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Exercise 1 Divisibility of Fibonacci numbers (100pt)

Define the Fibonacci numbers numbers by F0 = 0, F1 = 1, and

Fn+1 = Fn + Fn−1 for all n ≥ 1.

The Fibonacci numbers are an example of a strongly divisible sequence:

gcd(Fm, Fn) = Fgcd(m,n).

The goal of this problem is to prove this.

1. (10pts) Show that gcd(Fn, Fn+1) = 1 for every n ∈ N.

2. (20pts) By induction, or otherwise, establish Honsberger’s Identity:

Fm+n = Fm−1Fn + FmFn+1 for all m,n ∈ N.

Hint: If inducting on m, assume the identity holds for all n in your
induction hypothesis, or use strong induction with more than one base
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case. If trying to prove this otherwise, consider tilings of an m + n −
1 grid by dominoes, or derive an explicit formula for the Fibonacci
numbers.

3. (20pts) Using this identity, show that for n ≥ m, if m|n, then Fm|Fn.

Hint: Write n = mk and induct on k.

4. (20pts) Establish the converse for n ≥ m > 2: if Fm|Fn, then m|n.
Hint: Divide n by m with remainder, and apply the results already
established.

5. (20pts) Prove that, for n > m, gcd(Fm, Fn) = gcd(Fn−m, Fm).

Hint: Recall that Div(a, b) = Div(b, a− bk) for any integers a, b, k.

6. (10pts) Hence conclude that gcd(Fm, Fn) = Fgcd(m,n)

Solution 1

1. Since Fn+1 = Fn + Fn−1, we must have that gcd(Fn, Fn+1)|Fn−1, and
furthermore that gcd(Fn, Fn+1) = gcd(Fn, Fn−1). Iterating this argu-
ment, we find that

gcd(Fn+1, Fn) = gcd(Fn, Fn−1) = gcd(Fn−1, Fn−2)

= · · · = gcd(F2, F1) = gcd(F1, F0) = 1.

2. We will give two proofs of this: one by induction, and one by tiling.
To establish this identity by induction, we will induct on m. We first
check the case of m = 1

F0Fn + F1Fn+1 = 0(Fn) + 1(Fn+1) = Fn+1,

so the case of m = 1 holds for all n ∈ N. for all n ∈ N. Now assume
m ≥ 2 and that

Fn+k = Fk−1Fn + FkFn+1
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for all k < m and all n ∈ N. Then, applying this the induction hypoth-
esis to n+m = (n+ 1) + (m− 1), we find that

Fn+m = Fm−2Fn+1 + Fm−1Fn+2

= Fm−2Fn+1 + Fm−1 (Fn+1 + Fn)

= (Fm−2 + Fm−1)Fn+1 + Fm−1Fn

= FmFn+1 + Fm−1Fn = Fm−1Fn + FmFn+1,

as required. Hence, by induction, Honsberger’s identity holds.

A second proof is as follows: Denote by Tn the number of ways of tiling
a 2 × n − 1 grid with 2 × 1 dominoes, and set T0 = 0. Note that
T1 = 1, since there is only one way to tile an empty grid, and that
T2 = 1. We will show that Tn satisfies Honsberger’s identity. Note that
Honsberger’s identity implies, for m = 2, that

Tn+2 = Tn+1 + Tn

for all n ≥ 1. Hence, if Tn satisfies Honsberger’s identity, we must have
that Tn = Fn, as they satisfy the same recurrence and have the same
initial terms. We can therefore conclude that Fn satisfies Honsberger’s
identity.

To see that Tn satisfies Honsberger’s identity, consider all the ways
of tiling a 2 × (m + n − 1) grid. Consider the (m − 1)th and mth

columns. There are two possibilities. If no domino crosses between
the two columns, the tiling is split into a tiling of a 2 × (m − 1) grid
and a tiling of a 2 × n grid, contributing a total of TmTn+1 possible
tilings. The other possibility is that the (m−1)th and mth columns are
covered by two horizontal dominoes, splitting the tiling into one of a
2× (m− 2) grid and one of a 2× (n− 1) grid, contributing a total of
Tm−1Tn possible tilings. Every possible tiling of a 2× (m+ n− 1) grid
is counted between these two cases and hence

Tn+m = Tm−1Tn + TmTn+1.

