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Introduction

This thesis aims to discuss and expand upon a collection of interelated problems in
number theory, all tying to the theory of multiple zeta values and Drinfel’d associators.
Multiple zeta values provide a generalisation of the Riemann zeta function to multiple
variables. Where questions of algebraic independence of values of the Riemann zeta
function at integer values seem intractable, multiple zeta values have a rich algebraic
structure. One interesting question in modern number theory is to describe explicitly
this structure, giving all relations among multiple zeta values and describing their Hilbert
Poincaré series.

There are several equations describing relations among multiple zeta values, con-
jecturally describing all relations. The most general of these are Drinfel’d’s associator
equations: functional equations among power series in two non-commuting variables,
with solution given by the generating series for multiple zeta values [13]. This adds an
extra layer of interest to the study of multiple zeta values: it is known that there is a
solution to the associator equations with rational coefficients. Knowing such an object
explicitly would be an extremely powerful computational tool: it has applications in the
theory of knot invariants [2], the construction of quasitriangular quasi-Hopf algebras,
along with providing a tool for decomposition of multiple zeta values into a given basis
[4]. As this would give a tool to describe all relations among multiple zeta values explic-
itly, we make this our end goal: finding a rational associator, using multiple zeta values
as a model for the coefficients.

However, solving the associator equations directly proves quite challenging, so we
turn to the second set of equations describing relations among multiple zeta values: the
double shuffle equations. Arising naturally from the definition of multiple zeta values,
these equations are much simpler, and are implied by the associator equations [16].
Conjecturally, they describe all relations among multiple zeta values, and are equivalent
to the associator equations. Furthermore, they can easily be considered modulo products,
or certain filtrations, allowing us to find relations among “graded” multiple zeta values,
which can hopefully be lifted to true relations, reducing the problem of finding rational
solutions to the double shuffle equations to that of finding rational solutions modulo
products, or a filtration. Indeed, one can reduce many problems about the dimension
of the vector space spanned by multiple zeta values to problems about these simplified
spaces [5].

In solving these problems, we gain an additional geometric structure: multiple zeta
values and the associator equations can by found in the geometry of P1 \ {0, 1,∞}. By
exploiting this geometric origin, we can produce a motivic Galois group with an action
on multiple zeta values, preserving relations. Thus, this Galois group has an action on
solutions to the associator and double shuffle equations, which we can exploit in order
to attempt to find rational solutions, or to bound the dimension of certain spaces.

This is an incredibly rich and multifaceted problem, and as such, we must summarise
it as best we can. The structure of this thesis will be as follows: In section one, we will
condense the necessary background material. We first introduce multiple zeta values
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and their combinatorics, as these play a vital role in describing the object of interest:
Drinfel’d associators. These formal power series satisfy certain equations and are used
in the construction of quasitriangular quasi-Hopf algebras. However, they are quite
mysterious: only 3 examples are known explicitly, and all arise from other areas of
mathematics, such as conformal field theory and knot theory. Thus, instead of studying
associators directly, we study the Lie group DMR0 of solutions to the double shuffle
equations, allowing us to use the machinery of the motivic Galois group and its ties to
P1 \ {0, 1,∞}.

In section two, we consider the Lie algebra dmr0 associated to DMR0, and the equa-
tions describing it: the double shuffle equations modulo products. This Lie algebra con-
tains a Lie algebra called the motivic Lie algebra, which contains Lie algebraic analogues
of associators. It is a free Lie algebra with generators in every odd degree greater than
1, which act on the space of associators, allowing us to produce infinitely many rational
associators given one. However, these generators do not have canonical representations,
so we discuss methods used to make them canonical: a Gram-Schmidt procedure using
inner products, an approach using “polar” solutions, etc. We also consider the linearised
double shuffle equations, which describe elements of the associated graded of the motivic
Lie algebra, with respect to the depth filtration.

In section three, we introduce some of Brown’s motivic machinery: defining motivic
multiple zeta values and the motivic coaction. This coaction preserves a filtration - the
block filtration - of multiple zeta values, arising from a decomposition due to Charlton,
so we expect calculation of the coaction to be simplified in the associated graded. With
this in mind, we introduce block graded multiple zeta values, discuss some low weight
relations among them and extend the definitions to divergent multiple zeta values. We
also compute the coproduct on block graded multiple zeta values modulo ζm(2), and
consider the block graded dual product.

Finally, in section four, we present a slightly eclectic selection of material. We con-
sider possible approaches to deriving the duality relation among multiple zeta values,
which arises naturally from the geometry of P1 \ {0, 1,∞}, from the double shuffle equa-
tions. We also consider the double shuffle equations modulo primes, showing that an
integer associator cannot exist and giving hints as to the complexity of coefficients of
a rational associator. We expand on a recurring connection between the double shuffle
equations and modular forms, before finally briefly acknowledging the analytic struc-
tures of multiple zeta functions and how we might exploit this to solve the problem of
finding a rational associator.
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1 Drinfel’d Associators and the Geometry of P1 \ {0, 1,∞}

1.1 Multiple zeta values and iterated integrals

The field of study surrounding multiple zeta values is deep, wide and sprawling. One
cannot hope to give a comprehensive survey of the current state of affairs within the
confines of this thesis, and thus we limit ourselves to a brief overview of the bare ne-
cessities. For further details, the author recommends [20] or [31] for a more expository
recap.

Definition 1.1. For a sequence of integers (s1, . . . , sr) with si ≥ 1 and sr ≥ 2, we define
the corresponding multiple zeta value by

ζ(s1, . . . , sr) :=
∑

0<n1<n2<...<nr

1

ns11 n
s2
2 . . . nsrr

To a multiple zeta value (often abbreviated MZV), we can associate two quantities:
weight and depth. The weight of ζ(s1, . . . , sr) is defined to be s1 + s2 + · · ·+ sr, and the
depth is defined to be r

Let Z be the Q-vector space spanned by multiple zeta values. We can endow this
with the structure of an algebra using the stuffle relations among MZVs, arising from
splitting the summation obtained in the product.

