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0 A brief introduction

Broadly speaking, number theory is a field of mathematics concerned with
studying the integers and their properties. This covers questions of algebraic
relations, divisibility, the distribution of primes, and the properties of arithmetic
functions. More generally, modern number theory also studies the properties of
algebraic numbers, considers questions of transcendence, and (rational) point
counting on curves. Fields in number theory are more often classified by their
techniques than the specific problems they consider, and in this course we will
try to touch on three main areas.

Elementary number theory is concerned mostly with the properties of
integers, and relies on little to no techniques from analysis or complex numbers.
This means that the problems can usually be explained very easily, but the
proofs can either be very simple or incredibly involved.

Algebraic number theory considers wider classes of integer-like numbers,
such as algebraic integers, and properties of number fields. It makes use of
symmetries and group theory to solve problems, considers analogues of prime
numbers over the complex numbers, and tries to solve problems modulo various
prime powers.

Analytic number theory tries to encode number theoretic problems in
terms of analytic functions. This gives a very powerful tool for describing the
statistical properties of numbers, such as estimating the number of solutions to
a Diophantine equation of a certain size.

One of the most common types of problem in number theory is the question
of solving a Diophantine equation.

Definition 0.1. A Diophantine equation is a polynomial equation

F (x1, . . . , xn) = 0
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for some polynomial F ∈ Z[x1, . . . , xn] with integer coefficients, where we de-
mand that a solution (x1, . . . , xn) be given in integers.

It is easy to determine whether a polynomial equation has solutions over C:
pick a value for every variable except one, and apply the fundamental theorem
of algebra. Even over R, it is often possible to find a solution relatively easily.
For example

x3 + y3 + z3 = 29

has real solutions given by

(x, y, 3
√
29− x3 − y3)

for every real x and y. Finding integer solutions is more difficult.

Example 0.2. Find all solutions (x, y, z) ∈ Z3 to the Diophantine equation

x3 + y3 + z3 = 29.

Some solutions include (1, 1, 3) and (4,−3,−2), but it is hard to tell whether
these are all solutions, whether there are finitely many solutions, or whether
there are infinitely many solutions.

Even very similar Diophantine equations can have very different solutions

Example 0.3. The Diophantine equation

x3 + y3 + z3 = 30

has smallest solution

(2, 220, 422, 932;−2, 218, 888, 517;−283, 059, 965).

The Diophantine equations

x3 + y3 + z3 = 31,

x3 + y3 + z3 = 32

have no solutions, as can be seen by considering remainders on division by 9.
The Diophantine equation

x3 + y3 + z3 = 33

was only found to have solutions in 2019!

We have many classes of Diophantine equation to study:

• Fermat’s Last Theorem says that xn + yn = zn has no positive integer
solutions for any n > 2,

• The Odd Change Problem (or the Chicken Nugget Problem) asks ques-
tions like whether 5x+ 7y = 53 has integer solutions,
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• Whether elliptic curves such as y2 = x3 + 7x + 3 have integer solutions
comes up in relation to encryption.

Unfortunately, a result due to Matiyasevich (1970) says that there is no
universal algorithm to determine whether a Diophantine equation has solutions,
let alone to find them. Each problem has to be considered essentially unique.
The upside is that this means we’re unlikely to run out of problems to work on!

Even though there is no universal technique to solve every Diophantine equa-
tion, there are at least some standard first steps to take. And these begin with
understanding the integers.

1 The integers and divisibility

We will denote the set of integers by

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

and the set of positive integers (natural numbers) by

N = {1, 2, 3, . . .}

Remark 1.1. Be careful to check how N is defined in any textbooks you might
reference. Some authors include 0 in the natural numbers!

One of the most useful basic tools in number theory is the concept of division
with remainder or Euclidean division.

Theorem 1.2. Let a ∈ Z and b ∈ N. Then there exists a unique q ∈ Z, called
the quotient, and r ∈ Z, called the remainder, such that

a = bq + r and 0 ≤ r < b.

Proof. We will assume, without loss of generality, that a ≥ 0. Let

q := max{n ∈ Z | bn ≤ a}

and note that this maximum exists, since this set is bounded above. Indeed, we
can easily replace this set with a finite set, if we wanted to, without changing
the maximal element. Define r := a− bq. Since bq ≤ a, we have that r ≥ 0. To
see that r < b, suppose otherwise. Then we would have

a = bq + r ≥ bq + b = b(q + 1)

contradicting the maximality of q. Hence we must have r < b.
To see that q and r are unique, suppose we have q′, r′ ∈ Z such that 0 ≤

r′ < b and a = bq′ + r′. Since

0 ≤ r, r′ < b
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we must have that
−b < r − r′ < b

and hence
−b < (a− bq)− (a− bq′) < b.

Simplifying this, we see that

−b < b(q′ − q) < b

and so
−1 < q′ − q < 1.

However, there do not exist distinct integers with a difference of less than 1 in
absolute values, and so we must have q = q′ and thus r = r′.

Remark 1.3. We can also define division by b < 0 by applying the above
theorem to −b.

Definition 1.4. For a, b ∈ Z, we say that a divides b, denoted a|b, if there
exists q ∈ Z such that b = aq. We call a a divisor of b and b a multiple of a.

Remark 1.5. Note that for a ∈ N, the statement that a|b is equivalent to the
remainder of b on division by a is 0.

Example 1.6. We have that 2|18, since 18 = 2(9), and −3|18, since 18 =
−3(−6), but 4 ∤ 18. For any integer n, we have that ±1|n, but if n| ± 1, then
we must have n = ±1. Note that if n|m, and m ̸= 0, we must have |n| ≤ |m|.
Then for every integer n, we have that n|0, since 0 = n(0).

Remark 1.7. Interestingly, our definition allows us to talk about something
being divisible by 0: 0|n if and only if n = 0. However, even though we can talk
about divisibility by 0, we cannot define division by 0. For non-zero numbers
a, b, if there exists q such that b = aq, that q is unique and can be used as a
definition of b divided by a. This uniqueness fails for a = b = 0, and so we
cannot define 0 divided by 0 in this way.

Let us quickly discuss some properties of divisibility, and the additive and
multiplicative structures on Z.

Proposition 1.8. Let a, b, c ∈ Z. If a|b and a|c, then a|(bm + cn) for every
m,n ∈ Z.

Proof. If a|b, then b = ak for some k ∈ ZZ. Similarly, c = aℓ for some ℓ ∈ Z.
Therefore

bm+ cn = akm+ aℓn = a(km+ ℓn)

which means precisely that a|(bm+ cn).

Proposition 1.9. Let a, b, c ∈ Z. If a|b or a|c, then a|bc.
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Proof. We can assume, without loss of generality, that a|b and so b = ak for
some k ∈ Z. Then bc = (ak)c = a(kc), and hence a|bc.

In a much less exciting world, the converse to this theorem would be true:
if a|bc then a would divide one of b or c. But while 6|18 = 2(9), 6 ∤ 2 and 6 ∤ 9.
The first goal of this course will be to provide conditions under which a converse
does hold.

1.1 Greatest common divisors and Bézout’s theorem

Definition 1.10. Let a, b ∈ Z, not both zero. We define their greatest common
divisor by

gcd(a, b) := max{d ∈ N | d|a and d|b}.

We define gcd(0, 0) := 0. We define their least common multiple by

lcm(a, b) := min{ℓ ∈ N | a|ℓ and b|ℓ}.

We define lcm(0, b) = 0. If gcd(a, b) = 1, we call a and b coprime.

Exercise. Why are the sets involve in the definitions of gcd and lcm non-empty?
Why are the minimum and maximum elements well defined?

Example 1.11. By comparing lists of divisors and multiples, it is easy to see
that

gcd(4, 18) = 2 , lcm(4, 18) = 36.

Example 1.12. How can we compute the greatest common divisor of n and
n+ 1 for any n ∈ Z? We know that if d|n and d|(n+ 1) then

d|a(n+ 1) + bn

for any a, b ∈ Z. In particular, since gcd(n, n+ 1)|n and gcd(n, n+ 1)|(n+ 1),
we must have

gcd(n, n+ 1)|a(n+ 1) + bn.

Taking a = 1 and b = −1, we therefore find

gcd(n, n+ 1)|(n+ 1− n) = 1

and hence gcd(n, n+ 1) = 1.

While in the case of 4 and 18, it was possible to explicitly compare all
divisors in order to determine the greatest common divisor, this is impractical for
any larger integers. However, Example 1.12 illustrates an alternative approach
by considering linear combinations of the integers in question. This leads to
the following algorithmic approach for computing the greatest common divisor
relatively quickly.
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Theorem 1.13 (Euclid’s Algorithm). Let ab ∈ N. Let r−1 = a, r0 = b and for
every n ≥ 0 such that rn−1 ̸= 0, define rn as the remainder on dividing rn−2

by rn−1, so that r1 is the remainder on dividing a by b, r2 is the remainder
on dividing b by r1, and so on. Then gcd(a, b) is equal to the last non-zero
remainder.

Proof. Denote by
Div(a, b) := {d ∈ N | d|a and d|b}

the set of common divisors of a and b. We first note that, if a = bq + r, then

Div(a, b) = Div(b, r) :

Clearly, if d|a and d|b, then d|(a − bq) = r, and similarly if d|b and d|r, then
d|(bq + r) = a. Therefore

Div(a, b) = Div(r−1, r0) = Div(r0, r1) = Div(r1, r2) = · · · = Div(rn−1, rn).

As b = r0 > r1 > r2 > · · · > rn ≥ 0, the sequence of remainders is strictly
decreasing, so there must exist an n for which rn = 0, but rn−1 ̸= 0. Hence

Div(a, b) = Div(rn−1, 0) = Div(rn−1).

We have that gcd(a, b) is the maximum element of the left hand set, and hence
the maximum element of the right hand set, which is clearly rn−1.

Example 1.14. Let us compute the greatest common divisor of a = 17 and
b = 7. Then 17 = 2(7)+3, so r1 = 3, and 7 = 2(3)+1, so r2 = 1 and 3 = 3(1),
so r3 = 0. Hence, we must have gcd(17, 7) = 1, as expected.

Lets try an example with bigger numbers: a = 323 and b = 102. Then 323 =
3(102) + 17, so r1 = 17, and 102 = 6(17), so r2 = 0. Hence gcd(323, 102) = 17,
which can easily be checked to be true.

This algorithm actually enables us to solve our first family of Diophantine
equations: the Odd Change Problem. Specifically, by running this algorithm in
reverse, we obtain an expression for gcd(a, b) in terms of a and b.

Theorem 1.15 (Bézout). Let a, b ∈ Z. Then there exist integers u, v such that

au+ bv = gcd(a, b)

Proof. The case where one of a or b is zero is easy, so we will assume without loss
of generality that a, b ∈ N. We then compute gcd(a, b) by Euclid’s algorithm to
obtain

gcd(a, b) = rn−1 = rn−3 − rn−2qn−2

= rn−3 − (rn−4 − rn−3qn−3) qn−2

= rn−3 (1 + qn−2qn−3) + rn−4qn−2

...

= r−1u+ r0v = au+ bv
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where at each stage, we use rk = rk+1qk+1+rk+2 to replace the latest remainder
by a combination of earlier ones.

Example 1.16. Recall that gcd(17, 7) = 1. The algorithm gives us

1 = 7− 2(3)

= 7− 2(17− 2(7))

= 5(7)− 2(17).

Corollary 1.17. Integers a and b are coprime if and only if there exist u, v ∈ Z
such that au+ bv = 1.

Corollary 1.18. There exists u, v ∈ Z such that au + bv = k if and only if
gcd(a, b)|k.

Proof. If gcd(a, b)|k, then there exists ℓ ∈ Z such that k = ℓ gcd(a, b). Apply
Theorem 1.15 to find u0, v0 ∈ Z such that

au0 + bv0 = gcd(a, b).

Then
a(ℓu0) + b(ℓv0) = ℓ gcd(a, b) = k.

Conversely, if au + bv = k, then gcd(a, b)|k, as gcd(a, b) divides any integer
linear combination of a and b.

This corollary tells us exactly when we can solve the Odd Change Problem:
ax+ by = c has a solution with x, y ∈ Z if and only if gcd(a, b)|c. By applying
Euclid’s algorithm, we can even find a solution. But that does not necessarily
give us the only solution, or give us a way to find more. Nevertheless, we can
explicitly describe all possible solutions. We just need an important lemma first.

Lemma 1.19 (Gauss). Let a, b, c ∈ Z, and suppose that a|bc and gcd(a, c) = 1.
Then a|b.

Proof. Since gcd(a, c) = 1, there exist u, v ∈ Z such that au+ cv = 1. Hence

abu+ bcv = b.

But a|a and a|bc, so a|(abu+ bcv) = b.

With this in mind, we can generate all solutions to the odd change problem.

Proposition 1.20. Let a, b, c ∈ Z and suppose gcd(a, b)|c. Suppose we have a
particular solution x0, y0 ∈ Z to the Diophantine equation ax + by = c. Then
every solution is of the form (x, y) = (x0 + bk, y0 − ak) for k ∈ Z, and every
such pair gives a solution.
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Proof. First, we exclude the cases where a or b is zero, as these are straightfor-
ward. Next note that, if ax0 + by0 = 0, then a(x0 + bk) + b(y0 − ak) = c for
every k. As such, it suffices to show that these are the only possible solutions.
Furthermore, by dividing a, b, c by gcd(a, b) if necessary, we can assume that
gcd(a, b) = 1. Now suppose we have two solutions to ax+ by = c: (x0, y0) and
(x1, y1). Since

ax0 + by0 = c = ax1 + by1,

we must have that
a(x0 − x1) = b(y1 − y0)

and so a|b(y1−y0) and b|a(x0−x1). But gcd(a, b) = 1 and so by Lemma 1.19, we
must have that a|(y1 − y0) and b|(x0 −x1). Thus x1 −x0 = kb and y1 − y0 = ℓa
for some k, ℓ ∈ Z. Now, since

−abk = a(x0 − x1) = b(y1 − y0) = abℓ

we conclude that ℓ = −k. The result then follows: x1 = x0+bk and y1 = y0−ak
for some integer k.

Example 1.21. The Diophantine equation 3x + 18y = 7 has no solutions as
gcd(3, 18) = 3 ∤ 7. The Diophantine equation 5x+ 7y = 53 has infinitely many
solutions, as gcd(5, 7) = 1|53. Note that

3(5)− 2(7) = 1

and so a particular solution is given by

159(5)− 106(7) = 53

and hence the general solution is given by

(x, y) = (159 + 7k,−106− 5k)

for k ∈ Z. In particular, taking k = −22, we get a solution (5, 4) in positive
integers.

1.2 Prime numbers

Lemma 1.19 becomes particularly powerful when applied to prime numbers,
letting us prove an important theorem about the multiplicative structure of the
integers.

Definition 1.22. A positive integer p ∈ N is called prime if it has exactly two
(distinct) divisors, i.e. p ̸= 1 and if d|p, then d ∈ {1, p}. Non-prime integers
greater than or equal to 2 are called composite.

An immediate consequence of this definition is that for any integer n, either
p|n or gcd(p, n) = 1. This lets us conclude an immediate corollary from Lemma
1.19, originally due to Euclid.
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Corollary 1.23 (Euclid). Let p be prime and b, c ∈ Z. If p|bc, then p|b or p|c.

Proof. If p|c, we are done. Otherwise, gcd(p, c) = 1, and so Lemma 1.19 applies
and p|b.

Remark 1.24. Up to positivity and non-oneness, this property uniquely defines
the prime numbers. A positive integer greater than one is prime if and only if
p|bc imples p|b or p|c.

Theorem 1.25 (The fundamental theorem of arithmetic). Up to the order of
the factors, every n ∈ N can be uniquely written as a product of prime numbers
(with repetition).

Proof. If n = p is prime, then n = p is the desired product. If n = 1, we take the
empty product. Otherwise, n has a divisor 1 < a < n. Writing n = ab, where
1 < b < n, we can apply induction to obtain the existence of such a product
representation: we write a and b as a product of primes, and take their product.

To see that this factorisation is unique, suppose

n = p1p2 . . . pr = q1q2 . . . qs

has two factorisations into primes p1, . . . , pr, q1, . . . , qs. Then we have that

p1|p1p2 . . . pr = q1q2 . . . qs

and so, by repeatedly applying Corollary 1.23, we must have that p1|qk for some
qk. But since qk is prime, and p1 ̸= 1, we must have p1 = qk. Thus, we can
divide both factorisations by p1 to obtain

p2p3 . . . pr = q1 . . . qk−1qk+1 . . . qs.

Repeating this argument, or applying induction, lets us conclude that these two
factorisations must be the same, up to order of factors, and hence that the two
factorisations of n must be the same, up to order of factors.

This is a very important result in the structure theory of the integers, and
is one of the key reasons to study prime numbers. An obvious, immediate
question, is to ask how many primes there are. If there were only finitely many,
the integers would be incredibly rigid.

1.2.1 Five proofs of the infinitude of primes.

There are dozens of proofs of there being infinitely many primes, and I encourage
you to explore them as many contain some really interesting ideas. Here, I will
present five of my favourites.

Theorem 1.26 (Euclid). There are infinitely many prime numbers
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Euclid. Suppose there are only finitely many prime numbers p1, . . . , pk and
consider the integer N = p1p2 . . . pk + 1. Clearly pi ∤ N , as pi|(N − 1) and
gcd(N − 1, N) = 1, and pi ∤ 1. But the fundamental theorem of arithmetic tells
us that N must have a prime divisor q, and q must be distinct from p1, . . . , pk.
This gives a contraction, and so there must be infinitely many primes.

Proof. Call a positive integer r ∈ N squarefree ifm2|r implies thatm = ±1. It is
easy to see that every positive integer n can be written uniquely as a product of
a square and a squarefree number n = rs2. Suppose there are only finitely many
primes p1, . . . , pk. Then, every squarefree number r can be written uniquely as
a product of these primes, with each prime appearing exactly once. Hence(

1 +
1

p1

)(
1 + 1

1

p2

)
· · ·
(
1 +

1

pk

)
=

∑
r squarefree

1

r

and furthermore this sum is finite. Recall from analysis that the sum

∞∑
s=1

1

s2

is also finite. Hence, their product∑
r squarefree

∞∑
s=1

1

rs2

is finite. But every positive integer n will appear as the numerator exactly once
in this double sum, and so this product is equal to

∑∞
n=1

1
n , which we know

to be infinite. This gives a contraction, and so there must be infinitely many
primes.