3. We will proceed by induction, form non-zero. Clearly, Fm|Fm. Suppose
Fm|Fmk so some k ≥ 1. Then, by Honsberger’s identity

Fm(k+1) = Fmk+m = Fmk−1Fm + FmkFm+1.
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As Fm|Fm and Fm|Fmk, we must have that

Fm| (Fmk−1Fm + FmkFm+1) = Fm(k+1).

This completes the induction step, and therefore if m|n, Fm|Fn. If
m = 0, then m|n implies n = 0 and F0|F0.

4. The case where m = 0 is trivial, so assume m > 0 and write n = mq+r
with 0 ≤ r < m. It suffices to show that, if Fm|Fn, then r = 0. By
Honsberger’s identity

Fn = Fmq+r = Fmq−1Fr + FmqFr+1,

and so
Fmq−1Fr = Fn − FmqFr+1.

As Fm|Fn, by assumption, and Fm|Fmq by the previous part of the
question, we must have that Fm|Fmq−1Fr.

We must have gcd(Fm, Fmq−1) = 1. If they had a larger common divisor
d > 1, then d would also be a common divisor of Fmq and Fmq−1, as
Fm|Fmq. But, from the first part of the question gcd(Fmq, Fmq−1) = 1,
and so d cannot be greater than 1.

Hence, by Gauss’ Lemma, we must have that Fm|Fr. But r < m,
and the Fibonacci sequence is strictly increasing from F2 onwards, so
Fr < Fm if m > 2. Thus, Fm can only divide Fr if Fr = 0, i.e. r = 0.
Therefore n = mq.

5. We assume, without loss of generality, that n > m. We have that

Fn = Fm+(n−m) = Fm−1Fn−m + FmFn−m+1

and so

Div(Fn, Fm) = Div(Fm, Fn − FmFn−m+1) = Div(Fm, Fm−1Fn−m).

But gcd(Fm, Fm−1) = 1, so we must have that

Div(Fn, Fm) = Div(Fm, Fm−1Fn−m) = Div(Fm, Fn−m).

4



6. Note that gcd(n,m) = gcd(m,n − m). Hence, the greatest com-
mon divisor of two numbers may be computed by repeatedly replacing
the larger of the pair with their difference. As we have shown that
Div(Fn, Fm) = Div(Fm, Fn−m), we can iterate this process to obtain

Div(Fn, Fm) = Div(Fgcd(m,n), F0) = Div(Fgcd(m,n))

from which the claim follows.

Alternatively, writing n = mq + r1 with 0 ≤ r < m, we can iterate the
argument to obtain that

Div(Fn, Fm) = Div(Fm, Fn−mq) = Div(Fm, Fr1).

Writing m = r1q1 + r2, the same argument gives that

Div(Fn, Fm) = Div(Fm, Fr1) = Div(Fr1 , Fr2).

Iterating this argument, we see that

Div(Fn, Fm) = Div(Frk , Frk+1
)

where r1, . . . , rk+1 are the remainders in Euclid’s algorithm. In partic-
ular, we must have that

Div(Fn, Fm) = Div(Fgcd(m,n), F0).

Considering the maximum of these sets, we see that

gcd(Fm, Fn) = Fgcd(m,n).

Note that to get full points for this equation, one just needs to establish
that Div(Fn, Fm) = Div(Fm, Fn−m) and note that iterating this argu-
ment computes the greatest common divisor in the subscripts. Not this
much detail is needed.

This was the only exercise that you must submit before the
deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.
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The exercises marked with a star are the exercises I will try to
talk about in the tutorial lecture. If there are any exercises would
would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.

Exercise 2 Divisibility ⋆

Prove the following for n ∈ N:

(i) 5|n if and only if the last digit of n (in base 10) is 0 or 5.

(ii) 2|n if and only if 2 divides the last digit (in base 10) of n.