Example 1.2.

ζ(2)ζ(3) =
∑
m≥1

∑
n≥1

1

m2n3

=
∑

m<n≤1

1

m2n3
+

∑
n<m≤1

1

m2n3
+
∑
n≥1

1

n5

= ζ(2, 3) + ζ(3, 2) + ζ(5)

Generalising this example, we see that any product of multiple zeta values lies in Z.
We make this precise as follows

Definition 1.3. Denote a sequence of positive integers (i1, . . . , ik) by the product
zi1zi2 . . . zik in noncommuting formal variables z1, z2, . . .. Denote the empty sequence
by 1. Given two sequences of integers, zi1 . . . zir and zj1 . . . zjq , we recursively define
their stuffle product as the formal sum obtained from

1 ? zi1 . . . zir = zi1 . . . zir ? 1 = zi1 . . . zir

zi1 . . . zir ? zj1 . . . zjq = zi1(zi2 . . . zir ? zj1 . . . zjq) + zj1(zi1 . . . zir ? zj2 . . . zjq) + zi1+j1(zi2 . . . zir ? zj2 . . . zjq)

Then, define ζ(zi1 . . . zir) := ζ(i1, . . . , ir) and extend ζ by linearity to find:

Proposition 1.4.

ζ(zi1 . . . zir)ζ(zj1 . . . zjq) = ζ(zi1 . . . zir ? zj1 . . . zjq)
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Thus we obtain one algebra structure on MZVs. However, it is not the only such
structure. We obtain another product on Z by considering the iterated integral repre-
sentation of MZVs, an idea going back to Chen [9].

Definition 1.5. Let M be a connected differentiable manifold, and let P(M) be the set
of all paths in M . To be precise, define

xP(M)y := {γ : [0, 1]→M |γ piecewise continuous with γ(0) = x, γ(1) = y}

and
P(M) := ∪x,y∈M xP(M)y

Then, given smooth k-valued 1-forms ω1, ω2, . . . , ωr on M , we define the iterated integral
of ω1, ω2, . . . , ωr to be the function∫

ω1, ω2, . . . , ωr : P(M)→ k

γ 7→
∫
γ
ω1ω2, . . . ωr

given by ∫
γ
ω1, ω2, . . . , ωr =

∫
0≤t1≤...≤tr≤1

f1(t1) . . . fr(tr)dt1 . . . dtr

where fi(t)dt := γ∗ωi. We view the constant function 1 as an empty iterated integral.

Remark 1.6. In this thesis, we perform iterated integrals from left to right. It is equally
valid, and quite common to work from right to left. Indeed, it is down to the author’s
personal preference. Similar differences may be found in the definitions of multiple zeta
values. Thus, the reader should not worry if another discussion seems at odds with this
one

Multiple zeta values may be obtained as iterated integrals on P1 \ {0, 1,∞} as follows

Definition 1.7. Define the 1-form

ωi :=
dz

z − i
for i = 0, 1 Then for any binary sequence of the form w = 10s1−110s2−11 . . . 10sr−1,
define the differential form

ωw = ω1ω
s1−1
0 . . . ω1ω

sr−1
0

Remark 1.8. Similarly to order of integration in iterated integrals, and order of sum-
mation in MZVs, the is no standard convention for these ωi. It is quite common to have
this defined as

ωi :=
dz

i− z
However, the definition given should be consistent with all notions introduced later

in this thesis.
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Proposition 1.9. For a binary sequence of the form w = 10s1−110s2−11 . . . 10sr−1, we
obtain upon evaluation of the iterated integral of ωw along the straight line path between
0 and 1

ζ(s1, . . . , sr) = (−1)r
∫
ωw

Remark 1.10. The reader should note that it is common here to introduce the idea of
tangential basepoints. Roughly speaking, this moves integration to integration over the
blowup of our manifold at ”problem” points. While this does not particularly alter the
analysis, use of tangential basepoints preserves algebraic information that is necessary
in the motivic setting. For more detail, we refer the reader to the work of Deligne [11],
as a full discussion would fill a thesis.

Example 1.11. Let w := 100, then the iterated integral of ωw is given by∫
ω1ω1ω0 =

∫ 1

0

∫ x

0

∫ y

0

dz

z − 1

dy

y

dx

x

= −
∫ 1

0

∫ x

0
(

∫ y

0

∞∑
i=0

zidz)
dy

y

dx

x

= −
∫ 1

0
(

∫ x

0

∞∑
i=0

yi

i+ 1
dy)

dx

x

= −
∫ 1

0

∞∑
i=0

xi

(i+ 1)2
dx

= −
∞∑
i=0

1

(i+ 1)3
= −ζ(3)

Now, by considering the product of two multiple zeta values as iterated integrals,
and splitting the domain of integration, we obtain another algebra structure on Z.

Example 1.12.

ζ(2)ζ(3) =

∫
0≤z≤y≤x≤1

dz

1− z
dy

y

dx

x

∫
0≤t≤s≤1

dt

1− t
ds

s

=

∫
0≤z≤y≤x≤t≤s≤1

+

∫
0≤z≤y≤t≤x≤s≤1

+

∫
0≤z≤t≤y≤x≤s≤1

+

∫
0≤t≤z≤y≤x≤s≤1

+

∫
0≤z≤y≤t≤s≤x≤1

+

∫
0≤z≤t≤y≤s≤x≤1

+

∫
0≤t≤z≤y≤s≤x≤1

+

∫
0≤z≤t≤s≤y≤x≤1

+

∫
0≤t≤z≤s≤y≤x≤1

+

∫
0≤t≤s≤z≤y≤x≤1

dz

1− z
dy

y

dx

x

dt

1− t
ds

s

= 3ζ(2, 3) + ζ(3, 2) + 6ζ(1, 4)
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To make this precise, we consider ζ as a function on e1Q〈e0, e1〉e0, a sub-vector space
of the polynomial algebra in two non-commuting variables as follows:

ζ(e1e
s1−1
0 e1 . . . e1e

sr−1
0 ) = ζ(s1, . . . , sr)

and extending by linearity. We call monomials in this vector space convergent words,
and monomials not in this subspace divergent.