Erdös. Let π(N) = #{p ∈ N | p ≤ N and p prime} be the prime counting
function. Since every squarefree number can be uniquely written as a product
of distinct primes, there are at most 2π(N) squarefree positive integers less than
or equal to N . There are at most

√
N perfect squares less than or equal to N .

Since every positive integer can be written as a product of a squarefree number
and a square, there are at most 2π(N)

√
N positive integers less than or equal to

N . Since there are exactly N positive integers less than or equal to N , we must
have that

N ≤ 2π(N)
√
N.

Rearranging this, we get that π(N) ≥ 1
2 logN , which clearly tends to infinity

as N does.

Fürstenberg. Call a subset U ⊂ Z good if U = ∅ or U is a union of arithmetic
progressions

{x+ an | n ∈ Z}.
Note that every good set is empty or infinite. Good sets can be easily checked
to have the following properties
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• ∅ and Z are good,

• Any union of good sets is good,

• Any finite intersection of good sets is good.

Note that, for fixed m the set {n ∈ Z | m ∤ n} is good:

{n ∈ Z | m ∤ n} =

m−1⋃
k=0

{k +mn | n ∈ Z}.

Hence, for any finite collection of primes p1, . . . , pr, the set

{n ∈ Z | p1 ∤ n, p2 ∤ n, . . . , pr ∤ n} =

r⋂
i=1

{n ∈ Z | pi ∤ n}

is good. Thus, if there are only finitely many primes p1, . . . , pr, the set

{±1} = {n ∈ Z | p1 ∤ n, p2 ∤ n, . . . , pr ∤ n}

is good. But this set is finite and non-empty, and good sets are empty or infinite.
This gives a contraction, and so there must be infinitely many primes.

Meštrović. Suppose there are only finitely many prime numbers 2, 3, p3, p4, . . . , pk
and let P = 3p3p4 . . . pk be the product all the odd primes. If 3|n or pi|n, then
we must have gcd(P, n) > 1, and so the set of all numbers coprime to P is
{1, 2, 22, 23, . . .}.

Note that gcd(P, P − 2)| (P − (P − 2)) = 2, and since 2 ∤ P , we therefore
have gcd(P, P − 2) = 1. Hence P − 2 ∈ {1, 2, 22, . . .}. But 2 ∤ (P − 2): if it
did, then 2 would divide P . Therefore P − 2 = 1 is the only possibility. Hence
P = 3, and 2 and 3 are the only prime numbers. But 5 is prime. This gives a
contraction, and so there must be infinitely many primes.

1.2.2 Factoring with efficiency

In general, it is difficult to determine the factorisation of an integer. It is
often difficult to find any non-trivial divisors. This is mostly a good thing, as
many encryption algorithms rely on factoring being hard, but does make our
computations harder. The best improvement we realistically have is comes from
the following lemma.

Lemma 1.27. Let n ∈ N, n ≥ 2 be a composite number. Then there exists a
prime p|n such that p ≤

√
n.

Proof. If n is composite, then we can write n = ab for integers 1 < a, b < n. If
a, b >

√
n, then we would have

n = ab >
√
n
√
n = n

which is absurd. Therefore, at least one of a or b is at most
√
n, without loss of

generality a. As any prime factor of a is at most a, picking any prime p|a gives
us a p|n with p ≤

√
n.

12



Example 1.28. We can use this lemma to prove that 23 is prime. Note that√
23 <

√
25 = 5, so if 23 is composite, it will have a prime factor less than 5.

As 23 is not divisible by 2 or 3, it therefore must be prime.

Example 1.29. Let us determine the prime factorisation of 284. Since
√
284 <√

289 = 17, we only need to test prime factors up to 17. We quickly find that

284 = 2(142) = 2 · 2 · 71

To check if 71 is prime, we could continue to test primes less than 17, but we
can use our lemma again to reduce our test space to primes less than

√
71 < 9.

As 71 is not divisible by 2, 3, 5, or 7, it must be prime. Therefore the prime
factorisation of 284 is 2 · 2 · 71.

To determine all divisors of 284, we note that every divisor of 284 must be
a product of a subset of its prime divisors. Hence, it suffices to consider all
possible subsets of {2, 2, 71}. We therefore find that the set of divisors of 284 is

{1, 2, 4 = 22, 71, 142 = 2(71), 284 = 22(71)}

1.2.3 p-adic valuations

It is sometimes helpful to consider the exact powers of primes dividing an integer.
We sometimes write pk||n if pk|n, but pk+1 ∤ n, for a prime p, k ≥ 0, and n ∈ Z.
We can also use the notation of valuations.

Definition 1.30. Let n ∈ Z, n ̸= 0, and let p be prime. By the fundamental
theorem of arithmetic, we can write

n = ±
∏
p|n

p prime

pap

for some ap ∈ N. We define the p-adic valuation of n to be

vp(n) =

{
ap if p|n,
0 otherwise.

We extend the definition of vp to 0 by vp(0) = +∞ for every prime p.

Remark 1.31. It is easy to check that pk||n if and only if k = vp(n). That is
to say that the p-adic valuation is the biggest/exact power of p dividing n.

Remark 1.32. It is important to note that vp(n) > 0 for only finitely many
p. This lets us cheat a bit notationally and consider infinite products over
the primes, in which only finitely many prime contribute. In particular, since
vp(n) = 0 for all but finitely many p, we can make sense of the equality

n =
∏

p prime

pvp(n).
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Proposition 1.33. The p-adic valuation satisfies the following properties for
every m,n ∈ Z:

i) vp(mn) = vp(m) + vp(n),

ii) vp(m+ n) ≥ min{vp(m), vp(n)} with equality if vp(m) ̸= vp(n),

iii) m|n if and only if vp(m) ≤ vp(n) for every prime p.

Proof. Exercise!

Example 1.34. For n = 18, we have 18 = 2 · 32, so

v2(18) = 1, v3(18) = 2, vp(18) = 0 for all p ≥ 5.

For n = 14, we have 14 = 2 · 7, so

v2(14) = v7(14) = 1

For n = 196 = 142, we have

v2(196) = v2(14) + v2(14) = 2 = v7(14) + v7(14) = v7(196).

We also have that

1 = v2(214) = v2(18 + 196) ≥ min{v2(18), v2(196)}.

Valuations are a very handy tool for computing, and more importantly prov-
ing, things to do with greatest common divisors.

Theorem 1.35. Let a, b ∈ N. Then

gcd(a, b) =
∏

p prime

pmin(vp(a),vp(b)),

lcm(a, b) =
∏

p prime

pmax(vp(a),vp(b)).

Proof. If d|a and d|b, this is equivalent to vp(d) ≤ vp(a) and vp(d) ≤ vp(b)
for all primes p. This is in turn equivalent to vp(d) ≤ min(vp(a), vp(b)) for all
primes p. Clearly d is maximal among divisors when we have equality for every
p. Therefore

gcd(a, b) =
∏

p prime

pmin(vp(a),vp(b)).

The case for the least common multiple is similar.

Corollary 1.36. If d|a and d|b, then d| gcd(a, b). If a|m and b|m, then lcm(a, b)|m.

Proof. Translating the conditions into statements about p-adic valuations im-
mediately gives the result.
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Corollary 1.37. For a, b ∈ N, gcd(a, b) lcm(a, b) = ab.

Proof.

gcd(a, b) lcm(a, b) =
∏

p prime

pmin(vp(a),vp(b))+max(vp(a),vp(b))

=
∏

p prime

pvp(a)+vp(b)

=

(∏
p

pvp(a)

)(∏
p

pvp(b)

)
= ab,

as min(x, y) + max(x, y) = x+ y.

Corollary 1.37 is quite useful, as it lets us compute least common multiples
(which we have computed up until this point by comparing lists of multiples
to find a common one - very inefficient) in terms of greatest common divisors
(which we can compute reasonably efficiently using Euclid’s algorithm)

Example 1.38. It is quick to compute that gcd(33, 12) = 3, and so

lcm(33, 12) =
33 · 12

gcd(33, 12)
=

33 · 12
3

= 11 · 12 = 132.

1.3 Sums of divisors and multiplicative functions

Definition 1.39. Let f : N → C be a function. We call f strongly multiplicative
if

f(mn) = f(m)f(n) for all m,n ∈ N.

We call f (weakly) multiplicative if

f(mn) = f(m)f(n) for all m,n ∈ N such that gcd(m,n) = 1.

Strongly multiplicative functions are completely determined by their val-
ues on prime numbers, while (weakly) multiplicative functions are completely
determined by their values of powers of prime numbers.

Example 1.40. Some examples of strongly multiplicative functions include

• f(n) = 1,

• f(n) = nk for fixed k ∈ N,

•

f(n) =

{
1 if 2|n,
−1 otherwise,
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•

f(n) =


0 if 2|n,
1 if n = 4k + 1,

−1 if n = 4k + 3.

Strongly multiplicative functions are usually pretty rare.

Example 1.41. Some examples of (weakly) multiplicative functions include

• f(n) = gcd(n, k) for some fixed k ∈ N,

• f(n) =
∑
d|n d

k for some fixed integer k ≥ 0,

• f(n) = #{d ∈ N | d ≤ n, gcd(d, n) = 1}.

The case of f(n) =
∑
d|n d

k is going to be our next focus, and gets the special
notation

σk(n) :=
∑
d|n

dk

for k ≥ 0.

Example 1.42.

σ0(12) = 1 + 20 + 30 + 40 + 60 + 120 = 6 (This counts divisors)

σ1(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 (This sums the divisors)

σ2(12) = 1 + 4 + 9 + 16 + 36 + 144 = 210.

Theorem 1.43. For n ∈ N, we have the following formulae:

σ0(n) =
∏
p|n

(vp(n) + 1))

σk(n) =
∏
p|n

(
pk(vp(n)+1) − 1

pk − 1

)
for k > 0

where the product is taken over prime factors of n.

Remark 1.44. It is actually fine for use to take a product over all primes in
the above formulae, as for p ∤ n, the corresponding factor will be 1.

Proof. Lets start with the case of k = 0. The sum σ0(n) =
∑
d|n 1 counts the

number of divisors of n. All products will be taken over prime numbers. Writing

n =
∏
p|n

pvp(n)

we must have that the divisors of n are exactly those natural numbers that can
be written in the form

d =
∏
p|n

pap
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where 0 ≤ ap ≤ vp(n), as d|n if and only if vp(d) ≤ vp(n) for every prime p.
Thus we have vp(n)+ 1 choices for the value of ap for each p|n. Hence, we have
a total of ∏

p|n

(vp(n) + 1))

choices for the tuple (ap)p|n, each of which corresponds bijectively to a divisor
of n.

For k > 0, we can write the divisor sum as

σk(n) =
∑

0≤a1≤vp1 (n)
0≤a2≤vp2 (n)

...
0≤ar≤vpr (n)

pka11 pka22 . . . pkarr

where {p1, . . . , pr} is the set of primes dividing n. We can factorise this sum as

σk(n) =

vp1 (n)∑
a1=0

(pk1)
a1

vp2 (n)∑
a2=0

(pk2)
a2

 · · ·

vpr (n)∑
ar=0

(pkr )
ar

 ,

or, more succinctly, as

σk(n) =
∏
p|n

vp(n)∑
a=0

(pk)a


Applying the formula for the sum of a geometric series

N∑
i=0

xi =
xN+1 − 1

x− 1

we immediately obtain the claimed result.

Example 1.45. Recall that 12 = 22 · 3. Hence

σ0(12) = (2 + 1)(1 + 1) = 6

σ1(12) =

(
23 − 1

2− 1

)(
32 − 1

3− 1

)
= 28

σ2(12) =

(
26 − 1

22 − 1

)(
34 − 1

32 − 1

)
= 210.

Theorem 1.46. The divisor sum functions are multiplicative.

Proof. We leave the case of k = 0 as an exercise to the reader, and consider
k > 0. Let m,n ∈ N be natural numbers and write

m =
∏
p|m

pvp(m), n =
∏
q|n

qvq(n),
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again taking products over prime divisors. Now suppose gcd(m,n) = 1. This
implies that they have no common prime factors, and so the set

{p prime | p|mn}

is equal to the disjoint union of the set of prime divisors of m and the set of
prime divisors of n: if p|mn then p divides exactly one of m or n. This also
means that

vp(mn) = vp(m) + vp(n) =

{
vp(m) if p|m,
vp(n) otherwise.

Hence

σ(mn) =
∏
p|mn

(
pk(vp(mn)+1) − 1

pk − 1

)

=
∏
p|m

(
pk(vp(mn)+1) − 1

pk − 1

)∏
p|n

(
pk(vp(mn)+1) − 1

pk − 1

)

=
∏
p|m

(
pk(vp(m)+1) − 1

pk − 1

)∏
p|n

(
pk(vp(n)+1) − 1

pk − 1

)
= σk(m)σk(n).

2 Modular arithmetic

Recall that an equivalence relation on a set S is a subset R ⊂ S × S such that

i) For every x ∈ S, (x, x) ∈ R,

ii) For every x, y ∈ S (x, y) ∈ R if and only if (y, x) ∈ R,

iii) For every x, y, z ∈ S, if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

These properties are called reflexivity, symmetry, and transitivity, respectively.
We often write x ∼ y for (x, y) ∈ R. We may even write x ∼R y if we need to
be extremely clear about what relation we are talking about.

Definition 2.1. Let n ∈ N. We define an equivalence relation, called congru-
ence, on Z by

a ∼ b ⇔ n|(a− b).

We say that a is congruent to b modulo (or just mod) n, and often write

a ≡ b (mod n)

and call n the modulus.
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Lemma 2.2. Congruence is a well defined equivalence relation.

Proof. We have that a ∼ a, as n|0 = (a − a) for every a ∈ Z, and as n|(a − b)
is equivalent to there existing k ∈ Z such that a− b = kn, then clearly b− a =
(−k)n, so n|(b− a). Hence a ∼ b if and only if b ∼ a.

Finally, if a ∼ b and b ∼ c for integers a, b, c, then n|(a − b) and n|(b − c).
Thus n divides any integer linear combination of them. In particular

n|(a− c) = (a− b) + (b− c).

Thus, congruence is a well defined equivalence relation.

Example 2.3. For n = 5, 22 ∼ 17 ∼ 2 ∼ −3 ∼ −8, or

22 ≡ 17 ≡ 2 ≡ −3 ≡ −8 (mod 5).

Note that a ≡ b (mod 1) for every a, b ∈ Z.

We call the set
a := {b ∈ Z | b ∼ a}

the equivalence class of a modulo n. By standard results about equivalence
relations, the integers Z are partitioned into a set of equivalence classes. We
denote this set of equivalence classes by Z/nZ.

Example 2.4. Modulo 2, there are two equivalence classes

0 = {. . . ,−4,−2, 0, 2, 4, . . .},
1 = {. . . ,−3,−1, 1, 3, 5, . . .}.

Modulo 5, there are 5 equivalence classes

0 = {. . . ,−5, 0, 5, 10, . . .}
1 = {. . . ,−4, 1, 6, 11, . . .}
2 = {. . . ,−3, 2, 7, 12, . . .}
3 = {. . . ,−2, 3, 8, 13, . . .}
4 = {. . . ,−1, 4, 9, 14, . . .}

Note that there are many choices of representative for an equivalence class.
Modulo 5, we have equality of the equivalence classes

2 = 7 = −3 = 222.

Theorem 2.5. The set Z/nZ has exactly n elements, with representatives
0, 1, . . . , n− 1.
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Proof. We first note that the equivalence classes

0, 1, . . . , n− 1

give n distinct classes. Suppose k = ℓ, with 0 ≤ k, l < n. Then n|k − ℓ, but
since

−n < k − ℓ < n

the only multiple of n in this range is 0. Hence k = l. Thus, if k ̸= ℓ for
0 ≤ k, ℓ < n, we must have k ̸= ℓ in Z/nZ.

It remains to show that these are all the equivalence classes modulo n, i.e.
that every integer is in one of 0, 1, . . . , n− 1. Suppose m ∈ Z and consider
Euclidean division by n, so that we write m = nq + r with 0 ≤ r < n. Since
n|m− r, we must have that m ∼ r and hence m ∈ r.

Definition 2.6. We refer to the equivalence class on k in Z/nZ as the con-
gruence class of k mod n, and often refer to the representative of this class in
{0, 1, . . . , n− 1} as the residue or reduction of k mod n. This is not the unique
choice of representative referred to as a residue. Any complete set of choice of
representatives is called a residue set, though we usually reserve the term for
“small” representatives.

We actually have that Z/nZ is much more than just a set: it is a ring!
That means that there it forms a group under addition, and has a well behaved
multiplication such that

k · (ℓ+m) = k · ℓ+ k ·m.

Definition 2.7. Given k, ℓ ∈ Z/nZ, define

k + ℓ := k + ℓ, k · ℓ := kℓ.

Proposition 2.8. These are well defined operations: they are independent of
choice of representative.

Proof. Suppose k = k′ and ℓ = ℓ′. To show that these operations are well
defined, it suffices to show that

k + ℓ = k′ + ℓ′, kℓ = k′ℓ′.

By definition n|k − k′ and n|ℓ− ℓ′, and hence

n| ((k − k′) + (ℓ− ℓ′)) = ((k + ℓ)− (k′ + ℓ′)) .

Therefore k + ℓ = k′ + ℓ′. To see that multiplication is well defined, we need to
be a bit more explicit. We can write

k = k′ + an, ℓ = ℓ′ + bn

for some integers a and b. Hence

kℓ = (k′ + an)(ℓ′ + bn) = k′ℓ′ + (a+ b+ abn)n

and so n|kℓ− k′ℓ′, and so kℓ = k′ℓ′.
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Corollary 2.9. If k ≡ k′ (mod n) and ℓ ≡ ℓ′ (mod n), then

k + ℓ ≡ k′ + ℓ′ (mod n)

kℓ ≡ k′ℓ′ (mod n)

−k ≡ −k′ (mod n)

That final congruence is important, as it shows that we have well defined
additive inverses in Z/nZ! In fact, with the exception of the cancellation of fac-
tors, we have shown that arithmetic mod n is essentially the same as arithmetic
in Z.

Example 2.10. We have that 7 ≡ 2 (mod 5), and so

10 = 7 + 3 ≡ 2 + 3 = 5 ≡ 0 (mod 5).

Similarly, we can reduce 21 modulo 5 by factorisation

21 = (7)(3) ≡ 2)(3) ≡ 6 ≡ 1 (mod 5).

Remark 2.11. While 0, 1, . . . , n− 1 is the standard choice of representatives for
elements of Z/nZ, it can make arithmetic in Z/nZ easier if we allow ourselves
to choose more symmetric representatives. For example in Z/9Z, a handy choice
of residue set is

{−4,−3,−2,−1, 0, 1, 2, 3, 4}.