(iii) 4|n if and only if 4 divides the last two digits (in base 10) of n.

(iv) 8|n if and only if 8 divides the last three digits (in base 10) of n.

(v) 2k|n if and only if 2k divides the last k digits (in base 10) of n.

(vi) 3|10a− 2 if 3|a+ 1.

(vii) An prime number k divides n2 − 1 if and only if k|n− 1 or k|n+ 1.

Solution 2

(i) Let ℓ be the last digit of n. Then we can write n = 10m + ℓ for some
integer m ∈ Z. As 5|10m, we must have that 5|n = 10m+ ℓ if and only
if 5|ℓ = n− 10m. The only one digit numbers divisible by 5 are 0 and
5

(ii) Similarly to the last part, 2|n if and only if 2|ℓ as 2|10m.

(iii) Let ℓ be integer given by the last two digits of n, so that we can write
n = 100m + ℓ for some integer m. As 4|100, 4|100m, and hence 4|n if
and only if 4|ℓ.
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(iv) Note that 8|1000, and make the same argument.

(v) If ℓ denotes the integer given by the last k digits of n, then we can
write n = 10k + ℓ. Since 2k|10k, we can apply the same argument to
conclude that 2k|n if and only if 2k|ℓ.

(vi) Note that 10a− 2 = 10(a+1)− 12. If 3|a+1, we must have 3|10a− 2,
as 3| − 12.

(vii) We can factorise n2 − 1 = (n− 1)(n+1). Clearly, if k|n− 1 or k|n+1,
then k|n2 − 1. Since k is prime, if k|(n − 1)(n + 1), then k divides at
least one of the two factors.

Exercise 3

In the following, try to resolve the question without finding explicitly finding
roots of the polynomials.

(i) Prove that 4x2 − 2x+ 13 has no integer roots.

(ii) Prove that 3x3 − 282x2 + 18x− 28 has no integer roots.

(iii) Prove that, for any integers s, t, u, v, at least one of st, sv+ tu, and uv
is even. Hence conclude ax2 + bx+ c has no rational roots if a, b, c are
all odd.

Solution 3

(i) Suppose 4n2 − 2n+13 = 0 for some n ∈ Z. Then 13 = 2(n− 2n2), but
2 ∤ 13. Therefore no such n exists.

(ii) Note that 3|3, 3| − 282, and 3|18, but 3 ∤ −28, and so by the same
reasoning as the previous question, no integer roots can exist.

(iii) Suppose all of st, sv+ tu and uv are odd. Then, since 2 ∤ st and 2 ∤ uv,
we must have that s, t, u, v are all odd. Therefore sv and tu are odd,
and the sum of two odd numbers is even, so we must have 2|sv + tu.

If ax2+bx+c has a rational root, it can be factorised as (sx+u)(tx+v)
for some integers s, t, u, v such that a = st, b = sv + tu, c = uv. As
noted above, if a and c are odd, b must be even. Therefore no such
factorisation can exist.
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Exercise 4 Applying the algorithm ⋆

Compute the following:

i) gcd(72, 18), ii) gcd(168, 124), iii) gcd(1047, 282),

iv) gcd(n, 2n+ 1), v) gcd(21n+ 4, 14n+ 3).

Solution 4

(i) 72 = 4(18), so gcd(72, 18) = 18.

(ii) 168 = 124+ 44, 124 = 2(44)+ 36, 44 = 36+8, 36 = 4(8)+ 4, 8 = 2(4),
so gcd(168, 124) = 4.

(iii) 1047 = 3(282)+201, 282 = 201+81, 201 = 2(81)+39, 81 = 2(39)+3,
39 = 13(3), so gcd(1047, 282) = 3.

(iv) 2n+ 1 = 2(n) + 1, so gcd(2n+ 1, n) = 1.

(v) 21n + 4 = 14n + 3 + 7n + 1, 14n + 3 = 2(7n + 1) + 1, so gcd(21n +
4, 14n+ 3) = 1.

Exercise 5 Bézout’s Theorem applied

Prove that 2024 and 285 are coprime and determine integers u and v such
that

2024u+ 285v = 1.