Definition 1.13. Given two elements of Q〈e0, e1〉, define their shuffle product recursively
by

1� u = u� 1 = u

xu� yv = x(u� yv) + y(xu� v)

where u, v are monomials in e0, e1, and x, y ∈ {e0, e1}.

Proposition 1.14. For any monomials u, v in e1Q〈e0, e1〉e0, we have

ζ(u� v) = ζ(u)ζ(v)

Thus we gain a double algebra structure on Z, in which we additionally obtain the
following relation, arising from the involution of P1 \ {0, 1,∞} that interchanges 0 and
1.

Proposition 1.15. Let D : Q〈e0, e1〉 → Q〈e0, e1〉 be the anithomomorphism mapping
ei 7→ ei+1, where indices are considered modulo 2. Then we have ζ(w) = ζ(Dw) for all
w ∈ e1Q〈e0, e1〉e0.

One might feel that restricting ourselves to the sub-vector space e1Q〈e0, e1〉e0 is
quite limiting, and this is to some extent true. Fortunately, there exist regularisation
procedures, one compatible with the shuffle algebra structure and one compatible with
the stuffle algebra structure, which allow us to extend ζ to a function on all of Q〈e0, e1〉
[22]. Indeed, these regularised MZVs prove critical in providing sufficient relations for
conjectured dimensions of the various weight spaces of Z to hold.

We now mention a few standard conjectures in the theory of MZVs.

Conjecture 1.16. Z is weight graded: defining Zn := 〈ζ(s1, . . . , sr)|s1 + · · ·+sr = n〉Q,
we have

Z =
∞⊕
n=0

Zn

where we take ζ(∅) = 1.

Conjecture 1.17. The weight graded pieces of Z have dimensions given by the gener-
ating series

∞∑
n=0

dimZntn =
1

1− t2 − t3
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Conjecture 1.18. All relations among multiple zeta values can be obtained from the
(regularised) shuffle and stuffle relations, alongside the Hoffman relation:

ζ(e1 � u− e1 ? u) = 0

for all convergent u.

1.2 Drinfel’d associators and the KZ equations

In his 1990 work [13] Drinfel’d introduced the idea of an associator, a power series in
two non-commuting variables.

Definition 1.19. Let k be a field of characteristic 0. A λ-associator over a k is an
element Φ ∈ k〈〈e0, e1〉〉 that is grouplike for the continuous coproduct

∆(ei) = ei ⊗ 1 + 1⊗ ei

and satisfies the pentagon and hexagon equations

Φ(t12, t23 + t24)Φ(t13 + t23, t34) = Φ(t23, t34)Φ(t12 + t13, t24 + t34)Φ(t12, t23)

exp(
±λe0

2
)Φ(e∞, e0)exp(±λe∞

2
)Φ(e1, e∞)exp(±λe1

2
)Φ(e0, e1) = 1

where e∞ = −e0 − e1 and the tij are the infinitesimal braid variables, satisfying the
following:

tii = 0

tij = tji

[tij , tkl] = 0 if i, j, k, l distinct

[tij , tik + tjk] = 0 if i, j, k distinct

Together, we refer to these equations as the associator equations.

Interestingly, the hexagon equations are, to some extent, unnecessary, as shown by
Furusho [15].

Theorem 1.20 (Furusho). Let Φ be a grouplike power series in two non commuting
variables, satisfying Drinfel’d’s pentagon equation. Then there is a unique λ, depending
only on the coefficient of the degree 2 terms, such that the pair (λ,Φ) satisfy the hexagon
equations.

While arising originally from the study of quasi-Hopf algebras and braided monoidal
categories, associators have since sparked interest in many areas of mathematics, includ-
ing knot invariants [2], quantum field theory [25], and number theory. In particular,
the ties between associators and the Grothendieck-Teichmüller group has drawn much
interest.
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The Grothendieck-Teichmüller group is quite an important object in algebra, acting
on a range of objects in various fields. It exists in three versions: a profinite version, a
pro-l version and a pro-unipotent version. The first two are of interest, as the action of
the absolute Galois group factors through them, while the latter arises in homological
algebra and motivic contexts. It is this last version that appears in the discussion of
associators.

Definition 1.21. Define the Grothendieck-Teichmüller group GT to be the affine group
scheme over Q, whose k points are given by pairs (λ, f) in k× × k〈〈e0, e1〉〉 such that

∆f = f ⊗ f
f(e1, e0) = f(e0, e1)−1

f(e∞, e0)e
λ−1
2∞ f(e1, e∞)e

λ−1
2

1 f(e0, e1)e
λ−1
2

0 = 1

f(t12, t23 + t24)f(t13 + t23, t34) = f(t23, t34)f(t12 + t13, t24 + t34)f(t12, t23)

where e∞ and tij are defined as above. We endow this with a group structure as follows

(λ, f) · (λ′, f ′)(x, y) = (λλ′, f(x, y)f ′(xλ, f−1yλf))

Remark 1.22. The coefficient of e0e1 in f nearly determines λ. To be precise, the
coefficient is λ2

24 .

GT acts on the space of associators on the left. We get a similar action on the right
by the space of 0-associators,which we call the graded Grothendieck-Teichmüller group
GRT, which has product defined by

Φ · Φ′(e0, e1) := Φ′(e0, e1)Φ(e0,Φ
′−1e1Φ′)

One can show [13] that the space of associators is a GT-GRT torsor, and hence
GT∼=GRT. Thus, by studying associators, in particular 0-associators, we can gain infor-
mation about GT.

One of the first questions one might have about the space of associators is whether
it is empty? It is far from obvious that a solution to the associator equations exists for
any λ. Drinfeld in fact showed a solution existed and constructed it explicity [13] from
the monodromy of the Knizhnik Zamolodchikov equations.