Modular arithmetic and reduction modulo n are very useful tools for study-
ing the solutions of Diophantine equations, as integer solutions induce solutions
in Z/nZ.

Definition 2.12. Given a ∈ Z, k ∈ Z/nZ, define ak to be the equivalence class
given by adding k to itself a times:

ak = k + · · ·+ k = ak.

With this definition in mind, we can make sense of the evaluation of a a
polynomial F (x1, . . . , xr) with integer coefficients at an element (k1, . . . , kr) ∈
(Z/nZ)r to obtain F (k1, . . . , kr), an element of Z/nZ.

Theorem 2.13. Let F (x1, . . . , xr) be a polynomial with integer coefficients, and
C ∈ Z, and suppose there exists k1, . . . , kr ∈ Z such that F (k1, . . . , kr) = C.
Then F (k1, . . . , kr) = C in Z/nZ

Proof. This is an immediate consequence of the definition of arithmetic opera-
tions in Z/nZ. The fancy way to say this is that the map

Z → Z/nZ
k 7→ k

is a ring homomorphism.
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Corollary 2.14. If F (k1, . . . , kr) = C has no solutions in Z/nZ, then

F (x1, . . . , xr) = C

has no integer solutions.

This is a very useful result for showing an equation has no solutions, as there
are only finitely many possible solutions in Z/nZ. Finding a solution mod n
doesn’t strictly help us find a solution in integers, but it does help inform us
about the space of possible solutions. Often, an integer solution can be found
by finding a solution mod n for large enough n - this is a point we will return
to later.

In practical computations, it is usually easier to express this in the (mod n)
notation: If F (k1, . . . , kr) = C, then

F (k1, . . . , kr) ≡ C (mod n)

and if
F (k1, . . . , kr) ≡ C (mod n)

has no solutions, then F (x1, . . . , xr) has no integer solutions.

Example 2.15. Does x2+y2 = 2711 have integer solutions? Lets consider this
as an equation in Z/4Z. In Z/4Z4 have have that

x 0 1 2 3

x2 0 1 0 1

and hence x2 + y2 ∈ {0, 1, 2}. But 2711 = 4(677) + 3, so 2711 = 3. Thus, we
cannot find a solution in Z/4Z and therefore there can be no integer solutions.

Let us consider a similar example, using (mod n) notation.

Example 2.16. Does 5x2− 7y2 = 4k+3 have integer solutions? Consider this
modulo 4. We want to solve

5x2 − 7y2 ≡ 4k + 3 (mod 4).

Reducing both sides modulo 4 this becomes

x2 + y2 ≡ 3 (mod 4)

but we have seen that, modulo 4, x2+ y2 can only be congruent to 0, 1, 2. Hence
there can be no solutions modulo 4 and no integer solutions.

Example 2.17. Does x3+y3+z3 = 31 have integer solutions? Let us consider
this equation modulo 9. Constructing a table similarly to before, we see that
the only possible residues of a cube mod 9 are {−1, 0, 1}, and hence, mod 9,
x3 + y3 + z3 must be equivalent to one of {0,±1,±2,±3}. But

31 ≡ 4 (mod 9)

and hence there can be no integer solutions.
A similar argument eliminates the possibility of integer solutions to x3+y3+

z3 = 32, but we can say nothing about x3 + y3 + z3 = 33 from considerations
modulo 9.
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2.1 Cancellation and invertible elements

We have discussed addition, subtraction and multiplication in Z/nZ, but have
avoided any mention of division or cancellation of common factors. This is
because not every element of Z/nZ has a multiplicative inverse, as is well illus-
trated by trying to solve simple linear congruence equations.

Example 2.18. Consider the congruence 2x ≡ 0 (mod 6). If this were an
equation in the integers, it would have a unique solution x = 0. But in Z/6Z,
both x ≡ 0 (mod 6) and x ≡ 3 (mod 6) are solutions.

On the other side of the spectrum, the congruence 2x ≡ 1 (mod 6) has no
solutions in Z/6Z! Unlike over Q, linear equations are not guaranteed to have
solutions, let alone unique ones!

We can only guarantee a unique solution to linear equations for in certain
cases, where the coefficient of x is invertible.

Definition 2.19. An element k ∈ Z/nZ is called invertible if there exists ℓ such
that k · ℓ = 1.

Note that if k is invertible, then its inverse ℓ is unique, and we denote it by

k
−1

.

Example 2.20. In Z/9Z, 2 is invertible, with inverse 5, as

2 · 5 = 10 = 1

This means that, for example, the congruence

2x ≡ 3 (mod 9)

has a unique solution in Z/9Z given by

x ≡ 5(2x) ≡ 5(3) ≡ 6 (mod 9).

Theorem 2.21. Let k ∈ Z, n ∈ N. Then k is invertible in Z/nZ if and only if
gcd(k, n) = 1.

Remark 2.22. Note that since gcd(k + an, n) = gcd(k, n), this condition is
independent of the choice of representative of congruence class.

Proof. The class k is invertible if and only if there exists an ℓ ∈ Z such that
kl = 1 in Z/nZ, which occurs if and only if

kℓ ≡ 1 (mod n)

for some ℓ ∈ Z, which holds if and only if n|kℓ− 1 for some ℓ ∈ Z, which is true
if and only if kℓ = an+ 1 for some a, ℓ ∈ Z, which is equivalent to kℓ− an = 1
for some a, ℓ ∈ Z, which by Bézout’s Theorem (Theorem 1.15) is equivalent to
gcd(k, n) = 1.
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Example 2.23. Recall that gcd(17, 7) = 1. Euclid’s algorithm lets us compute

7
−1

in Z/17Z:

17 = 2(7) + 3,

7 = 2(3) + 1.

and hence 1 = 5(7)−2(17). Thus, 5(7) ≡ 1 (mod 17), and so 5 = 7
−1

in Z/17Z.

We can also characterise invertibility in terms of our ability to cancel “com-
mon factors”, and hence find unique solutions to linear equations.

Theorem 2.24. A congruence class k ∈ Z/nZ is invertible if and only if

k ·A = k ·B ⇒ A = B

for all A,B ∈ Z/nZ.

Proof. If k is invertible, then

k ·A = k ·B ⇒ k
−1 · k ·A = k

−1 · k ·B
⇒ 1 ·A = 1 ·B
⇒ A = B.

Conversely, if
k ·A = k ·B ⇒ A = B

for all A,B ∈ Z/nZ, then the map

Z/nZ → Z/nZ
a 7→ k · a

is injective. Since the domain and codomain are finite sets of the same cardi-
nality, this means that it is a bijection and therefore surjective. In particular,
this means there exists an ℓ ∈ Z/nZ such that k · ℓ = 1.

Recall that, for p a prime, gcd(k, p) = 1 for all k not a multiple of p. As such,
every non-zero congruence class in Z/pZ is invertible! In fact, this characterises
prime numbers.

Theorem 2.25. Let n ∈ N be at least 2. Then the following are equivalent:

1. Every non-zero k ∈ Z/nZ is invertible,

2. For all k, ℓ ∈ Z/nZ, k · ℓ = 0 if and only if k = 0 or ℓ = 0,

3. n is a prime number.

Proof. 1) ⇒ 2) If k · ℓ = 0, and k ̸= 0, then k is invertible, and hence

ℓ = k
−1 · k · ℓ = k

−1 · 0 = 0.
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2) ⇒ 3) If 2) holds, then suppose n = ab for some 1 ≤ a, b ≤ n. Then

a · b = ab = n = 0

and so a = 0 or b = 0. Without loss of generality, we take a = 0. This
means that n|a, and since 1 ≤ a ≤ n, we must have a = n, b = 1.
Therefore n has no factors other than 1 and n, and so n is prime.

3) ⇒ 1) If n is prime, gcd(k, n) = 1 for all k not a multiple of n, i.e. k ̸= 0.
Hence all non-zero k are invertible.

Definition 2.26. We denote the set of invertible elements in Z/nZ by (Z/nZ)×,
and define Euler’s totient function

ϕ(n) := |(Z/nZ)×| = #{1 ≤ d ≤ n | gcd(k, n) = 1}

We have seen ϕ(n) before! I gave this as an example of a multiplicative
function, which is a property we will soon return to.

Example 2.27. We have that ϕ(3) = 2, ϕ(6) = 2, ϕ(7) = 6, ϕ(12) = 4.

Proposition 2.28. The set (Z/nZ)× forms a group under multiplication

Proof. That multiplication is associative follows from the associativity of mul-
tiplication of integers. Clearly 1 ∈ (Z/nZ)× is an identity element, and every
element of (Z/nZ)× has an inverse in (Z/nZ)×, by definition. Thus, it really
only remains to check that the product of two invertible elements is invertible.
But if gcd(k, n) = 1 and gcd(ℓ, n) = 1, we must have gcd(kℓ, n) = 1, so the
claim follows.

2.2 The Chinese remainder theorem

One of the advantages of working with modular arithmetic when looking at
Diophantine equations is that, for small n, you can very quickly check all possi-
bilities. The downside is that modular arithmetic cannot tell us if a Diophantine
equation has solutions, only when it fails to have solutions.

One situation where modular arithmetic can be useful in finding solutions is
when we are looking for solutions of a certain size. Indeed, if I have a solution to
a Diophantine equation in Z/NZ, there is at most one possible integer solution
in [0, N − 1]. But this isn’t necessarily helpful, as we still might need to test
essentially every possible solution. The goal of this section is to describe a
method for solving a Diophantine equation modulo large N in terms of solutions
modulo smaller n. As a side effect, we will show that the totient function is
multiplicative.
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2.2.1 Reduction maps between moduli

The map

φn : Z → Z/nZ
k 7→ k

is a ring homomorphism (which is to say that it respects both the additive
and multiplicative structures), often called a reduction map. I would like to
construct a ring homomorphism

ψn,m : Z/mZ → Z/nZ

compatible with the reduction maps in the sense that φn = ψn,m ◦ φn, or
equivalently that the following diagram commutes:

Z

Z/mZ Z/nZ
φm

φn

ψn,m

Remark 2.29. All the notation for these maps is non-standard. To the best of
my knowledge, there is no standardised notation, and so a choice was made.

Theorem 2.30. The map ψn,m exists if and only if n|m.

Proof. If such a map exists, it must map

ϕm(k) = k (mod m) 7→ k (mod n) = ϕn(k)

where we use modulo notation to help keep track of our modulus. This map is
well defined if and only if

k ≡ k′ (mod m) ⇒ k ≡ k′ (mod n)

which is equivalent to
m|(k − k′) ⇒ n|(k − k′)

This implication is clearly true if n|m. Conversely, if this implication holds,
then it holds for (k, k′) = (m, 0) and since m|m, we must have n|m.

Example 2.31. We have a reduction map ψ3,9 : Z/9Z → Z/3Z is given by

0, 3, 6 7→ 0,

1, 4, 7 7→ 1,

2, 5, 8 7→ 2.

We cannot have a reduction map ψ4,9, and to see this note that 13 = 4 in Z/9Z,
but

13 = 1 ̸= 0 = 4

in Z/4Z.
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2.2.2 The Chinese remainder problem

The Chinese remainder problem asks when we can solve the simultaneous con-
gruences {

x ≡ a (mod m),

x ≡ b (mod n).

Using reduction maps, we can give a necessary condition for a solution to exist,
but not immediately a sufficient condition. Let d = gcd(m,n). Then, if{

k ≡ a (mod m),

k ≡ b (mod n)

for some k ∈ Z, we must have that k has the same image via both sides of the
diagram

Z

Z/mZ Z/nZ

Z/dZ

φm

φd

φn

ψd,m

ψd,n

which is to say that we must have

ψd,m(a) = ψd,m(φm(k)) = φd(k) = ψd,n(φn(k)) = ψd,n(b).

Example 2.32. We cannot solve{
x ≡ 4 (mod 9),

x ≡ 3 (mod 6),

as
ψ3,6(3) = 0 ̸= 1 = ψ3,9(4)

The easiest way to guarantee that this condition holds is to restrict our
attention to the case where the moduli m and n are coprime.

Theorem 2.33. Let m,n ∈ N be such that gcd(m,n) = 1. Then the map

Φ : Z/mnZ → (Z/mZ)× (Z/nZ)
k (mod mn) 7→ (k (mod m), k (mod n)) = (ψm,mn(k), ψn,mn(k))

is a bijection, and hence there is a unique solution to{
x ≡ a (mod m),

x ≡ b (mod n).

modulo mn.
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Proof. We will construct an explicit inverse to the map Φ, proving that it is a
bijection and giving the solution modulo mn simultaneously.

Since m,n are coprime, there exist u, v ∈ Z such that mu + nv = 1 and
hence

mu ≡ 1 (mod n)

nv ≡ 1 (mod m)

Thus we have that

Φ(mu (mod mn)) = (0 (mod m), 1 (mod n))

and
Φ(nv (mod mn)) = (1 (mod m), 0 (mod n))

Since the reduction maps are ring homomorphisms, i.e they preserve addition
and multiplication, we must have that

Φ(smu+ tnv (mod mn)) = (t (mod m), s (mod n))

for all integers s, t ∈ Z. Thus Φ is clearly surjective, from a set of size mn to a
set of size m× n = mn, and is therefore a bijection, with inverse

(t (mod m), s (mod n)) 7→ smu+ tnv (mod mn).

Example 2.34. Here we will give two methods to find k ∈ Z such that{
k ≡ 3 (mod 7),

k ≡ 8 (mod 17).

The first approach uses the bijection from Theorem 2.33. We have that

1 = 5(7)− 2(17)

so mu = 35 and nv = −34. Hence Φ−1(t, s = 35s− 34t). In our case this gives

k ≡ 8(35)− 3(34) = 178 (mod 119)

as a solution. We can quickly check that

178 = 25(7) + 3,

178 = 10(17) + 8.

By reducing 178 modulo 119, we can obtain a smaller solution of k = 59, and the
general solution will be k = 59 + 119ℓ for some ℓ ∈ Z. An alternative approach

that can be useful when you now there multiplicative inverse of one modulus
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modulo the other is to note that if k ≡ 3 (mod 7), then k = 7ℓ + 3. Hence, if
k ≡ 8 (mod 17), we must have

7ℓ+ 3 ≡ 8 (mod 17)

7ℓ ≡ 5 (mod 17)

35ℓ ≡ 25 (mod 17)

ℓ ≡ 25 ≡ 8 (mod 17)

and so ℓ = 17m + 8. Thus k = 7(17m + 8) + 3 = 119m + 59 is the general
solution. This second approach also sometimes can be used to solve simultaneous
congruences where the moduli are not coprime.

2.2.3 Chinese remainders and the totient function

We can use the (proof of the) Chinese remainder theorem to deduce a formula
for Euler’s totient function ϕ(n) in terms of the prime factors of n, via the
following proposition

Proposition 2.35. For m,n ∈ N coprime, the bijection

Φ : Z/mnZ → (Z/mZ)× (Z/nZ)

induces a bijection

Φ : (Z/mnZ)× → (Z/mZ)× × (Z/nZ)×

between the groups of invertible elements.

Proof. Since Φ is already known to be a bijection, it suffices to show that

Φ(k) ∈ (Z/mZ)× × (Z/nZ)×

if and only if k ∈ (Z/mnZ)×.
Suppose that k ∈ (Z/mnZ)×. Then there exist ℓ ∈ Z such that kℓ ≡ 1

(mod mn) and hence kℓ = amn+1 for some a ∈ Z. Thus kℓ ≡ 1 (mod m) and
kℓ ≡ 1 (mod n), and so

Φ(k) ∈ (Z/mZ)× × (Z/nZ)×.

To show the converse, it suffices to show that if k is not invertible in Z/mnZ,
then Φ(k) is not invertible in (Z/mZ)×(Z/nZ). If k is not invertible in Z/mnZ,
then there exists a C ∈ Z such that kC ≡ 0 (mod mn) but C ̸≡ 0 (mod mn),
as a consequence of Theorem 2.24. Thus

kC ≡ 0 (mod m), and kC ≡ 0 (mod n).

If m|C and n|C, then mn|C, since gcd(m,n) ̸= 1. Thus

C ̸≡ 0 (mod m), or C ̸≡ 0 (mod n)

and so k is not invertible in at least one of (Z/mZ)× or (Z/nZ)×, and so Φ(k)
is not invertible in (Z/mZ)× × (Z/nZ)×. Thus Φ restricts to a bijection.
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Corollary 2.36. For m,n ∈ N with gcd(m,n) = 1, ϕ(mn) = ϕ(m)ϕ(n): the
totient function is multiplicative.

Proof. Since we have a bijection

Φ : (Z/mnZ)× → (Z/mZ)× × (Z/nZ)×

we have an equality of their cardinalities:

ϕ(mn) = |(Z/mnZ)×| = |(Z/mZ)× × (Z/nZ)×|
= |(Z/mZ)×| × |(Z/nZ)×| = ϕ(m)ϕ(n).

Corollary 2.37. Let n =
∏
p|n p

vp(n) ∈ N. Then

ϕ(n) =
∏
p|n

(p− 1)pvp(n)−1 = n
∏
p|n

(
1− 1

p

)
.

Proof. The final equality follows by factoring out pvp(n) from each term in the
product, so we just need to prove the first equality. Since gcd(pa, qb) = 1 for
distinct primes p and q, we can use the previous corollary to show that

ϕ(n) = ϕ

∏
p|n

pvp(n)

 =
∏
p|n

ϕ(pvp(n))

and hence it suffices to show that ϕ(pm) = (p− 1)pm−1. But recall that

ϕ(pm) = #{1 ≤ d ≤ pm | gcd(d, pm) = 1}
= #{1 ≤ d ≤ pm | gcd(d, p) = 1}
= #{1 ≤ d ≤ pm | p ∤ d}

There are pm integers in the range 1, 2, . . . , pm, and the multiples of p are
p, 2p, . . . , pm−1(p), we have that there are pm − pm−1 integers coprime to pm in
this range. Hence

ϕ(pm) = pm − pm−1 = (p− 1)pm−1

as required.

2.3 Order and primitive roots

Theorem 2.38. Let S be a finite set and let f : S → S be any function. Pick
some s0 ∈ S and define a sequence by sm+1 = f(sm). Then the sequence {sm}
is ultimately periodic: there exist k ∈ N and N ≥ 0 such that sm+k = sm for all
m ≥ N .
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Proof. Since S is finite, eventually f(sm) must take a value we’ve seen before,
from which the claim follows.

