting that 73 ≡ 1 (mod 9) and that 4444 = 3(1481)+ 1, we find
that

D ≡ 74444 ≡ 7 (mod 9).

ii) If A has at most 20, 000 digits, then

B ≤ 9(20, 000) < 200, 000.

The number with the largest digit sum in this range is 199, 999 and
hence we have that

C ≤ 1 + 9 + 9 + 9 + 9 + 9 = 46.

The number with the largest digit sum in this range is 39 and so

D ≤ 3 + 9 = 14.

iii) There is exactly one number between 0 and 14 which is congruent to 7
(mod 9), which is 7. Thus D = 7.
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Exercise 7 Inverse Euler

i) Using an explicit formula for ϕ(n), show that if pk|n, then (p−1)pk−1|ϕ(n)
for any k ≥ 1.

ii) Hence show that if ϕ(n) = 4, n is not divisible by any prime p ≥ 7.

iii) Hence determine all n such that ϕ(n) = 4.

iv) Determine all n such that ϕ(n) is odd.

Hint: What primes can n be divisible by?

Solution 7

i) We recall that

ϕ(n) =
∏
p|n

pvp(n)−1(p− 1).

If pk|n, then k ≤ vp(n), and so pk−1(p−1) divides the factor pvp(n)−1(p−1)
and hence ϕ(n).

ii) If p|n, then (p − 1)|ϕ(n). So if ϕ(n) = 4, p − 1 ≤ 5 and so p ≤ 5. In
particular, if ϕ(n) = 4, no prime p ≥ 7 divides n.

iii) Thus, if ϕ(n) = 4, n = 2a×3b×5c. Noting that if b > 1, then 3|ϕ(n) = 4
and if c > 1 then 5|ϕ(n) = 4, we conclude that b, c ≤ 1. Similarly, if
a ≥ 4, then 8|ϕ(n) = 4, so we must have a ≤ 3. Running through all
possible options, the only n for which we have ϕ(n) = 4 are

{5, 8, 10, 12}.

iv) Note that (p− 1) is even for every odd prime, and so ϕ(n) is even if n is
divisible by an odd prime. Thus ϕ(n) is odd only for n = 2a. From our
explicit formula, we in fact have that ϕ(n) is odd only for a ≤ 1. Thus
n = 1 and n = 2 are the only natural numbers for which ϕ(n) is odd.

Exercise 8 Infinite primes ⋆

The goal of this exercise is to show that there are infinitely many primes of
the form 6k − 1.
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i) Show that if p is prime and p > 3, then p ≡ ±1 (mod 6).

ii) By considering a number of the form N = 6p1p2 . . . pk for distinct
primes p1, . . . , pk ≡ −1 (mod 6), show that there are infinitely many
such primes.

Hint: What must the prime factors of N look like if there are only finitely
many p ≡ −1 (mod 6)?

iii) Where does this proof fail for primes of the form 6k + 1?

iv) Dirichlet’s theorem on primes in arithmetic progression says that for any
coprime a, b ∈ Z, there are infinitely many primes of the form ak+ b for
k ∈ Z. Why must we have gcd(a, b) = 1?

Solution 8

i) If p (mod 6) ∈ {0, 2, 4}, then p ∈ {6k, 6k+2, 6k+4} for some k ∈ Z, all
of which are divisible by 2. Similarly if p ≡ 3 (mod 6), then p = 6k + 3
for some k and so 3|p. Thus, if p is prime, it must be equivalent to 1 or
5 ≡ −1 modulo 6.

ii) Suppose we have finitely many such primes p1, . . . , pk congruent to −1
modulo 6, and consider N = 6p1 . . . pk − 1. This is coprime to every
prime in the list 2, 3, p1, . . . , pk, and so must have only prime factors
q1, . . . , qr ≡ 1 (mod 6). But then

N = qa11 qa22 . . . qarr ≡ 1a1 × 1a2 × · · · × 1ar ≡ 1 (mod 6)

despite the fact that

N = 6p1 . . . pk − 1 ≡ −1 (mod 6).

