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The use of electronic calculators and computer algebra software is allowed.

Exercise 1 A yearly exercise

In the following, you may freely use the results of Exercises 6 and 8 to
determine irreducibles of prime norm p ≡ 1 (mod 4), though it is probably
less efficient than trial and error for primes under 500.

1. (30 pts) Determine a factorisation into irreducibles of 20 + 24i.

2. (30 pts) Determine a factorisation into irreducibles of 20 + 48i.

3. (40 pts) Determine non-zero a, b ∈ Z such that

6066 = a2 + b2.

This was the only exercise that you must submit before the
deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them
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However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises marked with a star are the exercises I will try to
talk about in the tutorial lecture. If there are any exercises would
would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.

Exercise 2 Division with remainder ⋆

For the given α, β ∈ Z[i], determine γ, ρ ∈ Z[i] such that

α = βγ + ρ and N(ρ) < N(β).

i) α = 8 + 5i, β = 2 + 3i,

ii) α = 15 + 2i, β = 4− i,

iii) α = 12 + 37i, β = 7 + 9i

iv) α = 19 + 93i, β = 4 + 5i.

Exercise 3 Relative division

Let a, b ∈ Z. We can consider these both as (classical) integers and as
Gaussian integers. We write a|Zb if a divides b when viewed as integers, and
a|Z[i]b when a divides b when viewed as Gaussian integers.

Show that a|Zb if and only if a|Z[i]b.

Exercise 4 Bezout’s Theorem

For the given α, β ∈ Z[i], determine η, ξ ∈ Z[i] such that αξ+βη is a greatest
common divisor of α and β.

i) α = 6 + 2i, β = 4 + 3i,

ii) α = 4 + 6i, β = 5 + 3i.
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Exercise 5 Complete factorisation ⋆

Determine a complete factorisation into irreducibles of the following α ∈ Z[i].
i) α = 5 + 3i,

ii) α = 8− i,

iii) α = 13 + 9i,

iv) α = 19 + 12i.

Exercise 6 An answer to your prayers ⋆

Let p be a prime number such that p ≡ 1 (mod 4). We will give a partial
algorithm, the Hermite-Serret algorithm, to determine a, b ∈ Z such that
p = a2 + b2.

i) Show that there exists c ∈ Z such that c2 + 1 ≡ 0 (mod p).

ii) Let π ∈ Z[i] be an irreducible of norm p. Show that either π or π divides
c+ i.

iii) Hence conclude that if a+ bi ∼ gcd(p, c+ i), then a2 + b2 = p.

For odd p, we showed that a
p−1
2 ≡ ±1 (mod p) for every integer a. As

such, given a ∈ Z such that a
p−1
2 ≡ −1 (mod p), for p ≡ 1 (mod 4), c ≡ a

p−1
4

gives us the input we need for this algorithm. Picking a at random, we
have a 1-in-2 change of finding such an a. This gives a remarkably efficient
algorithm, at least when implemented by a computer rather than a human.

Exercise 7 An application of your prayers ⋆

For each of the following primes p, use the results of Exercise 6 to determine
a, b ∈ Z such that a2 + b2 = p.

i) p = 13.

ii) p = 29.

iii) p = 61.

iv) p = 337. Note that 1892 ≡ −1 (mod 337).

v) p = 1993. Note that 8342 ≡ −1 (mod 1993)
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Exercise 8 Gauss on high

Let p = 4k + 1. Gauss showed that the integers a, b determined by

−p

2
≤ a, b ≤ p

2

and

a ≡ (2k)!

2(k!)2
(mod p) and b ≡ a(2k)! (mod p)

satisfy a2 + b2 = p. We will give a partial proof of this.

i) Show that, for all k ≥ 1, (2k)!
2(k!)2

∈ Z.

Hint: What does (2k)!
(k!)2

count? Why would this be even?

ii) Show that

(2k)! ≡ (−1)2k(4k)(4k − 1)(· · · )(2k + 1) (mod 4k + 1)

iii) Hence, show that (2k)!2 ≡ −1 (mod 4k + 1)

Hint: Recall Wilson’s theorem from an earlier exercise set. This says
that (p− 1)! ≡ −1 (mod p).

iv) Hence conclude that
a2 + b2 ≡ 0 (mod p)

if

a ≡ (2k)!