Solution 5

We will apply Euclid’s algorithm:

2024 = 7(285) + 29

285 = 9(29) + 24

29 = 24 + 5

24 = 4(5) + 4

5 = 4 + 1
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and hence gcd(2024, 285) = 1. To determine u and v, we run the algorithm
backwards

1 = 5− 4

= 5− (24− 4(5)) = 5(5)− 24

= 5(29− 24)− 24 = 5(29)− 6(24)

= 5(29)− 6(285− 9(29)) = 59(29)− 6(285)

= 59(2024− 7(285))− 6(285) = 59(2024)− 419(285).

Thus, a solution is given by (u, v) = (59,−419).

Exercise 6 Antimatter stamps are forbidden ⋆

How many ways are there to pay for exactly €10.73 worth of postage if the
post office will only sell you stamps worth 10c and 15c? How many ways are
there to pay for exactly €10.75 worth of postage?

Note: The post office will not give change, even in the form of stamps.
You cannot give antimatter stamps to cancel out regular stamps. You have
to use a non-negative integer number of the stamps available to you.

Solution 6

The first part of the question is asking us to find the number of non-negative
integer solutions to the Diophantine equation

10u+ 15v = 1073.

Note that gcd(10, 15) = 5 ∤ 1073, so there are no integer solutions, let alone
non-negative ones.

The second part of the question is asking us to find the number of non-
negative integer solutions to the Diophantine equation

10u+ 15v = 1075.

As 5|1075, we know that infinitely many solutions exist. We can, in fact,
reduce the problem to finding non-negative integer solutions to

2u+ 3v = 215.
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We will first find an integer solution to

2x+ 3y = 1

which we could solve via the Euclidean algorithm, as in the proof of Bézout’s
theorem, but there is an obvious solution (x, y) = (−1, 1). Hence, we can
take (u0, v0) = (−215, 215) as a solution to our main equation. Every other
solution is of the form

(u, v) = (−215 + 3k, 215− 2k)

as k ranges across Z. In order to obtain a non-negative integer solution, we
need that

3k ≥ 215 and215 ≥ 2k

or equivalently that 107.5 ≥ k ≥ 71.6666. Since k must be an integer, we
can restrict to 107 ≥ k ≥ 72. Every such k gives a non-negative integer
solution, and every non-negative integer solution corresponds to such a k, so
we must therefore have 107− 71 = 36 integer solutions. The easiest solution
to count probably corresponds to k = 107, giving (u, v) = (106, 1). The
solution involving the least number of stamps corresponds to k = 72, with
(u, v) = (1, 71). Personally, I think k − 86, (u, v) = (43, 43) is fun, even if
everyone involved in the postage probably disagrees.

Exercise 7 Coprime products

Let a, b, c ∈ N. Prove that if a and b are coprime, and a and c are coprime,
then a and bc are coprime

Solution 7

Suppose d|a. Then, as gcd(d, b)|d, we must have that gcd(d, b)|a. By defini-
tion gcd(d, b)|b, and so gcd(d, b)| gcd(a, b) = 1. Hence gcd(d, b) = 1. Now, if
d|a and d|bc, then by Gauss’ Lemma, d|c, as gcd(d, b) = 1. But if d|a and
d|c, then d| gcd(a, c) = 1 and so d = 1. Therefore a and bc must be coprime,
as 1 is their only common divisor.
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Exercise 8 Primes and factorisations

(i) Write 2024 as a product of prime factors, and explain why each factor
is prime.

(ii) Hence or otherwise, work out the number of divisors of 2024 and their
sum.

(iii) Check the time on a 24 hour clock. Do the above computations for the
time interpreted as a four digit number.

(iv) Find all integers M ∈ N of the form 3a5b such that the sum of the
positive divisors of M is 33883.

Hint: 33883 = 31× 1093, and both factors are prime.

(v) Determine all n ≥ 2 for which n2 − 1 is prime.