Definition 2.39. Let k ∈ Z/nZ. We define a sequence by s0 = 0 and sm+1 =
sm+k, so that sm = mk for all m ≥ 0. The additive order of k, denoted AO(k)
is the period of the sequence {sm}

Example 2.40. Let k = 4 ∈ Z/6Z. Then we have

m 0 1 2 3 4 5

sm 0 4 2 0 4 2

and so AO(4) = 3.

Theorem 2.41. For k ∈ Z/nZ, the sequence sm = mk is periodic with period

AO(k) =
n

gcd(k, n)
.

Proof. As sn = nk = 0 = s0, we have that the sequence is periodic. As such, it
suffices to find the minimal positive m such that sm = mk = 0. If mk = 0, then
mk is a multiple of n and a multiple of k, and hence a multiple of lcm(k, n). By
minimality of m, we must have that mk = lcm(k, n). The result then follows
on recalling that

lcm(k, n) gcd(k, n) = kn.

Definition 2.42. Let k ∈ (Z/nZ)× and define a sequence by t0 = 1, tm+1 =
k · tm so that tm = k

m
for all m ≥ 0. The multiplicative order, denoted by

MO(k) is the period of tm.

Example 2.43. Let k = 4 ∈ Z/7Z. Then

m 0 1 2 3 4 5 6

tm 1 4 2 1 4 2 1

and so MO(4) = 3.

Theorem 2.44 (Euler’s theorem). For all k ∈ (Z/nZ)×, kϕ(n) = 1.

Corollary 2.45. We can view this as a consequence of Lagrange’s theorem,
which say that for any finite group G, and any g ∈ G, g|G| = 1. (Z/nZ)×
is a group of order ϕ(n), so we get the claim. We can alternatively write the
elements of

(Z/nZ)× = {m1, . . . ,mϕ(n)}.
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As k ∈ (Z/nZ)× is invertible, the map

(Z/nZ)× → (Z/nZ)×,
m 7→ km

is a bijection and so

(Z/nZ)× = {km1, . . . , kmϕ(n)}.

Multiplying every element in (Z/nZ)× using both of these presentations, we get
that

m1m2 . . .mϕ(n) = (km1 . . . kmϕ(n) = k
ϕ(n) ·

(
m1 . . .mϕ(n)

)
.

Cancelling m1 . . .mϕ(n), we get that

k
ϕ(n)

= 1.

Corollary 2.46 (Fermat’s Little Theorem). For all k ∈ Z/pZ, kp = k.

Proof. For k ̸= 0, Euler’s theorem gives that k
p−1

= 1 and hence k
p
= k. The

result also holds trivially for k = 0.

Corollary 2.47. For all k ∈ (Z/nZ)×, the sequence tm = k
m

is periodic with
period MO(k)|ϕ(n).

Proof. The sequence tm is periodic as a consequence of Theorem 2.44 Let m =
MO(k), so that k

m
= 1. This is the minimal such positive integer, so m ≤ ϕ(n),

and so we can write ϕ(n) = am+ r for some a > 0 and 0 ≤ r < m. Then

1 = k
ϕ(n)

= k
am+r

= (k
m
)a · kr = 1

a · kr = k
r
.

So, by the minimality of m, we must have r = 0 and hence m|ϕ(n).

Corollary 2.48. For all k ∈ (Z/nZ)×, and so all s, t ∈ Z, s ≡ t (mod ϕ(n))

implies that k
s
= k

t
in (Z/nZ)×.

Proof. If s ≡ t (mod ϕ(n)), then s = aϕ(n) + t for some a ∈ Z. Hence

k
s
= (k

ϕ(n)
)a · kt = 1

a · kt = k
t
.

Example 2.49. What is the final digit of (1127)2024? The last digit of any
integer is determined by its value modulo 10. Note that

ϕ(10) = 10

(
1− 1

2

)(
1− 1

5

)
= 4

and that 2024 ≡ 0 (mod 4). Therefore

72024 ≡ 70 ≡ 1 (mod 10)

and so the last digit of (1127)2024 is 1.
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2.3.1 Primitive roots

Definition 2.50. Let k ∈ Z, and n ∈ N be coprime. We call k (and k ∈
(Z/nZ)×) a primitive root modulo n if MO(k) = ϕ(n).

Remark 2.51. A residue k is a primitive root if it is a root of xϕ(n) − 1 in
Z/nZ, and not of any xd − 1 for d < ϕ(n).

Example 2.52. MO(4) = 3 < ϕ(7) = 6 in (Z/7Z)×, so 4 is not a primitive
root modulo 7. But 3 is:

m 1 2 3 4 5 6

3
m

3 2 6 4 5 1

There are no primitive roots mod 8. We would need an element of order ϕ(8) =

4, by k
2
= 1 for every k ∈ N coprime to 8.

Remark 2.53. Since |(Z/nZ)×| = ϕ(n), k is a primitive root modulo n if and
only if k generates (Z/nZ)× as a group.

Finding a primitive root makes determining multiplicative orders slightly
easier, but it is generally hard to find one, if one even exists.

Lemma 2.54. Let k ∈ (Z/nZ)×. Then for all m ∈ Z,

MO(k
m
) =

MO(k)

gcd(m,MO(k))
.

Proof. Clearly (k
m
)MO(k) = 1, so MO(k

m
) ≤ MO(k). In fact, by division, we

must have that MO(k
m
)|MO(k).

Letting s = MO(k
m
), we have that k

ms
= 1, and so by division, ms is a

multiple of MO(k), and a multiple ofm. Hence it is a multiple of lcm(m,MO(k)).
By minimality of s, we must have ms = lcm(m,MO(k)), from which the claim
follows.

Corollary 2.55. Let k ∈ (Z/nZ)×, and suppose g is a primitive root. Then

there exists a unique 0 ≤ d < ϕ(n) such that gd = k and MO(k) = ϕ(n)
gcd(d,ϕ(n)) .

Corollary 2.56. If there exist primitive roots in (Z/nZ)×, then there exist
exactly ϕ(ϕ(n)) of them.

Proof. Let g ∈ (Z/nZ)× be a primitive root. Then gd is a primitive root if and
only if MO(gd) = ϕ(n), which occurs if and only if gcd(d, ϕ(n)) = 1. From the
definition of the totient function, there are exactly ϕ(ϕ(n)) such d such that
0 ≤ d < ϕ(n).
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2.3.2 Finding primitive roots modulo primes

Lemma 2.57. Let p be a prime number, and let F (x) = xd+ ad−1x
d−1 + · · ·+

a1x + a0 be a polynomial with coefficients in Z/pZ. Then F has at most d
distinct solutions in Z/pZ.

Proof. We first sketch that if k is solution of F (x) = 0, then F (x) = (x−k)G(x)
for some polynomial G modulo p. Since every non-zero element of Z/pZ is
invertible, we can give the usual division argument: we write F (x) = (x −
k)G(x) + R(x) for some polynomial R of degree less than that of (x − k), i.e
R(x) = r. Then, if F (k) = 0, we must have r = 0, from which the claim follows.

Now it suffices to show that if ℓ ̸= k and F (ℓ) = 0, then G(ℓ) = 0, and so
we can induct on degree. But if F (ℓ) = 0, then

(ℓ− k)G(ℓ) = 0

and since ℓ− k is invertible for ℓ ̸= k, we have that G(ℓ) = 0.

Lemma 2.58. For all n ∈ N,
∑
d|n ϕ(d) = n.

Proof. Consider the fractions 0
n ,

1
n ,

2
n , . . . ,

n−1
n . When we simplify this, we get

fractions a
d with gcd(a, d) = 1. There will be exactly ϕ(d) simplified fractions

with denominator d, and so we must have
∑
d|n ϕ(d) = n.

Theorem 2.59. For all primes p, there are ϕ(p − 1) > 0 primitive roots in
(Z/pZ)×.

Proof. As ϕ(p) = p−1, this will follow from Corollary 2.56 if we can show there
is at least one primitive root. To show that a primitive root exists, let

ψ(d) = #{k ∈ (Z/pZ)× | MO(k = d}

If this set is empty ψ(d) = 0. Otherwise, then for pick an element k of order d,
the set

{1, k, k2, . . . , kd−1}
gives d distinct roots to the equation xd − 1. Corollary 2.57 tells us that these
are all the roots, and hence every element of order d is a power of k. And so

{ℓ ∈ (Z/pZ)× | MO(ℓ) = d} = {km | 0 ≤ m < d, MO(k
m

= d}

which is in turn, via Lemma 2.54, to the set

{km ∈ (Z/pZ)× | 0 ≤ m < d, gcd(d,m) = 1}.

This has exactly ϕ(d) elements, so if ψ(d) ̸= 0, ψ(d) = ϕ(d). Either way
ψ(d) ≤ ϕ(d). Hence

ϕ(p) = |(Z/pZ)×| =
∑
d|ϕ(p)

ψ(d) ≤
∑
d|ϕ(p)

ϕ(d) = ϕ(p)

where the final equality follows from Lemma 2.58. This is only possible if
ψ(d) = ϕ(d) for every d|ϕ(p). In particular, there are ψ(ϕ(p)) = ϕ(ϕ(p)) =
ϕ(p− 1) > 0.
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So modulo primes, we can always find a primitive root. This can be used to
help simplify our search for primitive roots modulo other natural numbers.

Lemma 2.60. Let k ∈ (Z/nZ)× and let d ∈ N be such that k
d
= 1. Then

MO(k) = d if and only if for all primes p|d, k
d
p ̸= 1.

Proof. If MO(k) = d, then k
s ̸= 1 for any 0 < s < d, in particular for d

p .

Conversely, if k
d
p ̸= 1 for any p|d, then k

d
c ̸= 1 for any c|d. Since MO(k)|d,

we must have that MO(k) = d.

Corollary 2.61. Let k ∈ (Z/nZ)×. Then k is a primitive root if and only if

for all primes p|ϕ(n), k
ϕ(n)

p = 1.

Example 2.62. Can we find MO(7) in (Z/17Z)×. Since ϕ(17) = 16 = 24, it

suffices to check whether 7
8
= 1. We can easily check that

78 ≡ (49)4 ≡ (−2)4 ≡ 16 ̸≡ 1 (mod 17)

and so MO(7) = 16. As such, 7 is a primitive root modulo 17.
What about MO(4) in (Z/11Z)×. Since ϕ(11) = 10 = 2×5, we need to check

4
2
and 4

5
.

42 ≡ 5 ̸≡ 1 (mod 11),

45 ≡ 210 ≡ 1 (mod 11),

and so MO(4) = 5.

3 Quadratic reciprocity and powers mod primes

For the the rest of this section, we will consider p a fixed prime, that we will
eventually assume to be odd. The goal of this section is to answer questions
about how many k ∈ (Z/pZ)× there are such that, given t ∈ N, there exists a
such that k = at?

Example 3.1. In (Z/5Z)× we have that

x 1 2 3 4

x2 1 4 = −1 4 = −1 1

so we only have two possible values of non-zero squares in Z/5Z.

For talking about tth powers, it is helpful to introduce the discrete logarithm.

Definition 3.2. Given a primitive root g ∈ (Z/pZ)×, given logg(k) to be the

class in Z/(p− 1)Z of m ∈ Z such that gm = k.
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Remark 3.3. The discrete logarithm is well defined as a class in Z/(p − 1)Z
as a consequence of Corollary 2.48.

Proposition 3.4. The discrete logarithm behaves like a logarithm: for all k, ℓ ∈
(Z/pZ)×, and m ∈ Z, we have that

i) logg(kℓ) = logg(k) + logg(ℓ),

ii) logg(k
−1

) = − logg(k),

iii) logg(k
m
) = m logg(k),

iv)
logg(1) = 0.

Proof. If logg(k) = a and logg(ℓ) = b), then k = ga and ℓ = gb. Then

kℓ = k · ℓ = ga · gb = ga+b,

k
m

= (ga)m = gma,

1 = g0,

from which all the claims follow.

Exercise 3.5. Let g and h be primitive roots in (Z/pZ)×. Show that the change
of base formula for logarithms holds:

logg(k) logh(g) = logh(k).

Example 3.6. Recall that 3 is a primitive root in (Z/7Z)× and that 3
2
= 2.

Hence log3(2) = 2. We can also compute that

log3(6) = log3(3) + log3(2) = 1 + 2 = 3

and, indeed, 3
3
= 27 = 6.

Corollary 3.7. Let t ∈ Z and k ∈ (Z/pZ)×. Then k is a tth power if and only
if logg(k) is a multiple of t in Z/(p− 1)Z.

Proof. If k = at, then logg(k) = t logg(a) is a multiple of t. Conversely, if

logg(k) = qt, then k = gqt = (gq)t is a tth power.

Theorem 3.8. Let t ∈ Z. Exactly p−1
gcd(t,p−1) elements of (Z/pZ)× are tth pow-

ers.

Proof. Given a primitive root g (which always exists for p prime), the discrete
logarithm gives a bijection

(Z/pZ)× → Z/(p− 1)Z
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taking tth powers to multiples of t. Therefore

#{k ∈ (Z/pZ)× | k = at} = #{ℓ ∈ Z/(p− 1)Z | ℓ = tm for some m ∈ Z}
= #{tm | m ∈ Z/(p− 1)Z}

= AO(t) =
p− 1

gcd(t, p− 1)
.

Corollary 3.9. The map

(Z/pZ)× → (Z/pZ)×,

k 7→ k
t
,

is gcd(t, p− 1)-to-1.

Proof. Denote by
Rk,t := {a ∈ (Z/pZ)×) | at = k

If Rk,t is non-empty for some k ̸= 1, then multiplication by a−1 defines a

bijection between Rk,t and R1,t. Hence |Rk,t| = |R1,t| for all k for which this is
non-empty. Thus

p− 1 = |(Z/pZ)×| = |R1,t| × |{at | a ∈ (Z/pZ)×}| = |R1,t|
p− 1

gcd(t, p− 1)

from which the claim follows.

Example 3.10. Since gcd(p − 1, p − 1) = p − 1, there is exactly one (p − 1)th

power in (Z/pZ)×, which by Fermat’s Little Theorem is 1.

Corollary 3.11. If gcd(t, p − 1) = 1, then every element of (Z/pZ)× has a

unique tth root given by
t
√
k = k

s
where s ∈ Z is an integer such that st = 1 in

Z/(p− 1)Z.

Proof. Uniqueness is immediate from Corollary 3.9. It suffices to show that

(k
s
)t = k

but
k
st

= k
1
= k

as st = 1 in Z/(p− 1)Z and so st ≡ 1 (mod p− 1).

Example 3.12. In (Z/17Z)×, the cube root of 7 will be 7
(3 (mod 16))−1

. To find
a representative of this exponent, we note that

3(11)− 16(2) = 1
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and so 3
−1

= 11 in Z/16Z. Thus 7
11

=
3
√
7. We can simplify this a bit

7
11

= (7
2
)5 · 7

= −2
5 · 7

= −32 · 7 = 2 · 7 = 14

and indeed 143 = 2744 = 161(17) + 7.

We’ve noted that every element has a unique (p− 1)th root, but what about
the other extreme? What elements have square roots. From here on out, we
will assume that p ≥ 3, in particular that it is odd. If p is odd, p − 1 is even,
so gcd(2, p− 1) = 2. Hence, there are exactly p−1

2 squares in (Z/pZ)2, and p−1
2

non-squares.

Remark 3.13. We usually refer to k as a quadratic (non-)residue modulo p if
k is a (non-)square in (Z/pZ)×.

Definition 3.14. For k ∈ Z (or k ∈ Z/pZ), we define the Legendre symbol

(
k

p

)
:=


0 if k = 0 in Z/pZ,
1 if k ̸= 0 and k is a square in Z/pZ,
−1 if k ̸= 0 and k is not a square in Z/pZ.

Fact 3.15. The Legendre symbol has the following properties

i) For all a, b ∈ Z, (
ab

p

)
=

(
a

p

)(
b

p

)
,

ii) (
−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ −1 (mod 4),

iii) (
2

p

)
=

{
1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8),

iv) If p ̸= q are odd primes, then(
p

q

)(
q

p

)
= (−1)

(p−1)
2

(q−1)
2 .
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Example 3.16. Is −13 a square modulo 71? Well, let us compute the Legendre
symbol: (

−13

71

)
=

(
−1

71

)(
13

71

)
= (−1)35(−1)35×6

(
71

13

)
= −

(
6

13

)
= −

(
2

13

)(
3

13

)
=

(
3

13

)
= (−1)1×6

(
13

3

)
=

(
1

3

)
= 1.

What about 7 modulo 17?(
7

17

)
= (−1)8×3

(
17

7

)
=

(
3

7

)
= (−1)3

(
7

3

)
= −

(
1

3

)
= −1

so 7 is not a square modulo 17.

Let’s start proving these.

Lemma 3.17. For all a ∈ Z, a
p−1
2 ≡

(
a
p

)
(mod p).

Proof. If p|a, we are done. Otherwise, a ∈ (Z/pZ)×. Let b = a
p−1
2 . Then

b
2
= ap−1 = 1

and so
(b− 1)(b+ 1) = 0.

Since p is prime, we must therefore have that b = ±1.

If a = c2, then b = cp−1 = 1. To see the converse, note that x
p−1
2 − 1 has at

most p−1
2 roots in (Z/pZ)× and every square, all p−1

2 of them, is a root. So if

a is not a square, then b = −1.

Theorem 3.18. For all a, b ∈ Z(
ab

p

)
=

(
a

p

)(
b

p

)
and (

−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ −1 (mod 4).

Proof. From Lemma 3.17,(
ab

p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p).
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Since these have values 0 or ±1, and 1 ̸= −1 for all p ≥ 3, this lift to an equality.
Similarly (

−1

p

)
= (−1)

p−1
2

must lift to an equality.

For the next part, we need a slightly convoluted proposition first. Since p is
odd, we can choose our residue classes so that

Z/pZ =

{
−p− 1

2
,−p− 3

2
, . . . ,−1, 0, 1, . . . ,

p− 1

2

}
and hence every k ̸= 0 can be written uniquely as k = εksk for some 1 ≤ sk ≤
p−1
2 and εk = ±1.

Proposition 3.19. For all a ∈ (Z/pZ)×,

(
a

p

)
=

p−1
2∏
t=1

εta

Proof. First note that for 1 ≤ t1, t2 ≤ p−1
2 , st1a = st2a if and only if t1 = t2.

Indeed

st1a = st2a ⇔ t1a = ±t2a
⇔ t1 = ±t2

which, for 1 ≤ t1, t2 ≤ p−1
2 , occurs if and only if t1 = t2.