Theorem 1.23 (Drinfel’d). There exists a solution to the associator equations whose
coefficients are given by multiple zeta values

Φ(e0, e1) =
∑

w∈〈e0,e1〉

(−1)|w|ζ(w)w

This adds a further layer of number theoretical interest to the problem of associators,
as multiple zeta values are now constrained by the associator equations, giving relations
between them. It is in fact conjectured that they describe all non trivial relations between
multiple zeta values. However, the associator equations are notoriously challenging, and
so the following corollary becomes tremendously useful in describing potential relations
among multiple zeta values.
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Corollary 1.24. There exists an associator with coefficients in Q.

We will not present a proof of this corollary. Should the reader be interested, we
recommend either Drinfel’d original work [13], or, if the reader is comfortable with braid
theoretic language, Bar-Natan’s constructive proof [2].

We will, however, sketch the proof of the theorem, based on the discussion of [29].

Definition 1.25. The Knizhnik Zamolodchikov equations are a system of differential
equations

∂ψ

∂xi
=
∑
j 6=i

tij
xi − xj

ψ

where tij are defined as above.

Sketch. The connection on M0,4 arising from the KZ equations is given by

∇ = d− t12
dz

z
− t23

dz

z − 1

Define Φ(t12, t23) to be the holonomy of this connection from z = 0 to z = 1. We again
should consider tangential basepoints here, but we shall gloss over this technicality.
Using standard techniques, we compute the holonomy to be

Φ(t12, t13) = lim
t→0

t−t23(1 +

∫ 1

0
t12
dt1
t1

+ t23
dt1
t1 − 1

+ . . .

+

∫
0≤t1≤...≤tn≤1

(t12
dt1
t1

+ t23
dt1
t1 − 1

)(· · · )(t12
dtn
tn

+ t23
dtn
tn − 1

) + . . .)tt12

To see that this solves the associator equations, we sim-
ply consider the holonomy along various paths. For ex-
ample, the hexagon equations follows from computing the
holonomy along the illustrated cycle.

The pentagon equation follows similarly, by integration
along a closed curve in M0,5. Then explicitly calculating
the integrals gives our result.

We can now discuss the optimistic goals of this project:
to find a canonical rational associator. We know that they exist, but none are known
explicitly.We even have iterative constructions for rational solutions to the associator
equations up to a given weight. However, these constructions involves many choices, and
are unlikely to give an explicit formula for the coefficients. Thus begins our problem.
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1.3 The double shuffle equations

The first obstruction to finding a rational associator is the difficulty in finding any
associator. Thus we will instead attempt to solve a simpler problem: solving the double
shuffle equations. We know multiple zeta values satsify a set of shuffle relations, and we
expect the associator equations to imply all relations among multiple zeta values. Thus
it makes sense to model our easer equations on known MZV relations. In the following
definitions, due to Racinet [27], let k be a field. It need not be of characteristic zero,
but is normally taken to be.

Definition 1.26. We say a power series Φ ∈ k〈〈a, b〉〉 solves the shuffle equations if it
is grouplike for the completed coproduct for which a, b are primitive. That is

∆Φ = Φ⊗ Φ

where
∆(x) = x⊗ 1 + 1⊗ x for x = a, b

Definition 1.27. Let Y = y1, y2, y3, . . . be a collection of formal variables. We say a
power series Φ ∈ k〈〈Y 〉〉 solves the stuffle equations if it is grouplike for the completed
coproduct, defined on generators by

∆∗(yn) =

n∑
i=0

yi ⊗ yn−i

where we define y0 := 1.

Definition 1.28. Define the projection map πY : k〈〈a, b〉〉 → k〈〈Y 〉〉 to be the linear
map given by

πY (ban1−1ban2−1 . . . bank−1) = yn1yn2 . . . ynk

and πY (aw) = 0 for any word w ∈ k〈a, b〉. Define also, for any element Φ ∈ k〈〈a, b〉〉,
Φcorr ∈ k〈〈Y 〉〉 by

Φcorr :=
∑
n≥1

(−1)n

n
(Φ|ban−1)yn1

where (Φ|w) denotes the coefficient of w in Φ.

Definition 1.29. We say a power series Φ ∈ k〈〈a, b〉〉 solves the (regularised) double
shuffle equations if Φ solves the shuffle equations and Φ∗ := ΦcorrπY (Φ) solves the stuffle
equations.

While still challenging to solve, the double shuffle equations are much more tractable,
and allow us to make use of additional structures coming from MZVs, such as the depth
and weight filtrations. The double shuffle equations are naturally weight graded, for
example. Furthermore, it is commonly conjectured that the double shuffle equations
describe all possible relations among MZVs, and are hence equivalent to the associator
equations. However, little is known about this beyond the work of Furusho [16].
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Theorem 1.30. Let Φ be a grouplike power series in two noncommuting variable. Sup-
pose also that it satisfies the pentagon equation. Then Φ solves the double shuffle equa-
tions.

The space of solutions to the double shuffle equations, denoted DMR, contains a
subspace of solutions, DMR0, such that (Φ|e0) = (Φ|e1) = (Φ|e0e1) = 0. This subspace
forms a pro-unipotent group [27] with multiplication given by

Φ · Φ′(e0, e1) := Φ′(e0, e1)Φ(e0,Φ
′−1e1Φ′)

which the reader will note is identical to that of GRT . Thus we get the following

Corollary 1.31. GRT is a subgroup of DMR0

It is a standard conjecture that they are in fact equal to the unipotent part of the
motivic Galois group, which we shall later discuss in greater depth.

Looking to the shuffle equations has proven quite fruitful, as they also lend themselves
well to a rewriting in terms of commutative power series. a technique due to Brown,
and very similar to Écalle’s theory of moulds [14], this technique has allowed Brown to
define a canonical rational associator up to depth 4.