Solution 8

(i) We begin by noting that 2024 = 8(253): Exercise 2(iv) lets us deduce
this quickly. Thus 2024 = 23 · 253. 2 is prime, as there aren’t any
smaller integers to be non-trivial factors.

To factor 253, we begin dividing by small primes less than or equal to√
253 ≈ 16, and find that it is only divisible by 11. Thus

2024 = 23 · 11 · 23.

It is easy to check that 11 is prime, and 23 must be prime, either by
direct computation or by noting that 253 would have to have a factor
smaller than 11 if 23 we composite.

(ii) Every divisor of 2024 is of the form 2a · 11b · 23c, where 0 ≤ a ≤ 3, and
0 ≤ b, c ≤ 1. This gives us 4× 2× 2 = 16 divisors. Their sum is given
by the product(

24 − 1

2− 1

)(
112 − 1

11− 1

)(
232 − 1

23− 1

)
= 4320.
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(iii) It is currently 15 : 36. Dividing repeatedly by 2, we find 1536 = 29 · 3.
This means that 1536 has 10 · 2 = 20 divisors, and the sum of these
divisors is given by

(210− 1)(9− 1)

2
= 4092.

(iv) From our formula, the sum of divisors of 3a5b is given by(
3a+1 − 1

2

)(
5b+1 − 1

4

)
= (1 + 3 + · · ·+ 3a)

(
1 + 5 + · · · 5b

)
Therefore if σ1(3

a5b) = 33883 = 31, we must have that one of four
cases occurs: both prime factors divide the 3-sum, both prime factors
divide the 5 sum, 31 divides the 3-sum and 1093 divides the 5-sum, or
31 divides the 5-sum and 1093 divides the 3 sum.

In fact, as there are no other prime factors, we can replace “divides”
with “is equal to”.

In the first case b = 0, and we need

1 + 3 + · · ·+ 3a =
3a+1 − 1

2
= 33883

and so 3a+1 = 2(33883) + 1 = 67767, which is not a power of three.

In the second case a = 0, and we need

5b+1 − 1

4
= 33883

and so 5b+1 = 4(33883) + 1 = 135533, which is not even a multiple of
5.

In the third case, we must have

3a+1 − 1

2
= 31 and

5b+1 − 1

4
= 1093

and hence 3a+1 = 63, which is not a power of three.

In the final case, we must have

3a+1 = 2187 = 37 and 5b+1 = 125 = 53

Hence, a = 6 and b = 2 is the only possible solution, giving

M = 18225.
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(v) We have that n2 − 1 = (n− 1)(n+ 1) is a factorisation of n2 − 1, into
positive integers, since n ≥ 2. In order for n2−1 to be prime, these two
factors must be 1 and n2−1. In particular, n−1 = 1 and n+1 = n2−1.
This gives n = 2, and so 3 is the only prime of the form n2 − 1.

Exercise 9 Valuations of primes

(i) Let m =
∏

i p
ai
i , n =

∏
i p

bi
i be two integers, where the pi are pairwise

distinct primes. Prove that m | n iff. ai ⩽ bi for each i.

Hint: If n = km, consider the prime factorisation of k.

(ii) In what follows, let p ∈ N be prime. Recall that for nonzero n ∈ Z,
we define vp(n) as the exponent of p in n. Prove that for all nonzero
n ∈ Z, vp(n) is the largest integer v such that pv | n.

(iii) Recall that we set vp(0) = +∞ by convention. In view of the previous
question, does this convention seem appropriate?

(iv) Let m,n ∈ Z, both nonzero. Prove that vp(mn) = vp(m)+vp(n). What
happens if m or n is zero?

(v) Letm,n ∈ Z, both nonzero. Prove that vp(m+n) ⩾ min(vp(m), vp(n)).
What happens if m or n is zero?

(vi) Let m,n ∈ Z. Prove that if vp(m) ̸= vp(n), then vp(m + n) =
min(vp(m), vp(n)).

(vii) Give an example where vp(m+ n) > min(vp(m), vp(n)).