Hence, letting S = {1, 2, . . . , p−1
2 , the map

S → S,

t 7→ sta

is an injective map between finite sets of the same size, and is therefore a
bijection. Now, in (Z/pZ)×

a
p−1
2

p−1
2∏
t=1

t =

p−1
2∏
t=1

ta

=

p−1
2∏
t=1

εtasta

=

 p−1
2∏
t=1

εta

 p−1
2∏
t=1

sta

 .
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Since t 7→ sta is a bijection  p−1
2∏
t=1

t

 =

 p−1
2∏
t=1

sta


and so

a
p−1
2 =

p−1
2∏
t=1

εta.

Thus, by Lemma 3.17 (
a

p

)
≡

p−1
2∏
t=1

εta (mod p)

which must lift to an equality.

Corollary 3.20. (
2

p

)
=

{
1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8),

Proof. We just need to count how many ε2t are equal to −1. Since 2 ≤ 2t ≤ p−1
for 1 ≤ t ≤ p−1

2 , we have that

ε2t =

{
1 if 2t ≤ p−1

2 ,

−1 if 2t > p−1
2 .

Write p = 8q + r, where r ∈ {1, 3, 5, 7}. Then

#{t ∈ Z | p− 1

2
< 2t ≤ p− 1} = #{t ∈ Z | p− 1

4
< t ≤ p− 1

2
}

= #{t ∈ Z | 2q + r − 1

4
< t ≤ 4q +

r − 1

2
}

=


2q if r = 1,

2q + 1 if r = 3,

2q + 1 if r = 5,

2q + 2 if r = 7.

Thus
p−1
2∏
t=1

ε2t = (−1)2q+x =

{
1 if r ∈ {1, 7},
−1 if r ∈ {3, 5}.
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3.1 Proving quadratic reciprocity

Definition 3.21. For any x ∈ R, define the floor of x by

⌊x⌋ = max{n ∈ Z | n ≤ x}

Example 3.22.
⌊3⌋ = ⌊π⌋ = ⌊3.73⌋ = 3

and
⌊−π⌋ = ⌊−3.4⌋ = ⌊−3.001⌋ = −4.

Note that if we divide with remainder, a = bt+ r with 0 ≤ r < b, then

t =
⌊a
b

⌋
.

Theorem 3.23 (Quadratic reciprocity). For any p ̸= q odd primes,(
p

q

)(
q

p

)
= (−1)

(p−1)
2

(q−1)
2 .

Eisenstein. For each integer a ∈ Z, perform division with remainder to get

aq = p
⌊
aq
p

⌋
+ ra, with 0 ≤ ra < p, to determine a representative

aq ≡ ra (mod p).

If 0 ≤ ra ≤ p−1
2 , then saq = ra and εaq = 1, while if p−1

2 < ra ≤ p − 1, then
saq = p− ra and εaq = −1. Also, note that

p−1
2∏

a=1

εaq =

{
1 if

∑
εaq=−1 1 ≡ 0 (mod 2),

−1 if
∑
εaq=−1 1 ≡ 1 (mod 2),

so it suffices to determine the parity of the sum of the εaq that are equal to −1.
Now, modulo 2, we have that

p−1
2∑

a=1

raq ≡
∑
εaq=1

saq +
∑

εaq=−1

p− saq (mod 2)

≡
∑
εaq=1

saq +
∑

εaq=−1

saq +
∑

εaq=−1

1 (mod 2)

≡

p−1
2∑

a=1

saq +
∑

εaq=−1

1 (mod 2).
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Next, we note that

p−1
2∑

a=1

a ≡ q

p−1
2∑

a=1

a (mod 2)

≡

p−1
2∑

a=1

aq ≡

p−1
2∑

a=1

p

⌊
aq

p

⌋
+ ra (mod 2)

≡

p−1
2∑

a=1

⌊
aq

p

⌋
+

p−1
2∑

a=1

saq +
∑

εaq=−1

1 (mod 2).

Therefore

∑
εaq=−1

1 ≡

p−1
2∑

a=1

⌊
aq

p

⌋
+

p−1
2∑

a=1

saq +

p−1
2∑

a=1

a ≡

p−1
2∑

a=1

⌊
aq

p

⌋
(mod 2)

as
p−1
2∑

a=1

saq =

p−1
2∑

a=1

a

and so their sum vanishes modulo 2.
Thus (

q

p

)
= (−1)

∑ p−1
2

a=1 ⌊ aq
p ⌋,

and, similarly (
p

q

)
= (−1)

∑ q−1
2

b=1 ⌊ bp
q ⌋.

Therefore (
p

q

)(
q

p

)
= (−1)

∑ p−1
2

a=1 ⌊ aq
p ⌋+

∑ q−1
2

b=1 ⌊ bp
q ⌋.

Now, we can think of
⌊
aq
p

⌋
as the number of lattice points (points with integer

coordinates) with positive y-coordinate and x-coordinate equal to a below the

line y = q
px, and similarly

⌊
bp
q

⌋
is the number of lattice points with positive

x-coordinate and y-coordinate equal to b to the left of the line y = q
px, as

illustrated below
Therefore, the sum in the exponent is equal to the number of lattice points

with positive coordinates, such that the x-coordinate is at most p−1
2 and the

y-coordinate is at most q−1
2 . There are exactly p−1

2
q−1
2 such points, and so the

claim follows.
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3.2 An application of Legendre symbols to quadratic equa-
tions

Theorem 3.24. Let a, b, c be elements of Z/pZ with a ̸= 0. Let ∆ = b
2 − 4ac.

The number of solutions to ax2 + bx+ c = 0 in Z/pZ is
2 if

(
∆
p

)
= 1,

1 if
(

∆
p

)
= 0,

0 if
(

∆
p

)
= −1.

Proof. We can write

ax2 + bx+ c = a

(
(x+

b

2a
)2 − ∆

(2a)2

)
.
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If ∆ = δ2, we can factorise this into

a

(
x− −b+ δ

2a

)(
x− −b− δ

2a

)
.

Since p is prime, if this is equal to 0, we must have

x =
−b+ δ

2a
or

−b− δ

2a
.

If these are not distinct, then δ = −δ and so 2δ = 0, which means δ = 0 and

hence ∆ = 0. Finally, if
(

∆
p

)
= −1, then ∆

(2a)2
is not a square and so there can

be no solutions.

Example 3.25. How many solutions does x2 − 6x+ 1 have modulo 17? What
about x2 − 8x+ 2?

In the first case

∆ ≡ 36− 4 ≡ 2− 4 ≡ −2 (mod 17)

and (
∆

17

)
=

(
−1

17

)(
2

17

)
= (−1)8 = 1

so there are two distinct solutions. In the second case

∆ ≡ 82 − 8 ≡ 13− 8 ≡ 5 (mod 17)

and (
5

17

)
=

(
17

5

)
=

(
2

5

)
= −1

so there are no solutions.
Can we find the solutions to x2−6x+1? We know that they will be given by

x = 2
−1 (

6− δ
)

and x = 2
−1 (

6 + δ
)

where δ2 = ∆ = −2 = 49 = 7
2
. As 2

−1
= 9, we get that

x = 15 = −2 and x = 8 = −9

are the two solutions.

4 Fermat’s Last Theorem and Pythagorean triples

The goal of this section will be to prove a special case of Fermat’s Last Theorem.

Theorem 4.1. The Diophantine equation xn+ yn = zn has no positive integer
solutions for n > 2.
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This is the famous result that Fermat claimed to have a “marvelous proof”
of, but that this proof was too large to fit into the margins of the book in
which he scribbled this claim. Given the centuries it took, it unlikely Fer-
mat had proved this. The current proof of this is mostly attributed to Wiles,
with some contributions from Taylor, who show this as a consequence of the
Taniyama–Shimura conjecture, which concerns a relationship between special
functions called modular forms and special curves called elliptic curves. This
proof is well beyond the scope of an undergraduate course, so we will have to
be satisfied with a proof of the case n = 4. In order to prove this, we will use
the method of infinite descent, alongside a classification of Pythagorean triples.

4.1 Infinite descent

A very powerful technique for proving that an equation has no non-trivial integer
solutions is the method of infinite descent. Essentially, we show that, given a
non-trivial integer solution, there exists one that is smaller or closer to 0. But
this process cannot repeat infinitely, as there can only be finitely many solutions
between our starting solution and a trivial solution. Thus, only trivial solutions
can exist. Let’s see this in action, with two proofs using infinite descent.

Proposition 4.2. The equation x2 + y2 = 3z2 has no integer solutions other
than (x, y, z) = (0, 0, 0).

Proof. We first note that if (x, y, z) is a solution, so is (±x,±y,±z) for every
choice of signs. As such, it suffices to show there are no non-negative integer
solutions other than (x, y, z) = (0, 0, 0).

Suppose we have a non-negative integer solution (x, y, z). By considering

x2 + y2 ≡ 3z3 (mod 4)

we see that we must have

(x2, y2, z2) ≡ (0, 0, 0) (mod 4)

and so x, y, z must all be even. So there exist non-negative integers a, b, c ∈ Z
such that

x = 2a, y = 2b, z = 2c.

But this implies
4a2 + 4b2 = 12c2

and hence
a2 + b2 = 3c2

meaning that (a, b, c) is a smaller non-negative integer solution. We can repeat
this infinitely, constructing an infinite chain of non-negative solutions. But if
any of x, y, z are positive, this constructs an infinite strictly decreasing sequence
of positive integers, which is impossible. Hence, we must have that (x, y, z) =
(0, 0, 0).
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We can also make this proof work using a mod 3 argument.

Proof. As before, we only need to consider non-negative solutions. Note also
that if z = 0, then we must have x = y = 0. So suppose we have a solution with
z > 0 and take a solution with minimal such z. Modulo 3, we must have that

x2 + y2 ≡ 0 (mod 3)

and hence x ≡ y ≡ 0 (mod 3). Thus, there exist non-negative a, b ∈ Z such
that x = 3a and y = 3b. Hence

9a2 + 9b2 = 3z2 ⇒ 3(a2 + b2) = z2.

As such, 3|z2 and so 3|z. Thus, there exists positive c ∈ N such that z = 3c,
and so

3a2 + 3b2 = 9c2 ⇒ a2 + b2 = 3c2.

Thus, we have a solution to the equation with 0 < c < z, contradicting the
minimality of z. Therefore no solutions with non-zero z can exist, and so no
non-trivial solutions can exist.

4.2 Pythagorean triples

A triple of positive integer (a, b, c) is called a Pythagorean triple if

a2 + b2 = c2.

The classical example is 32 + 42 = 52. Given that any solution to

x4 + y4 = z4

gives a Pythagorean triple (x2, y2, z2), it will be useful to first understand the
structure of Pythagorean triples.

The first thing to note is that, if we have a Pythagorean triple (a, b, c), and
there exists a common divisor d|a, d|b, then d|c and (ad ,

b
d ,

c
d ) gives another

example of a Pythagorean triple. The same argument applies if any pair of a, b,
and c have a common divisor. As such, we might as well make the simplifying
assumption that a, b, and c are pairwise coprime. We call such triples primitive
Pythagorean triples.

Theorem 4.3. A triple (a, b, c) is a primitive Pythagorean triple if and only
there exist coprime integers u > v, exactly one of which is odd, such that (up to
swapping a and b)

a = u2 − v2, b = 2uv, c = u2 + v2.

Proof. We first note that if (a, b, c) are of the given form, then

a2 + b2 = (u2 − v2)2 + 4u2v2

= u4 + 2u2v2 + v4

= (u2 + v2)2 = c2
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is indeed a Pythagorean triple. It is simple to then check that they are pairwise
coprime.

Conversely, suppose that (a, b, c) is a primitive Pythagorean triple. By con-
sidering both sides modulo 4, we must have that c is odd, and exactly one of
a or b is odd, with the other being even. (If two were even, then we would not
have a primitive triple)

Without loss of generality, assume that a is odd and b is even. Then c − a
and c+ a are even, so there exist x, y ∈ Z such that

c+ a = 2x, c− a = 2y, x > y.

Note that c = x + y and a = x − y. Since gcd(a, c) = 1, there exist M,N ∈ Z
such that

Ma+Nc = 1 ⇒ (M +N)x+ (N −M)y = 1

and hence gcd(x, y) = 1. Next observe that

4xy = (c− a)(c+ a) = c2 − a2 = b2.

Since b is even, b2 ∈ N, and so xy =
(
b
2

)2
is an integer equation. For any prime

p, we must have that

vp(x) + vp(y) = vp(xy) = vp

((
b

2

)2
)

= 2vp

(
b

2

)
is even. Since gcd(x, y) = 1, vp(x) ̸= 0 implies that vp(y) = 0 and vice versa.
Hence vp(x) and vp(y) must be even for every prime p, and so x and y are
squares: there exist u, v ∈ Z, such that x = u2 and y = v2. Clearly, we must
have that u > v and gcd(u, v) = 1, as these hold for their squares. The claim
then follows if we can show that u and v cannot have the same parity.

If u and v were both even, they would not be coprime. If u and v were both
odd, then c = u2 + v2 would be even. Thus, exactly one of u and v is odd.

Example 4.4. Let u = 5 and v = 2. Then a = 21, b = 20 and c = 29, and
indeed

(21)2 + (20)2 = 441 + 400 = 841 = (29)2.

4.3 Fermat’s last theorem for n = 4

Theorem 4.5. There are no positive integer solutions to x4 + y4 = z4.

Proof. We first note that, similarly to the case of Pythagorean triples, we might
as well restrict our considerations to cases where x, y, and z are pairwise coprime
(why?). Next we note that it would therefore suffice to prove that there are no
pairwise coprime positive integer solutions to

x4 + y4 = w2
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as any solution to x4 + y4 = z4 gives a solution to this via w = z2.
Assume we have a solution to x4 + y4 = w2 with w > 0 and minimal. Then

(x2, y2, w) is a primitive Pythagorean triple. Without loss of generality, we can
assume x2 is odd, and so there exist coprime integers u, v such that u > v and
exactly one of them is odd.

As we have assumed x is odd, we have that x2 ≡ 1 (mod 4), and so

u2 − v2 ≡ 1 (mod 4)

which implies that u must be odd while v is even. Hence u and 2v are coprime.
Since y2 = u(2v), we must have that both u and 2v must be squares.

Let u = a2 and 2v = 4b2. Then, rearranging x2 = u2 − v2, we see that

x2 + (2b2)2 = (a2)2

is another primitive Pythagorean triple. Hence, there exist coprime integers c, d
such that

x2 = c2 − d2, 2b2 = 2cd, a2 = c2 + d2.

The middle equality implies that c and d are squares, so there are integers
r, s ∈ Z such that c = r2 and d = s2, and so

r4 + s4 = a2.

Thus, we have another solution to our equation. But

a ≤ a2 = u ≤ u2 < u2 + v2 = w

contradicting the minimality of w.

5 Gaussian integers and sums of squares

We have just seen that the hypotenuse of any primitive right angled triangle can
be written as a sum of two squares, satisfying some conditions. In this section
we will drop these constraints and see what integers can be written as the sum
of two squares, in general. The goal of this section will be to prove the following
theorem

Theorem 5.1. An integer n ∈ N is a sum of two squares if and only if vp(n)
is even for all primes p ≡ −1 (mod 4).

Example 5.2. 2019 = 3 × 673 is not a sum of two squares, but 3 × 2019 =
6057 = 362 + 692.

2020 = 22 × 5× 101 = 242 + 382.
2021 = 43× 47 is not a sum of two squares.
2022 = 2× 3× 337 is not a sum of two squares.
2023 = 7× 172 is not a sum of two squares, but 7× 2023 = 562 + 1072.
2024 = 23 × 11× 23 is not a sum of two squares.
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There are some results about other ways of expressing integers in terms of
squares, or higher powers:

Theorem 5.3 (Legendre). An integer n ∈ N is a sum of 3 squares if and only
if n ̸= 4a(8b+ 7) for any integers a, b ≥ 0.

Theorem 5.4 (Lagrange). Every n ∈ N is a sum of 4 squares.

Theorem 5.5 (Hilbert). For every k ∈ N there exists m ∈ N such that every
integer n ∈ N can be written as a sum of m kth powers

This last result is closely related to the Waring problem, which asks us to
find g(k), the minimum such integer such that every n ∈ N can be written as
g(k) kth powers. This is a central problem in analytic number theory, and good
bounds can be given, or sometimes g(k) can be determined, using something
called the circle method.

g(2) = 4

g(3) = 9

g(4) = 19

g(5) = 37

With the possible exception of Lagrange’s theorem, proving these would take
far too much time, so we will stick to sums of two squares for now.

5.1 Gaussian integers

The set of Gaussian integers is the subset of the complex numbers with integer
real and imaginary parts:

Z[i] = {a+ bi | a, b ∈ Z} ⊂ C.

Proposition 5.6. The Gaussian integers form a ring: for any α, β ∈ Z[i],
α+ β ∈ Z[i] and αβ ∈ Z[i].

Proof. It is easy to check that

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

and
(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

are elements of Z[i].

Definition 5.7. The norm of α = a+ bi ∈ Z[i] is defined by

N(α) = αα = a2 + b2

where α is the complex conjugate of α.
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Remark 5.8. For the Gaussian integers, the norm is just the absolute value
squared. We call it a norm for a number of reasons, but primarily to have a
consistent naming convenient across all “rings of integers”. For example, we
can define a norm on Z[

√
2] by N(a + b

√
2) = a2 − 2b2 that will satisfy (most)

properties of the norm on Gaussian integers, other than non-negativity.

Lemma 5.9. For any α ∈ Z[i], N(α) ≥ 0 with equality if and only if α = 0

Proof. N(α) = a2 + b2 and squares are always non-negative. We have equality
if and only if a = b = 0.

Lemma 5.10. For all α, β ∈ Z[i], N(αβ) = N(α)N(β).

Proof. Let α = a+ bi and β = c+ di. Then

N(αβ) = (ac− bd)2 + (ad+ bc)2 = a2c2 + a2d2 + b2c2 + b2d2

= (a2 + b2)(c2 + d2) = N(α)N(β)

Proposition 5.11. An integer n ∈ N is a sum of two squares if and only if
there exists α ∈ Z[i] such that N(α) = n.

Proof. If n = N(α) for α = a+ bi, then n = a2 + b2. Conversely if n = a2 + b2,
then n = N(a+ bi).

Corollary 5.12. Let m,n ∈ N both be sums of two squares. Then mn is a sum
of two squares.

Proof. If m and n are both the sums of two squares, then there exists α, β ∈ Z[i]
such that N(α) = m and N(β) = n. Thus

mn = N(α)N(β) = N(αβ)

is a norm and hence a sum of two squares. Explicitly, if m = a2 + b2 and
n = s2 + t2, then

mn = (as− bt)2 + (at+ bs)2.

