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This is an entirely optional homework. If submitted, the best 5 out of 6
homeworks will be considered for your continuous assessment. Answers are

due for Friday November 29nd, 23:59
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 November’s not over yet!

In this, we will solve the Pell-Fermat equation

x2 − 11y2 = 1

for x, y ∈ Z.

1. (30 pts) Determine the continued fraction expansion
√
11 = [a0, a1, . . . , ar, b1, . . . , bs]

2. (30 pts) Hence, determine the fundamental solution of the above Pell-
Fermat equation

3. (30 pts) Determine a solution (x, y) to the Pell-Fermat equation with
y > 100
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4. (10 pts) Prove that there exists an infinite family of solutions (xn, yn)
such that 3|yn
Hint: Binomial expansion

This was the only exercise that is required for your submission
to be considered. All remaining exercises are entirely optional and
are not worth any points

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.

Exercise 2 Computing continued fraction expansions

Compute the complete continued fraction expansions of the following quadratic
irrationals

i)
√
13

ii)
√
17

iii) 11+
√
7

2

iv) 3+
√
8

2

v)
√
2

Exercise 3 The battle of Hastings

The battle of Hastings, took place on October 14, 1066, is referred to in the
following fictional historical text, taken from Amusement in Mathematics (H.
E. Dundeney, 1917), refers to it:

“The men of Harold stood well together, as their wont was, and formed
thirteen squares, with a like number of men in every square thereof. (. . . )
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When Harold threw himself into the fray the Saxons were one mighty square
of men, shouting the battle cries ‘Ut!’, ‘Olicrosse!’, ‘Godemite!’.”

Use continued fractions to determine the minimal number of soldiers this
fictional historical text suggests Harold II had at the battle of Hastings.

Exercise 4 Negative Pell Equations

Let d ∈ N be a non-square. Can we find integers x, y ∈ Z such that

x2 − dy2 = −1?

i) Show that if (x, y) is a solution to the negative Pell-Fermat equation,
then (z, w) = (x2 + dy2, 2xy) is a solution to the usual Pell-Fermat
equation

z2 − dw2 = 1

Hint: Norm

ii) Let (a, b) be the fundamental solution of

x2 − dy2 = 1.

Show that there exists a solution to

x2 − dy2 = −1

if and only if √
a+ b

√
d ∈ Z[

√
d].

Hint: For the ⇐ implication, find a nice polynomial satisfied by the
square root. How many real roots does this have?

iii) Hence determine a solution to

x2 − 17y2 = −1

You may use that
332 − 17(8)2 = 1
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Remark 1. In practice, computing the square root of a fundamental solution
is not the best way to compute a solution to the negative Pell-Fermat equation.
A solution exists if and only if the continued fraction of

√
d has odd period,

and if such a solution exists, it will be (pn, qn) for some convergent before that
corresponding to the fundamental solution. As such, computing the square
root is only useful if you are given the fundamental solution - otherwise you’ll
solve the negative Pell-Fermat equation along the way to solving the positive
Pell-Fermat equation.

Exercise 5 Fractions to series

Let x ∈ (0, 1) be an irrational real, and denote by [a0, a1, . . . , an] =
pn
qn

the
convergents of x. Show that

x =
∞∑
n=0

(−1)n

qnqn+1

Hint: Can we write (−1)n in terms of convergents?

Exercise 6 Pellish equations modulo p

If we want to find integer solutions to something like x2−11y2 = 14, continued
fractions are less helpful to us. We could use a same norm argument construct
a solution from solutions to

x2 − 11y2 = 2 and x2 − 11y2 = 7

but solving these is non-trivial. Working modulo various primes, at least lets
us check whether an integer solution is even possible. In fact, we can reduce
it to checking finitely many primes.

i) Show that, modulo any prime p ̸= 11, there exist x, y ∈ Z such that

x2 − 11y2 ≡ 14 (mod p)

Hint: How many possible values in Z/pZ can x2 take? How many pos-
sible values can 11y2 + 14 take? Must the two sets of possible values
overlap?
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ii) Give a necessary and sufficient condition for there to exist x, y ∈ Z such
that

x2 − 11y2 ≡ 14 (mod 11).

Determine if such a pair exist.

iii) Show that, for any integers d, n ∈ Z and p ∤ d, there exist x, y ∈ Z such
that

x2 − dy2 ≡ n (mod p)

Remark 2. Using a variation on Hensel’s Lemma (from the second problem
sheet), you can show that for all odd primes p ∤ d and p ∤ n, there exists a
solution to

x2 − dy2 ≡ n (mod pk)

for all k ≥ 1. If there exist solutions to

x2 − dy2 ≡ n (mod pk)

for all primes p and all k ≥ 1, a result called the Hasse principle says that
there exist x, y ∈ Q such that

x2 − dy2 = n

Combined with the results from above and some variations on Hensel’s
Lemma, you can reduce showing the existence of rational solutions to checking
for “nice” solutions in Z/pZ for the finitely many odd primes p such that
p|dn, and a “nice” solution in Z/2kZ for some hopefully small k. Usually
k = 3 is good enough.

Exercise 7 Approximations

Without computing the convergents of the irrational in question, determine
whether the following rational approximations are convergents of the given
irrational α

1.
√
2 ≈ 3

2

2.
√
40 ≈ 20

3

3.
√
72 ≈ 17

2
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4. π ≈ 22
7

5. e ≈ 27
10

Hint: Try to bound the true value of |qα − p| above or below by taking a
close bound to α.

Exercise 8 Continued fractions for near-squares

We will now prove a formula for the continued fraction of n2 + 1, and more
generally certain quadratic irrationals

i) Prove that
√
n2 + 1 is irrational for all n ≥ 1

ii) Prove that if x2 = n2 + 1 and x > 0, then

x = [n, x+ n]

iii) Hence show that √
n2 + 1 = [n, 2n].

iv) Suppose that
x2 + bx+ c = 0

has irrational roots β < 0 < α, and

x2 + bx+ c− 1

has integer roots t < 0 < s ∈ Z, then

α = [s, s− t]
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