Solution 9

(i) Suppose m|n so that n = mk. We can write k =
∏

i p
ci
i for some non-

negative integers ci, using the same set of primes, as if p|k then p|n.
Thus ∏

i

pbii =

(∏
i

paii

)(∏
i

pcii

)
=
∏
i

pai+ci
i

By the uniqueness of prime factorisation, we must have ai + ci = bi for
each i, and since ci ≥ 0, we must have ai = bi − ci ≤ bi.
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Conversely, if bi ≥ ai, then ci = bi − ai ≥ 0, and so

k =
∏
i

pcii

is an integer such that n = km. Therefore m|n.

(ii) By the previous part of the question, pv|n if and only if v ≤ vp(n), from
which the conclusion is immediate.

(iii) Yes! There is no upper bound on integers v such that pv|0, so declaring
the valuation of 0 to be infinite works with this intuition.

(iv) By the definition of vp(m) we can write m = pvp(m)M where p ∤ M , and
similarly for n. Then mn = pvp(m)+vp(n)MN . Since p ∤ M and p ∤ N ,
p ∤ MN and hence v = vp(m) + vp(n) is the maximal integer such that
pv|mn, which is to say vp(mn) = vp(m) + vp(n).

This extends to the case where m or n is zero (without loss of generality
m = 0), as then mn = 0, so vp(mn) = ∞ = ∞+ vp(n).

(v) As before, write m = pvp(m)M and n = pvp(n)N , and without loss of
generality assume that vp(m) ≤ vp(n). We write vp(n) = vp(m) + c for
some c ≥ 0. Then

m+ n = pvp(m)M + pvp(m)+cN = pvp(m) (M + pcN)

and so pvp(m)|m+ n. As vp(m+ n) is the maximal integer v such that
pv|m+ n, we must have vp(m+ n) ≥ vp(m) = min(vp(m), vp(n)).

(vi) Take m = n = 2. Then v2(m) = v2(n) = 1, but v2(m + n) = 2. In
general, equality will hold if and only if vp(m) ̸= vp(n).

Exercise 10 Rational square roots ⋆

Prove that for n ∈ N, either
√
n ∈ N or

√
n ̸∈ Q is irrational.

Hint: First show that if
√

(n) ̸∈ N, then vp(n) is odd for some prime p.
Then suppose

√
n = a

b
for some a, b ∈ N. Rearrange this into an equality

where you can compare valuations.
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Solution 10

Note that vp(k
2) = vp(k) + vp(k) = 2vp(k) is even, and hence the p-adic

valuation of a square number is even for any prime p. Thus, if n is not a
square, which is to say

√
n ̸∈ N, then vp(n) must be odd for some prime p.

Suppose
√
n = a

b
. This implies that

a2 = nb2.

Let p be a prime such that vp(n) is odd. Then we must have

2vp(a) = vp(a
2) = vp(nb

2) = vp(n) + vp(b
2) = vp(n) + 2vp(b).

But this implies vp(n) must be divisible by 2, a contraction. Therefore
√
n

is irrational if it is not an integer.

Exercise 11 Perfect numbers

A positive integer n is said to be perfect if it agrees with the sum of all of
its positive divisors other than itself; in other words, if σ1(n) = 2n. For
instance, 6 is a perfect number, because its positive divisors other than itself
are 1, 2 and 3, and 1 + 2 + 3 = 6 (and thus σ1(6) = 1 + 2 + 3 + 6 = 6 + 6.)

1. Let n ∈ N be even. Why may we find integers a, b ∈ N such that
n = 2ab and b is odd ?

2. Let n ∈ N be even, and write n = 2ab with b odd as above. Express
σ1(n) in terms of a and σ1(b).

Hint: Prove that 2a and b are coprime.

3. Let a ∈ N be such that 2a+1 − 1 is prime. Prove that 2a(2a+1 − 1) is
perfect.

We now want to prove that all even perfect numbers are of the above
form.

In this rest of the exercise, we suppose that n is an even perfect number,
and as above we write n = 2ab with b odd.

4. Use the fact that n is perfect to prove that (2a+1 − 1) | 2n.

5. Deduce that (2a+1 − 1) | b.
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6. Let thus c ∈ N be such that b = (2a+1 − 1)c. Prove that σ1(b) = b+ c.