Thus, to understand numbers which are sums of two squares, it suffices to
understand norms of Gaussian integers. In fact, via multiplicativity, it suffices
to understand norms of Gaussian “primes”.

Remark 5.13. This is not true for numbers that are sums of three squares: we
have that 2 = 12 + 12 + 02 and 14 = 12 + 22 + 32, but 28 is not a sum of three
squares. This means that the following approach cannot work for sums of three
squares, sort of explaining why Legendre’s result is less neat than for sums of
two squares.

This also gives some intuition as to why we cannot have three dimensional
numbers! The sensible notion of absolute value would not be multiplicative.
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Remark 5.14. By shifting to quaternions instead of complex numbers, we can
show that numbers which are sums of 4 squares are the norms of integer quater-
nions, and that this norm is multiplicative. Thus, a very similar approach would
work for Lagrange’s theorem.

Definition 5.15. A Gaussian integer is a called a unit if it is invertible in Z[i].
That is to say that α ∈ Z[i] is a unit if there exists β ∈ Z[i] such that αβ = 1.

We denote the set of units by Z[i]×.

Proposition 5.16. A Gaussian integers α is a unit if and only if N(α) = 1.

Proof. If αβ = 1, then
N(αβ) = N(α)N(β) = 1.

Since N(α) and N(β) are non-negative integers, this is only possible if N(α) =
N(β) = 1.

Conversely, if N(α) = 1, then αα = 1, so α has a multiplicative inverse given
by its complex conjugate.

Corollary 5.17. The set of units is Z[i]× = {±1,±i}.
In the integers, when defining primes, we chose them all to be positive. This

wasn’t strictly necessary, if just made our results cleaner. We could have chosen
some primes to be negative. In the Gaussian integers, we don’t have a well
defined “positive”, so our “primes” will only be defined up to a unit.

5.2 Division with remainder

While we cannot obtain a uniquely defined remainder in the Gaussian integers,
we can still do Euclidean division!

Theorem 5.18. Let α, β ∈ Z[i] be Gaussian integers, with β ̸= 0. Then there
exist γ, ρ ∈ Z[i] such that α = βγ + ρ and N(ρ) < N(β).

Proof. We compute α
β = x+ yi in C, and choose m,n ∈ Z such that

|x−m| ≤ 1

2
, and |y − n| ≤ 1

2
,

essentially rounding to the nearest integers. Let γ = m + ni, and ρ = α − βγ.
Then we have constructed γ, ρ ∈ Z[i] as in the theorem statement if we can
show N(ρ) < N(β).

We extend the norm to all of C by defining N(z) = zz = |z|2 for all z ∈ C.
This is a multiplicative function, so

N(ρ)

N(β)
= N(α− βγ)N(

1

β
)

= N(
α

β
− γ)

= N ((x−m) + (y − n)i)

= (x−m)2 + (y − n)2 ≤ 1

4
+

1

4
=

1

2
.
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Thus

N(ρ) ≤ N(β)

2
< N(β).

Remark 5.19. We are actually quite lucky that we can do Euclidean division
here. If we were working in some other ring, such as Z[

√
2] or Z[

√
−5], Eu-

clidean division can fail to be well defined!

Example 5.20. Let α = 11 + 27i, β = 2 + 3i. Then

α

β
=

11 + 27i

2 + 3i
=

(11 + 27i)(2− 3i)

13
=

103

13
+

21

13
i ≈ 8 + 2i

so take γ = 8 + 2i. Then

ρ = α− βγ

= 11 + 27i− (2 + 3i)(8 + 2i)

= 11 + 27i− 10− 28i

= 1− i.

We can check that N(ρ) = 2 < 13 = N(β).

Definition 5.21. Let α, β ∈ Z[i]. We say that β|α is there exists γ ∈ Z[i] such
that α = βγ.

Remark 5.22. For β ̸= 0, this is equivalent to the remainder on dividing α by
β being 0.

The next lemma is arguably one of the most useful results in algebraic num-
ber theory, even though it is very simple.

Lemma 5.23. For all α, β ∈ Z[i], α|N(α) and if β|α, then N(β)|N(α).

Proof. As N(α) = αα, α|N(α) by definition. If β|α, there exists a Gaussian
integer γ such that α = βγ. This implies that

N(α) = N(βγ) = N(β)N(γ)

and so N(β)|N(α).

Definition 5.24. We say that α, β ∈ Z[i] are associate if α|β and β|α, and
write α ∼ β, though this is not entirely standard.

Lemma 5.25. Two Gaussian integers α, β are associate if and only if β = να
for some unit ν ∈ Z[i]×.

53



Proof. If β = να for a unit ν, then α|β, and

α = ννα = νβ

so β|α.
Conversely, if α ∼ β, then α = ξβ and β = ηα for some ξ, η ∈ Z[i]. If β = 0,

then α = 0, so we might as well take them to be units. If β ̸= 0, then

β = ηα = ηξβ

implies that ηξ = 1 and hence η ∈ Z[i].

Definition 5.26. Let α, β, γ ∈ Z[i]. We call γ a greatest common divisor of α
and β if for all δ ∈ Z[i], δ|γ if and only if δ|α and δ|β.

We could also define it as a common divisor of maximal norm, but the
above definition is more convenient. Following essentially the same proof as for
classical integers, we can show a greatest common divisor always exists, and
that most of the same properties hold, including Bézout’s theorem and Gauss’
lemma.

Theorem 5.27. A greatest common divisor always exists and is unique up to
multiplication by a unit.

Sketch. As for classical integers, if α = βγ + ρ, Div(α, β) = Div(β, ρ), so we
can apply the Euclidean algorithm to compute a greatest common divisor. If
α = 0, the uniqueness is obvious, as β is a greatest common divisor, and any
other greatest common divisor η must satisfy β|η and η|β. Similarly if β = 0.
If there are both non-zero, then any pair of greatest common divisors γ1 and γ2
must be associate, as we must have γ1|γ2 and γ2|γ1.

Even though it is technically an abuse of notation, we will often write
gcd(α, β) for any fixed choice of greatest common divisor. In particular, we
will usually write gcd(α, β) = 1 if 1 is a greatest common divisor of α and β

Corollary 5.28. Given α, β ∈ Z[i], the elements of Z[i] of the form αξ + βη
for ξ, η ∈ Z[i] are exactly the multiples of gcd(α, β).

Corollary 5.29. If γ|αβ and gcd(γ, β) = 1, then γ|α.
Example 5.30. Let us find gcd(11 + 27i, 2 + 3i). We have done the first step
of Euclid’s algorithm to compute

11 + 27i = (8 + 2i)(2 + 3i) + (1− i)

Next we note that
2 + 3i

1− i
=

−1 + 5i

2
≈ 0 + 2i

and that
2 + 3i = 2i(1− i) + i

and that
(1− i) = (−1− i)(i) + 0.

Thus, gcd(11 + 27i, 2 + 3i) ∼ i ∼ 1.
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5.3 Gaussian primes

Definition 5.31. An element π ∈ Z[i] is called irreducible if π is not a unit
and, if π = αβ is a factorisation of π in Z[i], then one of α or β is a unit.

Remark 5.32. The choice of π for irreducibles is to be consistent with Gaussian
integers being represented by Greekifying their classical counterparts, in this case
primes p. It is unrelated to the constant π, but it should be clear from context
what is meant.

Lemma 5.33. If N(π) is prime in Z, then π is irreducible in Z[i].

Proof. Suppose N(π) = p is prime, and π = αβ. Then

N(α)N(β) = N(π) = p

and so one of N(α) and N(β) must equal 1, and hence one of α or β is a unit.
Thus π is irreducible.

Remark 5.34. There are irreducible elements of non-prime norm! For example
3 has N(3) = 9, which is not prime, but 3 is irreducible. If 3 = αβ has a
factorisation into non-units, then

N(α)N(β) = 9

and so we must have N(α) = N(β) = 3, as neither can be 1. But 3 is not a sum
of two squares, so it is not a norm. Thus, no such factorisation can exist and
3 is irreducible.

Theorem 5.35. Every non-zero α ∈ Z[i] can be factorised as

α = νπ1 . . . πr

into a product of a unit ν, and irreducibles π1, . . . , πr. If

α = ν′π′
1 . . . π

′
s

is another such factorisation, then r = s and, up to reordering, πi ∼ π′
i for each

i.

Sketch. Note that if π ̸| α for an irreducible π, then gcd(π, α) = 1. Thus, if
π|αβ, π|α or π|β. With this Gaussian version of Euclid’s lemma, nearly the
exact proof of prime factorisation for classical integers holds.

Example 5.36. In Z[i], 2 = i(1− i)2 = (−i)(1+ i)2, where (1± i) is irreducible
(as it has prime norm). These are the same factorisation up to associates and
units, as 1− i = −i(1 + i).

55



5.4 Decomposition of primes and classification of irreducibles

Theorem 5.37. Let p ∈ N be prime. Then:

• If p ≡ 1 (mod 4), p = ππ for some irreducible π of norm p where π and
π are not associate,

• If p ≡ −1 (mod 4), p is irreducible in Z[i],

• If p = 2, 2 = (1− i)(1 + i)

Example 5.38. We have already seen that 3 is irreducible. On the other hand
5 = (2− i)(2 + i) and these are not associate.

Remark 5.39. For an irreducible π of norm p, its complex conjugate π has
norm p and is therefore also irreducible.

We will prove this in 3 3
4 steps: this theorem is essentially a summary of the

following five lemmas.

Lemma 5.40. 2 = (1 + i)(1− i)

Lemma 5.41. Let p be prime and suppose that p is reducible in Z[i]. Then
p = ππ for some irreducible π of norm p such that π = a+bi with gcd(a, b) = 1.

Proof. As p is reducible, we can write p = νπ1 . . . πr for some r ≥ 2, ν a unit,
and π1, . . . , πr irreducibles. Thus

p2 = N(p) = N(ν)N(π1) . . .N(πr) = N(π1) . . .N(πr).

As N(πi) ̸= 1 for any 1 ≤ i ≤ r, we must have that r = 2, and N(π1) = N(π2) =
p. Thus

π1π1 = N(π1) = p = N(π2) = π2π2

giving two factorisations nearly of the claimed form. If π1 = a + bi and d is a
common divisor of a and b, then d2|N(π) = a2 + b2 = p, so d = 1. Thus, the
claim follows.

Lemma 5.42. If p ≡ −1 (mod 4) is prime, p is irreducible in Z[i].

Proof. Suppose p is reducible. Then by Lemma 5.41, p = ππ for an irreducible
π = a+ bi with a2 + b2 = p and gcd(a, b) = 1. As we cannot have p|a and p|b,
we will assume, without loss of generality, that p ̸| a, i.e. a is invertible modulo
p. Then, in Z/pZ, we have that

a2 + b2 ≡ 0 (mod p) ⇒ (ba−1)2 + 1 ≡ 0 (mod p)

and so −1 is a square modulo p. This means that

1 =

(
−1

p

)
= (−1)

p−1
2

and so p−1
2 is even, which means p − 1 is a multiple of 4, which means p ≡ 1

(mod 4).
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Lemma 5.43. If p ≡ 1 (mod 4) is prime, then p is reducible in Z[i].

Proof. Since p ≡ 1 (mod 4),
(

−1
p

)
= 1, so there exists c ∈ Z such that c2 +1 =

kp for some k ∈ Z. This implies that

kp = (c+ i)(c− i)

and so p|(c + i)(c − i). If p were irreducible, the Gaussian version of Euclid’s
lemma would imply that p|(c + i) or p|(c − i), and so one of c

p ± 1
p i would be

a Gaussian integer. In particular, 1
p ∈ Z, which is nonsense. Thus, p must be

reducible.

Lemma 5.44. Suppose p = ππ is a factorisation of a prime p into irreducibles,
and π ∼ π. Then p = 2

Proof. Write π = a+ bi where gcd(a, b) = 1. As π ∼ π, we have that

π|π + π = 2a and π|(−i)(π − π) = 2b

and so π|(2au+2bv) for all u, v ∈ Z. As gcd(a, b) = 1, there exist u, v such that
2au+2bv = 2, and so π|2. By Lemma 5.23, this means that p = N(π)|N(2) = 4,
and so p = 2.

Having classified how primes split in Z[i], we have actually found every
irreducible, up to multiplication by units.

Proposition 5.45. Up to multiplication by a unit, every irreducible of Z[i] if
one of

i) 1 + i,

ii) a prime p ∈ N such that p ≡ −1 (mod 4),

iii) π such that N(π) is a prime p ≡ 1 (mod 4).

Proof. Let π be an irreducible. Then, by Lemma 5.23, π|N(π), which is a
product of prime numbers, and hence a product of irreducibles of the above
type. By repeatedly applying the Gaussian version of Euclid’s lemma, we must
have that π divides one of these irreducibles and is therefore associate to it.

Corollary 5.46. Let π ∈ Z[i] be an irreducible. Then one of the following is
true:

i) N(π) = 2 and π ∼ 1 + i,

ii) N(π) = p ≡ 1 (mod 4), and π is associate to exactly one of ϖ and ϖ where
p = ϖϖ,

iii) N(π) = q2 for a prime q ≡ −1 (mod 4), and π ∼ q.
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These provide some useful guidelines for factoring Gaussian integers, though
it is still a bit of an art, so it is a good idea to get some practice in.

Example 5.47. Let’s factorise 11 + 27i into irreducibles. The norm is

N(11 + 27i) = 121 + 729 = 850 = 2× 52 × 17.

Now suppose
11 + 27i = νπ1π2 . . . πr

is a factorisation into irreducibles and a unit ν. Then

N(π1) . . .N(πr) = 2× 52 × 17,

and so we must have r = 4, with one irreducible π1 = (1 + i), two irreducibles
of norm 5 and one of norm 17. We can factor 5 = (2 + i)(2 − i), giving the
two possible irreducibles (up to a unit) of norm 5. If they are both factors of
11 + 27i, we would have that 5|(11 + 27i), which it clearly doesn’t. Thus, the
two irreducibles of norm 5 are either both (2+ i) or (2− i). A quick calculation
shows that

11 + 27i

2 + i
=

49

5
+

44

5
i ̸∈ Z[i]

so the irreducibles of norm 5 must be 2 − i. To determine the irreducible of
norm 17, we compute the quotient

11 + 27i

(1 + i)(2− i)2
= 1 + 4i

which is indeed an irreducible of norm 17. Thus

11 + 27i = (1 + i)(2− i)2(1 + 4i)

is a factorisation into irreducibles.

Remark 5.48. We can often absorb the unit into one of the irreducibles, but
depending on what irreducibles of certain norm we choose, we might have to
explicitly compute the unit as well. We’ll see this in the next example.

Example 5.49. Let’s factorise 27 + 39i into irreducibles. We begin with com-
puting the norm

N(27 + 39i) = 2250 = 2× 32 × 53.

From this, we see that the irreducibles must be, up to multiplication by a unit
(1 + i), 3, and three irreducibles of norm 5. Choosing 2 ± i as our possible
irreducibles, we note that the irreducibles of norm 5 must all be 2 + i or 2 − i,
as otherwise 5|27 + 39i. We can check that

27 + 39i

2 + i
=

93

5
+

51

5
i ̸∈ Z[i]
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and so the irreducibles of norm 5 must be 2 − i. Because we did not compute
the last irreducible by division, we need to compute the unit:

ν =
27 + 39i

(1 + i)(3)(2− i)3
= i.

Therefore
27 + 39i = i(1 + i)(3)(2− i)3

is a factorisation into irreducibles.

We can now finally prove the theorem we began this section with:

Theorem 5.50. An integer n ∈ N is a sum of two squares if and only if vp(n)
is even for every p ≡ −1 (mod 4).

Proof. If n is a sum of two squares, then n = N(α) for some Gaussian integer
α. Factoring α into irreducibles, α = νπ1 . . . πr, we see that

n = N(π1) . . .N(πr)

where for each 1 ≤ i ≤ r, N(πi) is one of 2, p for a prime p ≡ 1 (mod 4), or
q2 for a prime q ≡ −1 (mod 4). Thus, for every q ≡ −1 (mod 4), we have that
vq(n) is even (or 0, which is even).

Conversely, if vq(n) is even for every prime q ≡ −1 (mod 4), then we can
write

n = 2a
∏

p≡1 (mod 4)

pbp
∏

q≡−1 (mod 4)

q2cq

for some integers a, bp, qc ≥ 0. For every p ≡ 1 (mod 4), we know there exists
an irreducible πp of norm p, and so we can write

n = N

(1 + i)a
∏

p≡1 (mod 4)

πbpp
∏

q≡−1 (mod 4)

qcq


and is therefore a sum of two squares.

Remark 5.51. As mentioned previously, the set of sums of three squares is
not closed under multiplication, so this style of argument cannot be used for
classifying sums of three squares.

In contrast, the set of sums of four squares is closed under multiplication!
In fact, the set of integers that can be written as the sum of four squares is
precisely the set of numbers that can be written as the norm of quaternions

a+ bi+ cj + dk

with integers a, b, c, d. By finding analogues of irreducible quaternions, or quater-
nions of prime norm for every prime, we can essentially reproduce the case of
two squares.
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5.5 The Gauss Circle Problem: non-examinable

Having identified which integers can be expressed as a sum of two squares,
we might also ask in how many ways we can do so. There are at least 4: if
n = x2 + y2, then

n = (−x)2 + y2 = x2 + (−y)2 = (−x)2 + (−y)2.

There could be more possibilities though

50 = 52 + 52 = 12 + 72,

65 = 12 + 82 = 72 + 42.

Can we count this? We can certainly approximate it! Imagine we have a
formula f(r) for the number of pairs (a, b) ∈ Z2 such that a2 + b2 ≤ r for any
real r. Then the number of (a, b) ∈ Z2 such that a2 + b2 = n would be given by
the number of lattice points in the annulus

{(x, y) ∈ R2 | n− ε ≤ x2 + y2 ≤ n+ ε}

for any 0 < ε < 1, which would be given by f(
√
n+ ε)− f(

√
n− ε).

The number of lattice points in the circle is approximately the area of the
circle: each lattice point is the centre of a box of area 1, and these boxes cover
the circle without too much excess. Thus

f(r) ≈ πr2.

Gauss showed that
|π2 − f(r)| ≤ 2

√
2πr

and thus

|f(
√
n+ ε)− f(

√
n− ε)| = |f(

√
n+ ε)− π(n+ ε) + π(n− ε)− f(

√
n− ε) + 2πε|

≤ |f(
√
n+ ε)− π(n+ ε)|+ |π(n− ε)− f(

√
n− ε)|+ 2πε

≤ 2π
√
2n+ 2ε+ 2π

√
2n− 2ε+ 2πε

≈ 4π
√
2n

giving a good estimate for the number of points in the annulus. Using meth-
ods from Fourier analysis and complex analysis, this bound has been improved
considerably, at least for big n, to get something that behalves roughly like

√
n

times a constant.