2(k!)2
(mod p) and b ≡ a(2k)! (mod p)

Exercise 9 Forcing a common factor

Let α, β ∈ Z[i], and let gcd(α, β) be a greatest common divisor of α and β.

i) Show that N(gcd(α, β))| gcd(N(α),N(β)).

ii) Give an example of α, β such that

N(gcd(α, β)) < gcd(N(α),N(β)).

iii) Suppose that gcd(N(α),N(β)) = p is prime. Show that p ̸≡ −1 (mod 4).
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iv) Suppose that gcd(N(α),N(β)) = p. Show that at least one of

gcd(α, β) or gcd(α, β)

is not a unit.

v) Suppose that gcd(N(α),N(β)) = n > 1. Show that at least one of

gcd(α, β) or gcd(α, β)

is not a unit.

Exercise 10 Number of representations

Given n ∈ N, how many ordered pairs of integers (r, s) are there such that
r2 + s2 = n? Ordered here means we consider (r, s) as distinct from (s, r).

i) Show that every (r, s) such that r2+s2 = n are in bijection with α ∈ Z[i]
such that N(α) = n

ii) Fix an irreducible πp for each prime p and let

n = 2a
∏

p≡1 (mod 4)

pbp
∏

q≡−1 (mod 4)

qcq .

Describe the factorisation into irreducibles of α ∈ Z[i] such that N(α) =
n.

iii) Hence, determine the number of ordered pairs of integers (r, s) are there
such that r2 + s2 = n, in terms of a, bp, cq.

Exercise 11 A Euclidean failure

Define a subspace of C by

Z[
√
−3] := {a+ b

√
−3 | a, b ∈ Z}

i) Show that Z[
√
−3] is a ring: it is closed under addition and multiplica-

tion. Define what it means for α ∈ Z[
√
−3] to divide β ∈ Z[

√
−3] in

this ring.
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ii) Define the norm of α = a+ b
√
−3 by

N(α) = αα = a2 + 3b2

Show that the only elements of norm 1 are ±1.

iii) Suppose that given α, β ∈ Z[
√
−3] with β ̸= 0, there exists γ, ρ ∈

Z[
√
−3] such that

α = βγ + ρ and N(ρ) < N(β).

Sketch an argument showing that if the only common divisors of α, β ∈
Z[
√
−3] are ±1, then there exist η, ν ∈ Z[

√
−3] such that

ηα+ νβ = 1.

iv) Show that if α|β for α, β ∈ Z[
√
−3], then

N(α)|N(β)

v) Show that 2 does not divide 1 +
√
−3 and 1 +

√
−3 does not divide 2.

Hence conclude that if α ∈ Z[
√
−3] divides both 2 and 1+

√
−3, α = ±1.

vi) Show that there does not exist η, ξ ∈ Z[
√
−3] such that

2η + (1 +
√
−3)ξ = 1

Hint: Parity

vii) Conclude that Euclidean division is not possible in Z[
√
−3], i.e. given

α, β ∈ Z[
√
−3] with β ̸= 0, there does not necessarily exist γ, ρ ∈

Z[
√
−3] such that

α = βγ + ρ and N(ρ) < N(β).
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Exercise 12 Steps towards four squares - Quite hard

Recall that the quaternions

H = {a+ bi+ cj+ dk | a, b, c, d ∈ R}

is equipped with multiplication determined by

i2 = j2 = k2 = ijk = −1.

Define HZ to be the subset of H consisting of

a+ bi+ cj+ dk

such that either a, b, c, d ∈ Z or a− 1
2
, b− 1

2
, c− 1

2
, d− 1

2
∈ Z.

i) Show that HZ is closed under addition and multiplication

ii) Show that the norm

N(a+ bi+ cj+ dk) := (a+ bi+ cj+ dk)(a− bi− cj− dk)

takes integer values.

iii) Show that N(αβ) = N(α)N(β) for all αβ ∈ HZ.

iv) Show that, for any a, b, c, d ∈ Z, there exist A,B,C,D ∈ Z such that

A2 +B2 + C2 +D2 =

(
a+

1

2

)2

+

(
b+

1

2

)2

+

(
c+

1

2

)2

+

(
d+

1

2

)2

Hint: For any a ∈ Z, there exists a′ ∈ Z such that a+ 1
2
= 2a′ ± 1

2
. This

means we can write the right hand side as the norm of

2a′+ 2b′i+ 2c′j+ 2d′k+ ω

for a quaternion ω of norm 1.

Can we write the right hand side in the form αωωα?

With these results, to prove Lagrange’s 4-squares theorem, we just need
to prove that every prime is a norm of an element of HZ.
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