This gives a contradiction, and so there must exist another prime con-
gruent to −1 modulo 6, and hence infinitely many such primes.

iii) For primes of the form 6k+1, the same argument works up until the point
where we conclude that all the prime factors of N must be congruent to
−1 (mod 6). In the next line, we then conclude

N ≡ (−1)a1+···+ar (mod 6)

which cannot always contract N ≡ −1 (mod 6).
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iv) If d|a and d|b, then d|(ak + b) for every k and so ak + b is never prime
if d > 1.

Exercise 9 Non-solutions

Show that the following Diophantine equations have no solutions, or prove
me wrong:

i) x3 + y3 = 300,

ii) x2 + 12y2 + z2 = 319,

iii) x3 + 8y3 − 18z2 = 48

iv) x2 + 6xy + y2 = 42

Solution 9

i) Consider this modulo 9. Cubes modulo 9 take values 0,1 or −1, so

x3 + y3 (mod 9) ∈ {0,±1,±2}

but 300 ≡ 3 (mod 9), so there can be no solutions.

ii) Consider this modulo 4. We obtain the congruence

x2 + z2 ≡ 3

but the left hand side can only take values {0, 1, 2} (mod 4). Therefore,
there are no integer solution.

iii) Consider this modulo 9. We obtain the congruence

x3 − y3 ≡ 3 (mod 9)

but the left hand side only takes values {0,±1,±2} (mod 9), so there
can be no integer solutions.

iv) Consider this modulo 4. We obtain the congruence

x2 + 2xy + y2 ≡ 2 (mod 4).

We could check all possible combinations of x and y, or we could note
that the left hand side is (x + y)2, which can only take values in {0, 1}
(mod 4), and hence no integer solutions can exist.
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Exercise 10 Finding primitive roots

i) What percentage of elements of (Z/43Z)× are primitive roots?

ii) Find a primitive root g of (Z/43Z)×

iii) Determine the multiplicative order of g2024

iv) For which integers m is gm another primitive root? Give a complete set
of primitive roots.

Solution 10

1. Since 43 is prime, (Z/43Z)× has a primitive root and therefore has
exactly ϕ(ϕ(43)) = ϕ(42) primitive roots. We can easily check that
ϕ(42) = 42(1

2
)(2

3
)(6

7
) = 12, and so 12/42 ≈ 28.6% of the elements are

primitive roots.

2. Since 42 = 2× 3× 7, we need to find g such that g6, g14 and g21 are all
not 1.

Lets try g = 2. We have that 2
6
= 64 = 21 ̸= 1, but

2
14

= 4
7
= 21

2 × 4 = 21×−2 = −42 = 1.

In contrast

3
6
= 81 · 9 = −5 · 9 = −45 = −2 ̸= 1

3
1
4 = 3

1
2 · 9 = −2

2
9 = 36 = −7 ̸= 1

3
21∗ = 3

1
4 · 36 · 3 = −7 · −23 = −1 ̸= 1

and so g = 3 is primitive!

3. We have a neat little formula which says that

MO(k
m
) =

MO(k)

gcd(MO(k,m)
.

In our case MO(g = 42, and gcd(42, 2024) = 2, so

MO(g2024) = 1012.

4. gm is primitive if and only if it has multiplicative order 42, which occurs
if and only if gcd(m, 42) = 1. Thus the primitive roots are

{3m | m = 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41}.
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Exercise 11 Advanced divisibility

i) Prove that 23n+5 + 3n+1 is divisible by 5 for all n ∈ N,
Hint: Find the multiplicative orders of the two terms

ii) Prove that n2 + 3n+ 5 is never divisible by 121 for any n ∈ N.
Hint: Start by considering this expression modulo 11, and use this to
narrow down possible n for which it could be divisible by 121.

Solution 11

i) Note that 23n+5 has multiplicative order at most 4. Checking quickly,
we see that 23n+5 defines a periodic sequence in Z/5Z given by

{1, 3, 4, 2, 1, . . .}.

Similarly, 3n+1 defines a periodic sequence in Z/5Z given by

{4, 2, 1, 3, 4, . . .}.