7. Deduce that c = 1 and that b is prime.

Hint: Prove that c | b. Which other “obvious” divisors does b have?

Finally, we use the results established above to look for even perfect
numbers.

8. Let q ∈ N. Prove that if 2q − 1 is prime, then q is also prime.

Hint: xm − 1 = (x− 1)(xm−1 + xm−2 + · · ·+ x+ 1). Contrapositive.

9. Find two even perfect numbers (apart from 6).

Solution 11

1. By the fundamental theorem of arithmetic, we can write n = 2a
∏

i p
bi
i ,

with a ≥ 1, since n is even, and where each prime pi is odd (since non-2
primes are all odd). Since the product of odd numbers is odd, we can
take b to be this product.

2. Since b is odd, 2 ∤ b and so 2a and b are coprime, as 2 would divide any
common factor larger than 1. We know that σ1 is weakly multiplicative,
so

σ1(n) = σ1(2
ab) = σ1(2

a)σ1(b) = (2a+1 − 1)σ1(b).

3. Since 2a+1 − 1 is odd, we have that

σ1(2
a(2a+1 − 1)) = (2a+1 − 1)σ1(2

a+1 − 1).

If 2a+1 − 1 is prime, σ1(2
a+1 − 1) = 1 + 2a+1 − 1 = 2a

1
, and so

σ1(2
a(2a+1 − 1)) = 2a+1(2a+1 − 1) = 2

(
2a(2a+1 − 1)

)
which is precisely what it means to be perfect.

4. Since n is perfect

2n = σ1(n) = (2a+1 − 1)σ1(b)

and hence (2a+1 − 1)|2n.
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5. We have that (2a+1 − 1)|2n = 2a+1b. Since gcd(2a+1 − 1, 2a+1) = 1,
Gauss’ Lemma tells us that (2a+1 − 1)|b.

6. We have that

(2a+1 − 1)σ1(b) = 2n = 2a+1(2a+1 − 1)c

and hence

σ1(b) = 2a+1c

= (2a+1 − 1 + 1)c

= (2a+1 − 1)c+ c = b+ c.

7. If b = (2a+1 − 1)c and c ̸= 1 then

b+ c = σ1(b) = b+ 2a+1 − 1 + c+ 1 · · · ≥ b+ c+ 2a+1

which would imply that 2a+1 ≤ 0, a clear contraction. Therefore, we
must have c = 1. Then, since σ1(b) = b + 1, we must have b is prime,
as we would have other divisors contributing to the sum otherwise.

8. Suppose q = rs, 1 < r, s < q, is composite. Then

2q − 1 = (2r)s − 1 = (2r − 1)(2rs−r + · · ·+ 1)

is a non-trivial factorisation of 2q−1, as 2r−1 ̸∈ {1, 2q−1}. Therefore
if 2q − 1 is prime, q is prime.

9. We need to find a such that 2a+1 − 1 is prime. We know this implies
a+ 1 is prime, so lets try a one less than a prime. If a = 1, we get the
perfect number 6. If a = 2, then 23 − 1 = 7 is prime and so we can
say that 22(7) = 28 is perfect. Of {4, 6, 10, 12, . . .}, the next value of
a for which 2a+1 − 1 is prime is a = 4, giving us the perfect number
24(25 − 1) = 496.

Exercise 12 Ideals of Z
In this exercise, we define an ideal of Z to be a subset I ⊆ Z such that

• I is not empty,
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• whenever i ∈ I and j ∈ I, we also have i+ j ∈ I,

• whenever k ∈ Z and i ∈ I, we also have xi ∈ I.

(i) Let n ∈ Z. Prove that nZ = {nk, k ∈ Z} is an ideal of Z.

(ii) For which m,n ∈ Z do we have mZ = nZ?

(iii) Let I ⊂ Z be an ideal. Prove that whenever i ∈ I and j ∈ I, we also
have −i ∈ I, i− j ∈ I, and 0 ∈ I.