Remark 1.32. From this point in the text, we are interested only in DMR0, and so we
shall assume (Φ|e0) = (Φ|e1) = (Φ|e0e1) = 0 for all potential solutions to the shuffle or
stuffle equations.

Definition 1.33. Denote by Dn the vector space spanned by words of depth n in k〈a, b〉
and let ρn : Dn → k[y0, y1, . . . , yn] be the isomorphism of vector spaces given by

ρn(am0bam1b . . . bamn) = ym0
0 ym1

1 . . . ymnn

The map ρ :=
∑∞

n=1 ρn, then defines an isomorphism

ρ : k〈a, b〉 →
∞⊕
n=1

k[y0, . . . yn]

Φ 7→ {Φ(n)(y0, . . . , yn)}∞n=1

We can then define the double shuffle equations in this new formulation as polynomial
equations.

First we note the following lemma.

Lemma 1.34. If Φ = 1 + Φ1 + Φ2 + . . . solves the shuffle equations, where Φn is the
depth n component of Φ, then ρn(Φn) ∈ k[y0, . . . , yn] is translation invariant.

Proof. Define δ : k〈a, b〉 → k〈a, b〉 to be the derivation given on generators by

δ(a) := 1

δ(b) := 0
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Note that

δ(am0bam1b . . . bamk) =
k∑
i=0

mia
m0bam1b . . . bami−1b . . . bamk

and that this agrees with the derivation given by (π0 ⊗ id) ◦∆, where π0(Φ) := (Φ|e0).
Thus, if ∆Φ = Φ⊗ Φ, we get

δΦ = (Φ|e0)Φ = 0

But since δ preserves depth, this clearly implies δΦn = 0. Translating into the
language of commutative power series, we get

n∑
i=0

∂

∂yi
Φ(n) = 0

In light of this, we lose no information about solutions to the double shuffle equations
by setting y0 = 0. Indeed, this is how we shall proceed. In a slight abuse of notation,
we shall still refer to the resulting polynomial as Φ(n). In order to make our discussion
unambiguous, we shall adopt the following notational distinction.

Φ(n)(y0, y1, . . . , yn) := ρn(Φn)(y0, . . . , yn)

Φ(n)(x1, . . . , xn) := ρn(Φn)(0, x1, . . . , xn)

That is, we will use yi as variables for the image of ρ, and xi as variables for the
polynomial obtained by setting y0 = 0. We can now define the double shuffle equations
in the language of commutative power series.

Definition 1.35. Given a polynomial f ∈ k[x1, . . . , xn], define f# ∈ k[x1, . . . , xn] by

f#(x1, . . . , xn) := f(x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · ·+ xn)

We also define recursively the polynomial

f(x1 . . .xj � xj+1 . . .xn) :=

f(x1(x2 . . .xj � xj+1 . . .xn) + f(xj(x1 . . .xj � xj+2 . . .xn)

where f(x1 . . .xn) := f(x1, . . . , xn).

Definition 1.36. We say a family of polynomials {f (n)} solves the shuffle equations if

f (n)#(x1 . . .xj � xj+1xn) = f (j)(x1, . . . , xj)f
(n−j)(xj+1, . . . , xn)

for all 1 ≤ j < n.
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Defining the stuffle equations is slightly more challenging and requires a few extra
definitions

Definition 1.37. For any family of polynomials {f (n)}, define the operators

sif
(r)(x1, . . . , xr) := f (r+1)(xi, x1, . . . , xi−1, xi+1, . . . , xr) for 1 ≤ i ≤ r

Definition 1.38. Define recursively

f (r)(1 ? x1 . . .xr) = f (r)(x1 . . .xr ? 1) = f (r)(x1, . . . , xr)

f (r)(x1 . . .xi ? xi+1 . . .xr) = s1f
(r−1)(x2 . . .xi ? xi+1 . . .xr)

+ si+1f
(r−1)(x1 . . .xi ? xi+2 . . .xr)

+

(
s1 − si+1

x1 − xi+1

)
f (r−2)(x2 . . .xi ? xi+2 . . .xr)

where 1 ≤ i ≤ r.

Definition 1.39. We say a family of polynomials {f (n)} solves the stuffle equations if

f (n)(x1 . . .xj ? xj+1xn) = f (j)(x1, . . . , xj)f
(n−j)(xj+1, . . . , xn)

for all 1 ≤ j < n.

Remark 1.40. Note that in this formulation, there is no mention of an analogue to
Φcorr. While it is true that we must add a corresponding correction term, we shall
ignore this for sake of this discussion. However, we will ask the reader to observe that
this arises naturally for multiple zeta values, by considering shuffle regularisation versus
stuffle regularisation.

Example 1.41. In depth 2, the double shuffle equations are

f (2)(x1, x1 + x2) + f (2)(x2, x1 + x2) = f (1)(x1)f (1)(x2)

f (2)(x1, x2) + f (2)(x1, x2) +
f (1)(x1)− f (1)(x2)

x1 − x2
= f (1)(x1)f (1)(x2)

while in depth 3, they become

f (3)(x1, x1 + x2, x1 + x2 + x3) + f (3)(x2, x1 + x2, x1 + x2 + x3) + f (3)(x2, x2 + x3, x1 + x2 + x3)

= f (1)(x1)f (2)(x2, x3)

f (3)(x1, x2, x3) + f (3)(x2, x1, x3) + f (3)(x2, x3, x1) +
f (2)(x1, x3)− f (2)(x2, x3)

x1 − x2
+
f (2)(x2, x1)− f (2)(x2, x3)

x1 − x3

= f (1)(x1)f (2)(x2, x3)

Remark 1.42. From this point onward, we shall often neglect the superscript f (n),
instead writing only f , as it should be obvious from the number of variables to which
depth we refer.
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1.4 The motivic Galois group and the geometry of P1 \ {0, 1,∞}

With such impressive symmetries amongst MZVs, one might hope for some sort of
transcendental Galois theory. This is to some extent found in the motivic Galois group
associated to a certain Tannakian category associated to P1 \ {0, 1,∞}. As general
references, the works of Ayoub [1], Deligne [10] and Brown [4],[3] can be useful.