6 Irrationality and continued fractions

6.1 Irrational numbers and transcendence

Definition 6.1. A real number x ∈ R is called irrational if x ̸∈ Q.
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We have seen some examples of these in tutorials.

Lemma 6.2. If n ∈ N is not the square of a natural number,
√
n is irrational

Proof. Note that vp(k
2) = vp(k) + vp(k) = 2vp(k) is even, and hence the p-adic

valuation of a square number is even for any prime p. Thus, if n is not a square,
which is to say that if

√
n ̸∈ N, then vp(n) must be odd for some prime p.

Suppose
√
n = a

b . This implies that

a2 = nb2.

Let p be a prime such that vp(n) is odd. Then we must have

2vp(a) = vp(a
2) = vp(nb

2) = vp(n) + vp(b
2) = vp(n) + 2vp(b).

But this implies vp(n) must be divisible by 2, a contraction. Therefore
√
n is

irrational if it is not an integer.

This approach works for many simple irrational numbers, including more
general roots m

√
n and certain logarithms loga b. But most real numbers cannot

be so easily related to rational numbers. An approach that works well for many
reals, in particular those that can be written as an infinite series, is to use that
rational numbers are hard to approximate by other irrational numbers.

Lemma 6.3. If α = a
b ∈ Q then∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

|bq|

for all rational numbers p
q ̸= α.

Proof. If pq ̸= α, then

0 ̸= a

b
− p

q
=
aq − bp

bq
.

In particular, the numerator is a non-zero integer, and hence has absolute value
at least 1. Thus ∣∣∣∣α− p

q

∣∣∣∣ = ∣∣∣∣aq − bp

bq

∣∣∣∣ ≥ 1

|bq|

We can use this to show that e =
∑
n≥0

1
n! is irrational!

Proposition 6.4. Euler’s number e =
∑∞
n=0

1
n! is irrational.

Proof. Suppose e = p
q is rational, and assume, without loss of generality, that

q > 0. Note that the partial sum
∑m
n=0

1
n! is a rational number, and we can

take the denominator to be qm := m!. Define pm by

pm
qm

=

m∑
n=0

1

n!
.
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Clearly pm
qm

̸= p
q = e, as they differ by a positive number that is at least 1

(m+1)! .

Therefore, by Lemma 6.3, we must have that∣∣∣∣e− pm
qm

∣∣∣∣ ≥ 1

qqm
=

1

q ·m!

for all m ≥ 0. But, we can give an upper bound for this difference where we use
partial fraction expansion to telescope the final sum. Hence, we must have that

1

q ·m!
≤
∣∣∣∣e− pm

qm

∣∣∣∣ ≤ 2

(m+ 1)!

for all m ≥ 0, and hence m+1 ≤ 2q for all m ≥ 0. But q is fixed, so this cannot
be true for large n. Thus, e cannot be rational.

Via minimal polynomials, we can give a more precise degree of irrationality
to irrational numbers.

Definition 6.5. Given α ∈ R, we call α transcendental if f(α) ̸= 0 for every
non-zero polynomial f ∈ Q[x]. Otherwise, we call α algebraic. For algebraic
α, we define the minimal polynomial of α to be the unique monic (non-zero)
polynomial f ∈ Q[x] of minimal degree such that f(α) = 0. We call α algebraic
of degree equal to the degree of f .

Example 6.6.
√
2 is algebraic of degree 2. 3

√
3 is algebraic of degree 3. The

constants π and e are transcendental.

The following result should be familiar to you from earlier courses but we
will repeat the proof here, for sake of completeness. Throughout this proof, and
most of this course, the term “polynomial” will implicitly mean “polynomial
with rational coefficients”.

Lemma 6.7. Minimal polynomials exist, and are unique and irreducible.

Proof. For α algebraic, the set

S = {f ∈ Q[x] | f(α) = 0, f(x) ̸= 0}

is non-empty, and the degree of its elements is bounded below. Hence there
exists polynomials of minimal degree, which we can take to be monic, as S is
closed under multiplication by non-zero rationals.

We claim that there is a unique such polynomial. Suppose f, g ∈ Q[x] are
monic polynomials of minimal degree contained in S. As f and g are monic,
and of the same degree, h(x) = f(x) − g(x) is a polynomial of smaller degree
such that

h(α) = f(α)− g(α) = 0− 0 = 0.

But we assumed f and g had minimal degree among non-zero polynomials van-
ishing at α. Thus, we must have h(x) = 0, i.e. f(x) = g(x) is the unique monic
polynomial of minimal degree vanishing at α.
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To see that this polynomial must be irreducible, note that if f(x) = a(x)b(x),
then

0 = f(α) = a(α)b(α)

and so one of a(x) or b(x) vanishes at α. But f was minimal among all such
polynomials, so this can only occur if one of a or b is a constant multiple of
f and the other is a constant. Thus f has no non-trivial factorisations, and is
therefore irreducible.

An immediate consequence of this definition is the following.

Remark 6.8. A real number α ∈ R is rational if and only if it is algebraic of
degree 1.

An important result is the existence of transcendental numbers. We will give
two proofs of this: one due to Cantor, which is highly non-constructive, and one
due to Liouville, in which we will explicitly construct a transcendental number.

Proposition 6.9. Transcendental numbers exists.

Cantor. The set Q of rational numbers is countable, and hence the set of poly-
nomials with rational coefficients of degree at most k is countable, as it is in
bijection with Qk. Hence, the set of algebraic numbers of degree at most k
is countable, as there are at most k algebraic number associated to each such
polynomial. Hence, the set of algebraic numbers, which is the countable union
over k ≥ 0 of the countable sets of algebraic numbers of degree at most k, is
countable. But R is uncountable, so there must be elements in R which are not
algebraic.

The more constructive proof relies on the following lemma.

Lemma 6.10 (Liouville). Let α be an algebraic number of degree k > 1, i.e.
an irrational algebraic number. Then there exists C > 0 such that∣∣∣∣α− p

q

∣∣∣∣ > C

|q|k

for all pq ∈ Q.

Proof. As we can always take the denominator of a rational number to be pos-
itive, we will omit the absolute value in the lower bound. Now, note that if∣∣∣∣α− p

q

∣∣∣∣ > 1

then ∣∣∣∣α− p

q

∣∣∣∣ > 1

qk

so if we can find a similar bound for
∣∣∣α− p

q

∣∣∣ ≤ 1, we can choose our constant so

that both cases are covered. As such, assume p
q is such that

∣∣∣α− p
q

∣∣∣ ≤ 1, and
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let f(x) be the minimal polynomial of α, rescaled to have integer coefficients.
From the mean value theorem, there exists ξ between p

q and α such that

f ′(ξ) =
f(pq )− f(α)

p
q − α

=
f(pq )
p
q − α

.

Since α is irrational, and its minimal polynomial is irreducible, f(pq ) ̸= 0, and

so f ′(ξ) ̸= 0. Thus∣∣∣∣α− p

q

∣∣∣∣ = |f(pq )
|f ′(ξ)|

=
1

|f ′(ξ)|
M

qk
≥ 1

|f ′(ξ)|qk

where M is the (non-zero) integer obtained by taking a common denominator
in f(pq ).

From our assumption on p
q , we must have that ξ ∈ [α− 1, α+ 1], so let

C ′ = min
ξ∈[α−1,α+1]

1

|f ′(ξ)

to obtain a bound ∣∣∣∣α− p

q

∣∣∣∣ ≥ C ′

qk

for all
∣∣∣α− p

q

∣∣∣ ≤ 1. Then letting C = min(1, C ′), we obtain the desired bound.

This essentially says that the only real numbers that can be very well ap-
proximated by rationals with “small” denominators are rational numbers and
transcendental numbers.

Proposition 6.11. The number β =
∑∞
k=1

1
10k! is transcendental.

Proof. Suppose first that β is algebraic of degree k > 1, and let qm = 10m!,
define pm by

pm
qm

=

m∑
k=1

1

10k!
.

Then ∣∣∣∣β − pm
qm

∣∣∣∣ = ∞∑
k=m+1

1

10k!

<
1

10(m+1)!

(
1 +

1

10
+

1

102
+

1

103
+ · · ·

)
=

10

9 · 10(m+1)!

since

10−(m+k)! = 10−(m+1)! · 10(m+2)(m+3)...(m+k) < 10−(m+1)!101−k.
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Thus, by Liouville’s lemma, there exists C > 0 such that

C

qkm
<

∣∣∣∣β − pm
qm

∣∣∣∣ < 10

9qm+1
m

for all m ≥ 1. Hence

qm+1−k
m <

10

9C

for all m ≥ 1. But this is impossible, as the left hand side is unbounded. Hence
β is rational or transcendental.

If β = p
q is rational, then p

q ̸= pm
qm

and so

10

9qm+1
m

> ∥β − pm
qm

∥ > 1

qqm

for all m, but this implies that

qmm <
10v

9

which cannot hold for large m. Thus β is transcendental.

6.2 Continued fractions and good approximations

We have seen that, for a fixed denominator, algebraic irrationals are hard to
approximate. We can make this much more precise, and give a recipe for deter-
mining the best approximation via continued fractions.

Definition 6.12. Let a0 ∈ Z and a1, a2, a3, . . . ∈ N be a (possibly finite) se-
quence of integers. We define the continued fraction

a0, a1, . . . , an] := a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

an

Example 6.13. The finite sequence 2, 3, 5, 7 corresponds to the continued frac-
tion

[2, 3, 5, 7] = 2 +
1

3 +
1

5 +
1

7

=
266

115

We will also, slightly abusively, extend this notation to allow the final entry
an to be any positive real number. This gives us a bit of wiggle room with the
length of finite continued fractions, as with this relaxation:

[a0, a1, . . . , an−1, an] = [a0, a1, . . . , an−1 + a−1
n ].
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To any real number, we can associate a canonical sequence of integers, whose
finite continued fractions give surprisingly good approximations. In this context,
canonical essentially means that everyone agrees this is the best way to do it,
though we will later see that this is essentially the only way.

Definition 6.14. Given a real number x ∈ R, we define a (possibly finite)
sequence of integers by defining x0 = x, an := ⌊xn⌋, and

xn+1 =
1

xn − an

for all n ≥ 0, unless xn = an for some n, then we terminate the process with a
finite sequence. We call this sequence the continued fraction expansion of x.

Remark 6.15. Since 0 ≤ xn − an < 1 for every n for which these are defined,
an ≥ 1 for every n > 0 for which it is defined.

Example 6.16. For x = π, we find that x0 = π, so a0 = 3. Then x1 =
1

0.1415... = 7.065 . . ., so a1 = 7. Similarly x2 = 15.9965 . . ., so a2 = 15. Next
x3 = 1.0034 . . ., and a3 = 1, and x4 = 292.6354 . . ., so a4 = 292. Computing
the associated continued fractions, we find

[a0] = 3,

[a0, a1] =
22/7

,

[a0, a1, a2] =
333

106
,

[a0, a1, a2, a3] =
355

113
,

and so on. Note that these are all decent approximations of π, and that, since
a4 is quite large, the next fraction isn’t substantially different.

Our next major goal will be to show that the sequence computed by this
process determines x, specifically that

lim
n→∞

[a0, a1, . . . , an] = x

where we interpret this as an eventually constant sequence if a0, a1, . . . is a finite
sequence.

6.2.1 Convergence of continued fractions

We will first handle the case of finite continued fractions.

Theorem 6.17. The sequence a0, a1, a2, . . . associated to x ∈ R is finite if and
only if x ∈ Q.
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Proof. Suppose x = A
B ∈ Q. Then x0 = A

B , and a0 =
⌊
A
B

⌋
, which we recall is

the quotient in division with remainder. Thus,

A = a0B +R with 0 ≤ R < B.

Hence, if x0 ̸= a0, x1 = B
R . Repeating this, we find that the continued fraction

expansion of x is given by the quotients in the Euclidean algorithm for com-
puting gcd(A,B). This algorithm terminates when we get remainder 0, which
corresponds to xn = an, and thus we obtain a finite expansion.

To see the converse, note that if we get a finite continued fraction expansion,
xn = an ∈ Q for some n. Hence,

xn−1 =
1

xn
+ an−1 ∈ Q

and similarly, xn−2 ∈ Q, . . . , x0 = x ∈ Q.

Example 6.18. F0r x = 27
11 , we find that a0 = 2,

x1 =
1

27
11 − 22

11

=
11

5
,

so a1 = 2,

x2 =
1

11
5 − 10

5

= 5 = a2,

and we indeed get a finite sequence.

Theorem 6.19. For all n ≥ 0, [a0, a1, . . . , an−1, xn] = x.

Proof. We proceed by induction. It is clearly true for n = 0, so suppose it is
true for some n ≥ 0. Then

[a0, a1, . . . , an, xn+1] = [a0, a1, . . . , an + x−1
n+1]

= [a0, a1, . . . , xn] = x

by our induction hypothesis. Thus, the claim holds.

In particular, when xn = an in a finite continued fraction expansion, we
obtain the following corollary.

Corollary 6.20. Every x ∈ Q can be express as a finite continued fraction.

Example 6.21.
27

11
= 2 +

1

2 +
1

5

= [2, 2, 5].

For infinite sequences, we introduce some auxiliary fractions that will let us
better discuss the convergence of the associated continued fraction.
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Definition 6.22. To a sequence a0 ∈ Z, a1, a2, . . . ∈ N, we define two sequences

p−2, p−1, p0, p1, . . . ∈ Z,
q−2, q−1, q0, q1, . . . ∈ Z,

by

p−2 = 0, p−1 = 1 and pn = anpn−1 + pn−2,

q−2 = 1, q−1 = 0 and qn = anqn−1 + qn−2

for all n ≥ 0. The ratios pn
qn

for n ≥ 0 are called convergents of the sequence.

Note that qn > 0 for all n ≥ 0, and that both pn and qn are increasing.
In fact, as an ≥ 1 for all n ≥ 1, both sequences grow at least as fast as the
Fibonnaci numbers. Explicitly, p0 = a0, q0 = 1, p1 = a1a0 + 1, q1 = a1, and so
on.

In all that follows, we will assume we have a (possibly finite) sequence a0 ∈ Z,
a1, a2, . . . ∈ N given to us, rather than explicitly state this as part of every result.

Theorem 6.23. For all n ≥ 0, finite continued fractions are given by the
corresponding convergent:

[a0, a1, . . . , an] =
pn
qn

Proof. We proceed by induction. We first extend the notion of convergents to
sequences a0 ∈ Q, and a1, . . . , an positive real numbers. The claim is clearly
true for n = 0, so suppose it is true for some n ≥ 0. Given a sequence
a0, a1, . . . , an, an+1, consider the auxiliary sequences

a′0 = a0, a
′
1 = a1, . . . , a

′
n−1 = an−1, a

′
n = an + a−1

n+1,

p′0 = p0, p
′
1 = p1, . . . , p

′
n−1 = pn−1, p

′
n = a′np

′
n−1 + p′n−2 = pn +

pn−1

an+1
,

q′0 = q0, q
′
1 = q1, . . . , q

′
n−1 = qn−1, q

′
n = a′nq

′
n−1 + q′n−2 = qn +

qn−1

an+1
,

which agree with our original sequences the nth term. By the induction hypoth-
esis

[a0, . . . , an, an+1] = [a′0, . . . , a
′
n] =

p′n
q′n

=
an+1pn + pn−1

an+1qn + qn−1
=
pn+1

qn+1

A neat corollary of this proof is the following result about continued fractions
with one real entry.

Corollary 6.24. For all y > 0 and n ≥ 0

[a0, a1, . . . , an, y] =
ypn + pn−1

yqn + qn−1
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By tracing back the recurrence relation, we can obtain a bit more information
about the relationship between nearby convergents.

Theorem 6.25. For all n ≥ 0, qnpn−1 − qn−1pn = (−1)n and qnpn−2 −
qn−2pn = (−1)n−1an.

Proof. Let Mn =
(
an 1
1 0

)
for every n ≥ 0. Then qn pn

qn−1 pn−1

 =

an 1

1 0

qn−1 pn−1

qn−2 pn−2

 =Mn

qn−1 pn−1

qn−2 pn−2

 .

Iterating this, we see that qn pn

qn−1 pn−1

 =MnMn−1 · · ·Mn

0 1

1 0

 .

Taking the determinant of both sides, we find that

qnpn−1 − qn−1pn = (−1)n+2 = (−1)n.

To see the second claim, we apply the recursion:

qnpn−2 − pnqn−2 = (anqn−1 + qn−2)pn−2 − qn−2(anpn−1 + pn−2)

= an(qn−1pn−2 − qn−2pn−1) = (−1)n−1an.

Corollary 6.26. The fraction pn
qn

is fully simplified for every n ≥ 0, i.e.

gcd(pn, qn) = 1.

Proof. This is an immediate consequence of Theorem 6.25 and Bezout’s theorem
(Theorem 1.15).

We can now finally show that continued fraction expansions compute their
associated real numbers

Theorem 6.27. Let x ∈ R, and let a0, a1, . . . be the associated continued frac-
tion expansion. Then

lim
n→∞

[a0, a1, . . . , an] = lim
n→∞

pn
qn

= x

where we interpret the limit appropriately if the continued fraction expansion is
finite.

Proof. From Theorem 6.19, and Theorem 6.23, we know this to be the case if
the continued fraction expansion is finite. So suppose it is infinite. Then it
suffices to show

lim
n→∞

pn
qn

= x.
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First note that the map

R>0 → R
y 7→ [a0, a1, . . . , an−1, y]

consists of a composition of n inversions and translations. Thus it is decreasing
if n is odd and increasing if n is even. Therefore, if n is even

pn
qn

= [a0, a1, . . . , an] < [a0, a1, . . . , xn] = x

and if n is odd

pn
qn

= [a0, a1, . . . , an] > [a0, a1, . . . , xn] = x.

Next note that
pn
qn

− pn−2

qn−2
=

(−1)nan
qnqn−2

which is positive if n is even and negative if n is odd. Hence the sequence
{
p2n
q2n

}
is increasing and bounded above by x. Thus it converges to some limit L ≤ x.

Similarly, the sequence
{
p2n+1

q2n+1

}
is decreasing and bounded below by x. Thus it

converges to some limit R ≥ x.
Finally note that

p2n
q2n

− p2n+1

q2n+1
=

(−1)2n+1

q2nq2n+1

tends to 0 as n grows, as qn is increasing. Thus

L = lim
n→∞

p2n
q2n

= lim
n→∞

p2n+1

q2n+1
= R.