As both sequences have period 4, it suffices to check that 23n+5 + 3n+1

is divisible by 5 just for the first 4 terms, and indeed we see that we get

{1 + 4 = 0, 3 + 2 = 0, 4 + 1 + 0, 2 + 3 = 0}

in Z/5Z. Hence 5|23n+5 + 3n+1 for all n ≥ 1.

ii) We start by considering f(n) = n2+3n+5 (mod 11). Running through
n ≡ 0, 1, . . . , 10 (mod 11), we find that f(4) ≡ 0 (mod 11), but is non-
zero for all other congruence classes. Hence if 121|f(n) (which implies
that 11|f(n)) for some n ∈ Z, n ≡ 4 (mod 11). Let n = 11k + 4. Then

f(11k + 4) = 121k2 + 88k + 16 + 33k + 12 + 5 = 121k2 + 121k + 33

which can never be divisible by 121, as 121|(121k2+121k), but 121 ∤ 33.
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Exercise 12 Hensel’s lemma

The goal of this exercise is to prove a result called Hensel’s lemma, which
gives a criterion for a polynomial to have solutions modulo pk for every k ≥ 1,
without giving an example of this solution, where p is any prime number.

First define a linear map on D : Z[x] → Z[x] on the space of polynomials
with integer coefficients given by

D(xn) = nxn−1

for every n ≥ 0. We call this the formal derivative map. Note that D also
defines a map on the space of polynomials with Z/NZ coefficients by the
same formula.

i) Show that, for any a ∈ Z and any n, k ∈ N,

(x+ apk)n ≡ xn + napkxn−1 (mod pk+1).

Hint: Apply the binomial theorem.

ii) Hence conclude that, for any polynomial f ∈ Z[x], we have that

f(x+ apk) ≡ f(x) + apk(Df)(x) (mod pk+1).

iii) Suppose we have an m ∈ Z such that

f(m) ≡ 0 (mod pk), and (Df)(m) ̸≡ 0 (mod p).

Prove that we can find 0 ≤ a < p such that

f(m+ apk) ≡ 0 (mod pk+1).

Hint: Note that for cpk ≡ 0 (mod pk+1), it is sufficient to have c ≡ 0
(mod p).

iv) Hence conclude that if there exists m ∈ Z such that

f(m) ≡ 0 (mod p) and (Df)(m) ̸≡ 0 (mod p),

then there exists mk ∈ Z such that f(mk) ≡ 0 (mod pk) for every k ∈ N.

v) Explain why this is not sufficient for f to have an integer solution, and
give an example of such an f .
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Solution 12

i) Via the binomial theorem

(x+ apk)n = xn + napkxn−1 +
n∑

i=2

(
n

i

)
(apk)ixn−i

= xn + napkxn−1 + p2k
n∑

i=2

(
n

i

)
aipki−2kxn−i

≡ xn + napkxn−1 (mod pk+1)

for all k ≥ 1.

ii) The above statement can be rewritten as

(x+ apk)n ≡ xn + apkD(xn) (mod pk+1).

Since f(x+apk) is an integer linear combination of monomials (x+apk)n,
the claim follows from the linearity of D.

iii) If we have m such that f(m) ≡ 0 (mod pk), then there exists ℓ ∈ Z such
that f(m) = ℓpk. Thus

f(m+ apk) ≡ f(m) + apk(Df)(m) (mod pk+1)

≡ ℓpk + apk(Df)(m) (mod pk+1)

≡ (ℓ+ a(Df)(m)) pk (mod pk+1)

which will be equivalent to 0 if

ℓ+ a(Df)(m) ≡ 0 (mod p).

As (Df)(m) ̸≡ 0 (mod p), we can solve this for a (mod p), and take a
to be the representative of this equivalence class in 0 ≤ a < p.

iv) By the previous part of the question, if such an m = m1 exists, then
there exists an m2 such that

f(m2) ≡ 0 (mod p2)

and furthermore that m2 ≡ m1 (mod p), and so

(Df)(m2) ̸≡ 0 (mod p).
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Applying the results of the previous part again, we construct m3 ≡
m2 (mod p) satisfying the conditions required, and so on, constructing
mk+1 ≡ mk (mod p) for every k ∈ N as needed.

v) This is not sufficient for f to have an integer solution, as we have no
guarantee that {mk} converges. Indeed, mk will usually grow infinitely
(unless we introduce p-adic numbers, but that is a discussion for another
day), and so we cannot construct an integer solution in this way. For
example f(x) = x2 + 1, satisfies f(3) ≡ 0 (mod 5), and (Df)(3) ≡ 2
(mod 5), but x2 = 1 has no real roots, let alone integer ones.
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