Let MT (Z) denote the category of mixed Tate motives unramified over Z. THis is
a Tannakian category, and hence is equivalent to the category of representations of a
group scheme, called its Galois group and denoted by GMT (Z). MT (Z) contains as a full
Tannakian subcategory MT ′(Z), the Tannakian subcategory generated by the motivic
fundamental group of P1 \ {0, 1,∞}. We hence obtain a map

GMT (Z) → GMT ′(Z)

We now define the motivic fundemental group of X = P1 \ {0, 1,∞}, or rather, the
motivic fundemental groupoid, of which the motivic fundemental group is a special case.

Definition 1.43. Let x, y be points of X(C). The motivic fundemental groupoid of X
consists of the following

• (Betti) A collection of schemes πB1 (X,x, y) defined over Q and equipped with the
structure of a groupoid

πB1 (X,x, y)× πB1 (X, y, z)→ πB1 (X,x, z)

for any x, y, z ∈ X(C). There is a natural homomorphism

πtop1 (X,x, y)→ πB1 (X,x, y)(Q)

where the fundamental groupoid on the left is given by the homotopy classes of
paths relative to their endpoints.

• (de Rham) An affine group scheme over Q, denoted by πdR1 (X).

• (Comparison) A canonical isomorphism of schemes over C

comp : πB1 (X,x, y)×Q C→ πdR1 (X)×Q C

Remark 1.44. We once again gloss over the technicalities of tangential basepoints. For
sake of precision, the reader should read π•1(X, 0, 1) as π•1(X,~10,−~11) where ~1x denotes
the unit vector parallel to the real line, based at x. Thus, all paths γ : (0, 1)→ C\{0, 1}
with γ(0) = 0, γ(1) = 1 in the following discussion have γ′(0) = −γ′(1) = 1.

Theorem 1.45. There is an ind-object

O(πmot1 (X, 0, 1)) ∈ Ind(MT (Z))

whose Betti and de Rham realisations are the affine rings O(πB1 (X, 0, 1)) and O(πdR1 (X))
respectively.
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Define 0Π1 := Spec(O(πdR1 (X))). This is the affine scheme over Q to which associates
to any commutative unitary Q-algebra R the set of grouplike formal power series

{S ∈ R〈〈e0, e1〉〉×|∆S = S ⊗ S}

where ∆ is the completed coproduct for which ei are primitive.
This carries an action of the motivic Galois group GdRMT (Z), which depends on our

choice of basepoints, even though πdR1 (X) does not contain an explicit dependence on
these points.

Remark 1.46. Among all paths in P1 \ {0, 1,∞} from 0 to 1 satisfying our veloc-
ity constraints, there is a distinguished straight line path γ(t) = t, referred to as the
droit chemin and denoted dch. The natural homomorphism mentioned in Definitions
1.43 maps with onto an element 01B1 ∈ πB1 (X, 0, 1)(Q). The image of this map under the
comparison isomorphism is precisely the Drinfel’d associator

comp(01B1 ) =
∑
w

ζ(w)w ∈ 0Π1(C)

The action of GMT (Z) is made more transparent via the decomposition

GMT (Z) = UMT (Z) oGm

into a semidirect product of a pro-unipotent UMT (Z) and the multiplicative group.
The action of GMT (Z) restricts to an action

UMT (Z) × 0Π1 → 0Π1

which factors through a map

◦∗ : 0Π1 × 0Π1 → 0Π1

called the Ihara action, computed explicitly first by Y. Ihara, but described in [10].

Remark 1.47. We later introduce the linearised, or infinitesimal Ihara action, in the
context of the Lie algebras of DMR0 and UMT (Z). The reader must take care to avoid
confusing the two.
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2 Double Shuffle Modulo Products and Canonical Gener-
ators

2.1 The double shuffle Lie algebra

In order to further simplify the equations, we can move from DMR0 to its Lie algebra
dmr0, and consider solutions to the double shuffle equations mod products.

Definition 2.1. We say σ ∈ k〈a, b〉 solves the double shuffle equations mod products if
the following hold

∆σ = σ ⊗ 1 + 1⊗ σ
∆∗(σ

∗) = σ∗ ⊗ 1 + 1⊗ σ∗

(σ|a) = (σ|b) = (σ|ab) = 0

where σ∗ := πY σ + σcorr, where σcorr :=
∑

n≥1
(−1)n

n (σ|ban−1)yn1 .

Note that the double shuffle equations mod products are homogeneous for weight,
and thus we will often assume all monomials in σ to be of the same weight, allowing us
to refer to solutions of a particular weight.

Once again, we can rephrase this in terms of commutative variables. We first note
the following lemma

Lemma 2.2 (Brown). If σ solves the shuffle equations, i.e. σ is primitive, then ρ(σ) is
translation invariant, where ρ is as defined previously.

Definition 2.3. We say {fj ∈ k[x1, . . . , xj ]}nj=1 solves the shuffle equations mod prod-
ucts up to depth n+ 1 if

f#
j (x1 . . .xi � xi+1 . . .xj) = 0

for all 1 ≤ i ≤ j ≤ n. We say {fj ∈ k[x1, . . . , xj ]}nj=1 solves the stuffle equations mod
products up to depth n+ 1 if

fj(x1 . . .xi ? xi+1 . . .xj) = 0

for all 1 ≤ i ≤ j ≤ n.

We once again should consider correction terms in the stuffle equations in order to
say f solves the double shuffle equations mod products. However, as we may assume f
is homogeneous in weight, the correction terms arise only in the depth-equal-to-weight
equations, and are easily accounted for. Thus, we say a family of polynomials {fi ∈
k[x1, . . . , xi]}ni=1 is a solution of weight n+1 to the double shuffle equations mod products
if it solves the shuffle and stuffle equations mod products up to depth n+ 1.