Thus, R = L ≤ x ≤ R, so we must have R = L = x and limn→∞
pn
qn

= x.

Thus we have show that the canonical continued fraction expansion of a real
number x computes x. In fact, for irrational x, this continued fraction expansion
is unique! If x = [b0, b1, . . .] is a continued fraction expansion, then

0 ≤ x− b0 =
1

b1 +
1

. . .

<
1

b1
≤ 1

and so we must have b0 = ⌊x⌋, and so on. Thus, for irrational x, we can talk
about the continued fraction expansion.

We do not have uniqueness for rational x, as if an > 1, then

[a0, a1, . . . , an] = [a0, . . . , an−1, an − 1, 1]

so we can only discuss talk about a canonical continued fraction expansion in
this case.
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6.2.2 Diophantine approximation

We have seen that convergents give arbitrarily precise approximations of real x,
but so does any sequence of rational numbers tending to x. There is a sense in
which, at least for irrational x, the convergents give the best approximations.
Specifically, convergents provide a better approximation than any rational num-
ber whose denominator is at most as large as that of the convergent.

This is very valuable when doing numerical computations. When computing
with rational numbers, it is possible to avoid the rounding errors associated to
floating point arithmetic, so we can very easily control our errors when approx-
imating irrational expressions, particular compared to the amount of memory
needed. For example,

π ≈ [3, 7, 15, 1] =
355

113

is accurate to 6 decimal places, but only requires us to compute with three digit
integers.

Let us make this precise.

Proposition 6.28. For all irrational x and n ≥ 0,

1

qn(qn+1 + qn)
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1

Proof. We know that

p2n
q2n

<
p2n+2

q2n+2
< x <

p2n+1

q2n+1
<
p2n−1

q2n−1

for all n ≥ 0. Checking for both even and odd n this implies that∣∣∣∣x− pn
qn

∣∣∣∣ < ∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ = 1

qn
qn+1.

Noting that if a < b < c, then c− a > b− a, and similarly with the reverse
inequality, we also have that∣∣∣∣x− pn

qn

∣∣∣∣ > ∣∣∣∣pn+2

qn+2
− pn
qn

∣∣∣∣ = an+2

qnqn+2
=

1

qn
qn+2

an+2

=
1

qn(qn+1 +
qn
an+2

)
>

1

qn(qn+1 + qn)
.

Corollary 6.29. For all irrational x ∈ R, |qnx− pn| < 1
qn+1

, which tends to 0

as n tends to infinity.

Corollary 6.30. The rationals Q are dense in the reals R.
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Theorem 6.31. For all irrational x ∈ R, n ≥ 0, p ∈ Z and q ∈ N such that
q ≤ qn

|qx− p| > |qnx− pn|
unless p

q = pn
qn
.

Proof. Fix n ≥ 0, and let 0 < q ≤ qn be a fixed integer. Suppose that p
q ̸= pn

qn
.

Then, since

det

pn pn−1

qn qn−1

 = ±1

this matrix has an inverse with integer entries. As such, there exist y, z ∈ Z
such that

pny + pn−1z = p,

qny + qn−1z = q.

If z = 0, then p
q = pn

qn
. Thus, we must have z ̸= 0. If y = 0, then p

q = pn−1

qn−1
, and

Proposition 6.28 tells us that

|qn−1x− pn−1| >
1

qn + qn−1
≥ 1

an+1qn + qn−1
=

1

qn+1
> |qnx− pn|

so the claim holds.
Otherwise y, z ̸= 0, and since qny + qn−1z = q < qn, y and z must have

opposite signs. Since qnx − pn and qn−1x − pn−1 also have opposite signs, we
must have that y(qnx− pn) and z(qn−1x− pn−1) have the same sign. Thus

|qx− p| = |y(qnx− pn) + z(qn−1x− pn−1)|
= |y(qnx− pn)|+ |z(qn−1x− pn−1)|

> |y(qnx− pn)| ≥ |qnx− pn|.

This next result shows that if we have too good an approximation of x, then
it must be a convergent. The proof can be a little confusing, so we might omit
it in lectures, depending on how much time we have.

Theorem 6.32. For any irrational x ∈ R, p ∈ Z and q ∈ Z, if |qx − p| < 1
2q ,

then p
q = pn

qn
for some n ≥ 0.

Proof. If |qx− p| < 1
2q , then qx− p = ϵθ

q where ϵ = ±1 and θ ∈ [0, 12 ). We can
rearrange this to obtain that

x =
p+ ϵθ

q

q
.

We may assume gcd(p, q) = 1, as otherwise the inequality implies that |q′x−
p′| < 1

2q′ for

p′ =
p

gcd(p, q)
, q′ =

q

gcd(p, q)
.
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Let p
q = [b0, b1, . . . , bn] have convergents sm

tm
, so that p

q = sn
tn
. In fact, since

we assume gcd(p, q) = 1, and convergents are fully simplified, sn = p and tn = q.
Recall we have an ambiguity in continued fraction expansions for rational

numbers
[c0, c1, . . . , cm + 1] = [c0, c1, . . . , cm, 1]

and hence we can assume n is such that ϵ = (−1)n = tnsn−1 − tn−1sn.
Let y = 1

θ −
tn−1

tn
have continued fraction expansion

y = [d0, d1, d2, . . .]

As 1
θ > 2 and tn−1

tn
< 1, y > 1 and hence d0 ≥ 1. Thus, we can make sense of

the continued fraction

[b0, b1, . . . , bn, d0, d1, . . .] = [b0, b1, . . . , bn, y]

which by Corollary 6.24 is equal to

ysn + sn−1

ytn + tn−1
=
qp− θ(tn−1sn − tnsn−1)

q2 − θtntn−1 + θtntn−1
=
qp− θϵ

q2
= x

Thus, by uniqueness of continued fraction expansions for irrational x, we must
have that

b0 = a0, b1 = a1, . . . , bn = an

and hence
p

q
= [b0, . . . , bn] = [a0, . . . , an] =

pn
qn
.

Remark 6.33. Theorem 6.31 not only tells us that the convergents of a con-
tinued fraction give the best approximations with constrained denominators, this
also tells us which convergents are the most practical. Since qn+1 = an+1qn +
qn−1, if an+1 is very large, qn+1 is very large compared to qn. As such, pnqn must
be a very good approximation relative to the size of its denominator. This can
be easily seen with π. a4 = 292 is quite large compared to q3 = 113, especially
given that all prior an were less than 15. And indeed

p3
q3

=
355

113

is accurate to 6 decimal places with a three digit denominator, while

p4
q4

=
103993

33102

is only accurate to 9 decimal places, despite having a five digit denominator.
Thus, an irrational number is easy to approximate if it has unusually large

terms in its continued fraction expansion. At the other end of the spectrum, the
irrational number given by

x = [1, 1, 1, 1, . . .]

73



is going to be very poorly approximated by its convergents, as their denominators
increase as slowly as is possible. Some people will argue that this means that

x =
1 +

√
5

2

is the most irrational number. Maybe the Golden Mean isn’t quite so beautiful
after all!

6.3 Quadratic irrationals and Pell-Fermat equations

We call an irrational x ∈ R a quadratic irrational if its minimal polynomial is
quadratic, i.e. it is algebraic of degree 2. From the quadratic formula, every
quadratic irrational can be written in the form a + b

√
d for some a, b ∈ Q and

d ∈ N not a square. We can take d to be an integer as√
r

s
=

√
rs

s
.

We denote by
Q[

√
d] = {a+ b

√
d | a, b ∈ Q}

and similarly Z[
√
d]. It is a simple exercise in algebra to verify the following

proposition.

Proposition 6.34. The set Q[
√
d] is a field: it is closed under addition, sub-

traction, multiplication, and division by non-zero elements. The set Z[
√
d] is a

ring: it is closed under addition, subtraction and multiplication.

This space has a lot in common with the Gaussian integers. We can define
an analogue of complex conjugation and norm.

Definition 6.35. Given β = a + b
√
d ∈ Q[

√
d], define β = a − b

√
d, and

N(β) = ββ = a2 − b2d.

Furthermore these operations are compatible with the field structure:

α+ β = α+ β, αβ = αβ.

By using this additional structure, we can give a very nice description of
quadratic irrationals in terms of their continued fraction expansions, though
the proof is a bit involved. As such, we may only cover one direction in the
lectures.

Theorem 6.36. An irrational x ∈ R is a quadratic irrational if and only if its
continued fraction expansion is ultimately periodic.

Proof. We will use the notation b0, b1, . . . , bn to indicate the infinite sequence
obtained by repeating the given finite sequence. Suppose that

x = [a0, a1, . . . , ar, b0, b1, . . . , bs]
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and let
y = [b0, b1, . . . , bs].

Then

y = [b0, b1, . . . , bs, y] =
yp′s + p′s−1

yq′s + q′s−1

and so y is an irrational number satisfying a quadratic equation. Since y ∈ R,
there exist a, b ∈ Q and d ∈ N not a square such that y = a+ b

√
d. Then

x = [a0, . . . , ar, y] =
ypr + pr−1

yqr + qr−s
∈ Q[

√
d]

and is therefore a quadratic irrational.
Conversely, suppose that

x =
a

c
+
b
√
d

c

is a quadratic irrational. We can assume, without loss of generality, that b > 0.
Then, letting

R = a|c|, S = c|c|, D = b2c2d > 0

we have that

x =
R+

√
D

S
.

Note that D − R2 = c2(b2d − a) is divisible by S. Thus, in computing the
continued fraction expansion, we have that

x1 =
1

x− ⌊x⌋
=

1
R−S⌊x⌋+

√
D

S

=
(−R+ S⌊x⌋) +

√
D

D−R2+2S⌊x⌋−S2

S

=
R1 +

√
D

S1

for integers R1, S1 such that D − R2
1 = SS1. Repeating this, we obtain a

sequence of integers (Rn, Sn) such that SnSn+1 = D−R2
n+1 and xn = Rn+

√
D

Sn
.

As x = [a0, . . . , an−1, xn] =
xnpn−1+pn−1

xnqn−1+qn−2
, we can compute that

xn = −xqn−1 − pn−1

xqn−2 − pn−2

and hence

Rn −
√
D

Sn
= xn = −xqn−1 − pn−1

xqn−2 − pn−2
=

−qn−1

qn−2

x− pn−1

qn−1

x− pn−2

qn−2

.

As n tends to infinite
x− pn−1

qn−1

x− pn−2

qn−2

→ x− x

x− x
= 1
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and so, for large enough n xn < 0. Hence

2
√
D

Sn
= xn − xn > 1 > 0.

In particular, Sn > 0. Thus,

0 < SnSn+1 = D −R2
n+1

for n large enough, and so 0 ≤ R2
n < D for n large enough. Also, since Sn > 0

for n large enough Sn ≤ SnSn+1 = D −R2
n+1 ≤ D.

Thus (Rn, Sn) can only take finitely many values and is therefore ultimately
periodic. Hence xm+k = xm for some m, k > 0, and so

x = [a0, a1, . . . , am−1, am, . . . , am+k−1]

is ultimately periodic.

Example 6.37. Let x = 1+
√
5

2 . We can compute that a0 = 1 and

x1 =
1

√
5−1
2

=
2√
5− 1

=
2(1 +

√
5)

4
= x

so x = [1].

If x =
√
6, then a0 = 2, and x1 = 1√

6−2
= 1 +

√
6
2 . Thus a1 = 2, and

x2 = 2 +
√
6. Thus a2 = 4, and x3 = 1 +

√
6
2 = x1. Hence x = [2, 2, 4].

6.3.1 The Pell-Fermat equation

Continued fractions of quadratic irrationals also play an important role in solv-
ing a certain Diophantine equation, called the Pell-Fermat equation. Let d ∈ N
be a non-square. A Pell-Fermat equation is an Diophantine equation

x2 − dy2 = 1

This has the trivial solution of (x, y) = (±1, 0), but finding solutions in positive
integers is a non-trivial task.

Example 6.38. If d = 2, then some solutions are given by (x, y) = (3, 2) or
(x, y) = (17, 12). But as will most Diophantine equations, just trying small
numbers rarely works. If d = 61, then the smallest positive solution is

(x, y) = (1766319049, 226153980).

To solve this in general, we employ tactics similar to how we used Gaussian
integers to investigate sums of two squares. We first note that solutions to
a Pell-Fermat equation are in bijection with elements α ∈ Z[

√
d] such that

N(α) = 1
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As the norm is multiplicative, we can recreate the proof of Proposition 5.16
to show that N(α) = 1 if and only if α has a multiplicative inverse in Z[

√
d].

Furthermore, as the norm is multiplicative, if we have

x2 − dy2 = 1, and z2 − dw2 = 1

then we have

1 = N(x+ y
√
d)N(z + w

√
d) = N((x+ y

√
d)(z + w

√
d)

= N(xz + ywd+ (yz + xw)
√
d)

= (xz + ywd)2 − (yz + xw)2d.

Thus we can combine solutions. Combined with a powerful result from Dirichlet,
we can actually general all solutions, if we can find the correct start point!

Theorem 6.39 (Dirichlet). There exists ε = a + b
√
d ∈ Z[

√
d] with a, b > 0,

called the fundamental unit, such that N(α) = 1 if and only if α = ±εn for some
n ∈ Z.

Thus, if we can determine the fundamental unit ε = a1 + b1
√
d, we can

obtain infinitely many solutions (an, bn) by computing an + bn
√
d = εn.

In order to compute the fundamental unit, we first notice that, from the
positivity of a1, b1, we have that (an, bn) is increasing for n ≥ 1. As such, the
fundamental unit will correspond to a minimal positive integer solution to

x2 − dy2 = 1.

Finally, we need the following lemma

Lemma 6.40. If a, b ∈ N satisfies a2 − db2 = 1, then a
b is a convergent of√

d. As such, the minimal positive integer solution to x2 − dy2 = 1 is given by
(x, y) = (pn, qn) for the minimal n for which this is a solution.

Proof. The minimality follows from the fact that pn and qn are increasing. Thus
it suffices to show that every positive integer solution to x2−dy2 = 1 corresponds
to a convergent. Suppose that a2 − db2 = 1. Then∣∣∣a

b
−
√
d
∣∣∣ = |a2 − db2|

b(a+ b
√
d
=

1

b(a+ b
√
d
<

1

b(a+ b)

since d > 1, and so

|b
√
d− a| < 1

a+ b
.

As a =
√
db2 − 1 ≥

√
2b2 − 1 ≥ b for all b ≥ 1, we therefore have that

|b
√
d− a| < 1

b+ b
=

1

2b

which implies that a
b is a convergent.
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Therefore, in order to solve the Pell-Fermat equation, we just need to com-
pute convergents until we get a solution. This will give us our fundamental unit,
from which we can compute all other solutions.

Example 6.41. Let us find the fundamental solution to x2 − 6y2 = 1. Recall
that √

6 = [2, 2, 4]

and so the convergents correspond to

(p0, q0) = (2, 1),

(p1, q1) = (5, 2),

and so on. The first of these does not give a solution:

4− 6 = −2 ̸= 1

while the second does:
25− 24 = 1

and hence we obtain a fundamental unit ε = 5+2
√
6, from which we can obtain

all other solutions. For example, ε2 = 49 + 20
√
6, and indeed

492 − 6(400) = 1.
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7 Summary of main results

As a possible study aid, we summarise here the major results from each section of
the course. It is not a comprehensive list, but should provide a good start point.
It notably does not include definitions or examples, or every useful corollary.

Chapter 1

• Theorem 1.2 - Division with remainder

• Euclid’s Algorithm - Theorem 1.13 - A tool for computing gcd

• Bezout’s Theorem - Theorem 1.15 - Expresses gcds as a linear combination

• Corollary 1.17 - A special case of Bezout’s Theorem for coprime integers

• Gauss’ Lemma - Lemma 1.19 - Divisibility when the divisor is coprime to
a factor

• Euclid’s Lemma - Corollary 1.23 - Divisibility of a product by a prime -
You should be able to prove this as a special case of Gauss’ Lemma

• The fundamental theorem of arithmetic - Theorem 1.25 - Prime factori-
sation

• Euclid’s theorem - Theorem 1.26 - The infinitude of primes

• Theorem 1.43 - Sums of divisor formulae

Chapter 2

• Theorem 2.13 - Diophantine equations have solutions only if they have
solutions modulo n

• Theorem 2.21 - Invertible elements modulo n

• The Chinese Remainder Theorem - Theorem 2.33 - Solving linear congru-
ences with multiple moduli

• Corollary 2.37 - Formula for ϕ(n)

• Euler’s Theorem - Theorem 2.44 - Bounds multiplicative order of invertible
elements

• Fermat’s Little Theorem - Corollary 2.46 - Euler’s theorem for prime mod-
uli - You should be able to prove this as a special case of Euler’s theorem

• Theorem 2.59 - Primitive roots exist modulo primes
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Chapter 3

• Corollary 3.9 - Describes the number of possible nth roots modulo p

• Fact 3.15 - Properties of the Legendre symbol

• Quadratic Reciprocity - Theorem 3.23 - Relates Legendre symbols of odd
primes

• Theorem 3.24 - Number of roots of a quadratic modulo p

Chapter 4

• Theorem 4.3 - Describes all primitive Pythagorean triples

Chapter 5

• Theorem 5.1 - Describes sums of two squares

• Theorem 5.3 - Describes sums of three squares

• Theorem 5.4 - Describes sums of four squares

• Corollary 5.12 - The product of a sum of two squares is a sum of two
squares

• Theorem 5.18 - Long division in the Gaussian integers

• Lemma 5.23 - Division of Gaussian integers compared to norms

• Theorem 5.27 - Computing the gcd of Gaussian integers

• Corollary 5.28 - Gaussian version of Bezout’s Theorem

• Corollary 5.29 - Gaussian version of Gauss’ Lemma

• Theorem 5.35 - Factorisation into irreducibles

• Theorem 5.37 - Description of all irreducibles

Chapter 6

• Lemma 6.3 - Approximation of rational numbers

• Liouville’s Theorem - Lemma 6.10 - Approximation of algebraic numbers

• Theorem 6.23 - Convergents compute finite continued fractions

• Theorem 6.27 - Continued fractions converge

• Theorem 6.31 - Continued fractions give the best approximations

• Theorem 6.36 - Quadratic irrationals have periodic continued fractions

• Dirichlet’s Theorem - Theorem 6.39 - There exists a fundamental unit

• Lemma 6.40 - Convergents solve the Pell-Fermat equation
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