(iv) Let I ⊂ Z be an ideal. Prove that there exists n ∈ Z such that I = nZ.
Hint: If I ̸= {0}, let n be the smallest positive element of I, and
consider the Euclidean division of the elements of i by n.

(v) Prove that if I and J are ideals of Z, then

I + J = {i+ j | i ∈ I, j ∈ J}

is also an ideal of Z.
Hint: i+ j + i′ + j′ = i+ i′ + j + j′.

(vi) Let now a, b ∈ Z. By the previous question, aZ + bZ is an ideal, so it
is of the form cZ for some c ∈ Z. Express c in terms of a and b.

Hint: If you are lost, write an English sentence describing the set aZ+
bZ.

(vii) Prove that if I and J are ideals of Z, then so is their intersection I ∩J .

(viii) Let now a, b ∈ Z. By the previous question, aZ ∩ bZ is an ideal, so it
is of the form cZ for some c ∈ Z. Express c in terms of a and b.

Solution 12

(i) Clearly n ∈ nZ, so nZ is non-empty. If a, b ∈ nZ, then there exist
k, ℓ ∈ Z such that a = kn and b = ℓn. Hence a + b = n(k + ℓ) ∈ nZ.
If a = nk ∈ nZ and m ∈ Z, then ma = n(mk) ∈ nZ. Hence, nZ is an
ideal of Z.

(ii) If mZ = nZ, then m ∈ nZ, and so n|m. Similarly, we must have m|n.
But if m|n and n|m, we must have m = ±n.
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(iii) If i ∈ I, then (−1)i = −i ∈ I, via the multiplicative property of
ideals. If j ∈ I, then −j ∈ I, and since ideals are closed under addition
i + (−j) = i − j ∈ I. Finally, since I is non-empty, there exists an
element k ∈ I, and therefore 0 = 0(k) ∈ I.

(iv) If I = {0}, then I = 0Z, so assume I ̸= {0}. Then, I contains a
smallest positive element n, and all multiple of n. Hence nZ ⊂ I. Now
suppose N ∈ I, which we can assume without loss of generality to be
positive. Dividing N by n, we get N = nq + r, 0 ≤ r < n. Writing
r = N − nq, we see that r ∈ I as N ∈ I and nq ∈ I, But if r ̸= 0, this
contracts the minimality of n. Hence r = 0, and N = nq ∈ nZ. Thus
I ⊂ nZ and I = nZ.

(v) Since 0 ∈ I and 0 ∈ J , 0 ∈ I + J , so I + J is non empty. To see that
it is closed under addition, suppose k, ℓ ∈ I + J . Then there exists
i, i′ ∈ I and j, j′ ∈ J such that k = i+ j and ℓ = i′ + p′. Hence

k + ℓ = i+ j + i′ + j′ = (i+ i′) + (j + j′) ∈ I + J

as (i + i′) ∈ I and (j + j′) ∈ J). Finally we check the multiplicative
property. Suppose k ∈ I+J and m ∈ Z. Then k = i+ j for some i ∈ I
and j ∈ J , and hence mk = mi+mj ∈ I + J as mi ∈ I and mj ∈ J .

(vi) The ideal aZ+ bZ given as a set is

{au+ bv | u, v ∈ Z}

which by (corollaries to) Bézout’s theorem is precisely the set of mul-
tiples of gcd(a, b). Hence c = ± gcd(a, b).

(vii) Since 0 ∈ I and 0 ∈ J , 0 ∈ I ∩ J , so it is non-empty. If i, j ∈ I ∩ J ,
then i + j ∈ I and i + j ∈ J , and so i + j ∈ I ∩ J . If i ∈ I ∩ J and
k ∈ Z, then ki ∈ I and ki ∈ J , so ki ∈ I ∩ J .

(viii) aZ is the set of integers divisible by a. bZ is the set of integers divisible
by b. Their intersection is the set of integers divisible by both a and b.
Hence lcm(a, b) ∈ aZ∩ bZ. Furthermore, every such integer is divisible
by lcm(a, b), and so c = ± lcm(a, b).
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