We now define the Lie algebra structure, which arises via derivations [27] or from
the anti-symmetrisation of the Ihara action [5].
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Definition 2.4. Given ψ ∈ k〈a, b〉, define the derivation dψ : k〈a, b〉 → k〈a, b〉 by

dψ(a) = 0

dψ(b) = [b, ψ]

We define the Ihara bracket {·, ·} ∧2 k〈a, b〉 → k〈a, b〉 by

{σ1, σ2} := dσ2σ1 − dσ1σ2 − [σ1, σ2]

Alternatively, we can define:

Definition 2.5. Define the linearised Ihara action ◦ : k〈a, b〉 ⊗ k〈a, b〉 → k〈a, b〉 by

u ◦ anbv := anubv + anbu∗v + anb(u ◦ v)

where, if u = u1u2 . . . ur, u
∗ = (−1)rur . . . u1 and u ◦ an = anu, for all u, v monomials in

k〈a, b〉, and extend linearly. Define the Ihara bracket by

{σ1, σ2} = σ1 ◦ σ2 − σ2 ◦ σ1

We then obtain the following from Racinet’s thesis.

Proposition 2.6 (Racinet). dmr0 equipped with the Ihara bracket is a Lie algebra. Fur-
thermore, the function

exp◦(σ) := 1 + σ +
1

2
σ ◦ σ +

1

6
σ ◦ σ ◦ σ + . . .

defines a map exp◦ : dmr0 → DMR0.

The Ihara action, and hence the Ihara bracket are motivic: they arise naturally as
from the group structure of UMT (Z). In fact, one can show g := Lie(UMT (Z)) ⊂ dmr0
[16], thus the study of dmr0 gives us information about both associators and the motivic
Galois group. This inclusion is conjecturally an isomorphism of Lie algebras, which
gives us a method of generating solutions to the double shuffle equations: we have the
non-canonical isomorphism

g ∼= L(σ3, σ5, . . .)

to the free Lie algebra with a generator in every odd degree greater than 1. Thus,
given the σ2n+1, we can produce solutions to the double shuffle equations in any weight.
However, the σ2n+1 are not canonical: we have that

σ2n+1 = ad(a)(b) + terms of higher depth

where the adjoint action is with respect to the Lie bracket [X,Y ] = XY −Y X. However,
the double shuffle equations give us no power to distinguish between σ2n+1 and σ2n+1 +φ
where φ ∈ dmr0 is 0 in depth 1. Thus the σ2n+1 are ambiguous up to brackets of lower
weight elements of g, limiting their computational use.
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2.2 Canonical elements and polar solutions

The first thing one might desire is to make the σ-elements canonical, to have a canonical
generating set. There seem to be three main approachs to doing so: using inner products
and a Gram-Schmidt-like procedure, using a basis of multiple zeta values, or Brown’s
anatomical decomposition. The first approach has not been seen in the literature to this
point, and so we focus on this, finding several new results.

Theorem 2.7 (Keilthy, Hain). The generators σ3, σ5, σ7, . . . of the motivic Lie algebra
can be made canonical.

Proof. Suppose that we have canonical σ3, . . . , σ2k−1 and consider the space L(σ3, . . . , σ2k+1)2k+1,
where the subscript denotes the sub-vector space spanned by elements of weight 2k+ 1.
This contains L(σ3 . . . , σ2k−1)2k+1 as a codimension 1 subspace, and thus, given a non-
degenerate inner product, we can fix σ2k+1 up to a scalar multiple by imposing orthog-
onality of σ2k+1 to L(σ3, . . . , σ2k−1)2k+1.

There are two natural candidates for our inner product 〈·, ·〉 : Q〈a, b〉 ×Q〈a, b〉 → Q.
Define for monic monomials u, v

〈u, v〉triv : =

{
1 if u = v

0, otherwise

〈u, v〉S : =

{
1 if u = wvw or v = wuw for some w ∈ Q〈a, b〉
0, otherwise

and extend by linearity. It is easy to check that these satisfy the requirements of inner
products.

Example 2.8. By considering the trivial inner product of the depth 3 components of
σ11 and {σ3, {σ3, σ5}}, and demanding that these be orthogonal, we find the following
canonical decomposition of σ11:

σ11 = ψ11 −
1

264
{ψ−1, {ψ−1, ψ13}} −

241

2112
{ψ9, {ψ3, ψ−1}}

+
479

2112
{ψ7, {ψ5, ψ−1}} −

2053

6336
{ψ5, {ψ7, ψ−1}} −

2620903

9649216
{σ3, {σ3, σ5}}+ ...

where we have omitted terms of depth 5 (that are uniquely determined), and where
ψ2n+1 is given by Definition 2.14.

Remark 2.9. One should note that the denominators of coefficients fixed by this method
tend to be quite large, with few prime factors. It remains unclear as to whether there is
a meaningful reason for this. We suspect it to merely be an artifact of the calculation,
as the numbers involves grow quite rapidly.

20



The first has the advantage of being easy to calculate, with monomials of different
weights and depths being orthogonal, while the second is, in some sense,“compatible”
with the obvious Lie algebra structure on Q〈a, b〉.

Lemma 2.10 (K.).

〈[w, u], v〉2 + 〈u, [w, v]〉2 = 0 for all u, v, w ∈ Q〈a, b〉

Proof. Follows simply by considering cases. We shall do an example case, to illustrate
the method. We have that the LHS is

〈wu, v〉 − 〈uw, v〉+ 〈u,wv〉 − 〈u, vw〉

For the first term to be non-zero, we must have wu = svs for some word s. Then either
s = wu′ or w = sv′ where u = u′u′′ and v = v′v′′. In the first case, we must have
u′′ = vs. Thus

u = u′u′′

= u′vs

= u′vwu′

In the second case, we must then have u = v′′s. Thus

vw = v′v′′sv′

= v′uv′

Hence the fourth term is non-zero and cancels out the first. Similarly, if either of the
middle brackets are non-zero, so is the other and they cancel each other out. Thus the
sum is constantly 0.

Remark 2.11. While this ”symmetric” inner product 〈·, ·〉S is compatible with the
obvious Lie algebra structure on Q〈a, b〉, it is not compatible with the Ihara bracket.
Indeed, it would be particularly interesting to find such an inner product. Evidence
coming from the work of Pollack [26] suggests the existence of one, but gives no hints as
to how to construct it

Remark 2.12. One should note that, while the trivial inner product seems rather
unnatural, it actually has Hodge theoretic orgins. It arises from morphism of Lie algebras

i : g→ DerΘL(a, b)

where DerΘ denotes the set of derivations δ such that δ([a, b]) = 0. This morphism, due
to the work of Hain [19] and Brown [7], is known to be injective, and creates further ties
to the work of Pollack [26]. To be precise, i(σ2n+1) = ε∨2n+2 modulo W−2n−3, where W
is the geometric weight filtration associated to the mixed Hodge structure of the first
order Tate curve E×∂

∂q

. Here ε∨2n ∈ DerΘL(a, b) is the derivation defined by
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ε∨2n(a) = ad(a)2n(b) for n ≥ 1

and the fact that it is homogeneous of degree 2n in a, b. Defining

ε∨0 (a) = b ε∨0 (b) = 0

and denoting by ugeom the Lie subalgebra generated by the ε∨2n, n ≥ 1, we obtain the
object of study in the work of Pollack. While i(g) 6⊂ ugeom, in low depth, the epsilons
give “coordinates” with which to describe the σ2n+1. Furthermore, the relations between
elements of ugeom give relations between the elements of g modulo higher depths, and
create ties with the theory of modular forms. This shall be discussed in greater depth
later in this thesis.

Another approach to defining canonical generators involves allowing polar solutions
to the double shuffle equations [6]:

s(1) =
1

2x1
and s(2) =

1

12
(

1

x1x2
+

1

x2(x1 − x2)
)

is a solution to the double shuffle equations mod products in depths one and two. By
taking the Ihara bracket of s with various solutions, we can define an “anatomical”
decomposition for σ2k−1.

Definition 2.13. For any sets of indices A,B ⊂ {0, . . . , d}, write

xA,B =
∏

a∈A,b∈B
(xa − xb)

If A or B is the empty set, define xA,B = 1. Define also x0 = 0

Definition 2.14. For every n, d ≥ 1, define ψ
(d)
2n+1 ∈ Q(x1, . . . xd) by

ψ
(d)
2n+1 =

1

2

d∑
i=1

(
(xi − xi−1)2n

x{0,...,i−2},{i−1}x{i+1,...,d},{i}
+

x2n
d

x{1,...,i−1},{0}x{i,ldots,d−1},{d}
)

+
1

2

d−1∑
i=1

(
(x1 − xd)2n

x{2,...,i},{1}x{i+1,...,d−1,0},{d}
+

x2n
d−1

x{d,1,...,i−1},{0}x{i,ldots,d−2},{d−1}
)

Let ψ2n+1 be the element whose depth d component is ψ
(d)
2n+1.

Proposition 2.15 (Brown). ψ2n+1 are solutions to the double shuffle equations mod
products.

It is possible to write σ3, . . . σ9 uniquely as Ihara brackets of s and the ψ2n+1. Defining
ψ−1 := s, we can similarly decompose σ11.
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Example 2.16.

σ11 = ψ11 −
1

264
{ψ−1, {ψ−1, ψ13}} −

241

2112
{ψ9, {psi3, ψ−1}}

+
479

2112
{ψ7, {ψ5, ψ−1}} −

2053

6336
{ψ5, {ψ7, ψ−1}}+ {depth ≥ 5}

A priori σ11 is only defined up to multiples of {σ3, {σ3, σ5}}. However, by demanding
that, in depth three, σ11 be written as a sum of brackets {ψa1 , {ψa2 , ψa3}} with at least
one of {a1, a2, a3} equal to −1, we obtain a canonical generator in weight 11, modulo
high depths.

However this approach has only been examined on a case by case basis, with no
general theory. Polar solutions still make an appearence in the existence of canonical
generators: Brown [7] defines canonical σ2k+1 up to depth 3 using polar solutions. To
be precise, he defines them as follows.

Definition 2.17. For all n ≥ −1, define rational functions by

ξ
(1)
2n+1 = x2n

1

ξ
(2)
2n+1 = {s(1), x2n

1 }

ξ
(3)
2n+1 = {s(2), x2n

1 }+
1

2
{s(1), {s(1), x2n

1 }}

Note that we can extend ξ2n+1 to all depths by ξ2n+1 = exp(ad(s))x2n
1 if we extend s to

a solution in all depths.

Definition 2.18. Define canonical generators up to depth three by

σc2n+1 = ξ2n+1 +
∑
a+b=n

(
2n

2a

)
B2aB2b

12B2n
{ξ2a+1, {ξ2b+1, ξ−1}}

where B2n is the 2nth Bernoulli number.

In [7], Brown shows the following

Proposition 2.19 (Brown). σc2n+1 solve the double shuffle equations mod products up
to depth three, and have no poles, thus defining genuine elements of dmr0.

These generators give interesting ties to sl2 and period polynomials, that also arise
in the work of Pollack [26]. Specifically, the coefficients appearing in the expression are
proportional to those of the odd part of the period polynomial for the Eisenstein series
of weight 2n, which is proportional to:∑

a+b=n, a,b≥1

(
2n

2a

)
B2aB2bX

2a−1Y 2b−1 ∈ Q[X,Y ]

One thing of note would be if an inner product produced the same canonical genera-
tors as one of the other methods. We have checked that the “anatomical” decomposition,
and the trivial inner product give distinct generators, but it has yet to be checked in
other cases.
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2.3 The duality phenomenon

One phenomenon amongst elements of dmr0 is that of duality.

Definition 2.20. Define the following linear maps on Q〈a, b〉

• R(u1u2 . . . un) := unun−1 . . . u1

• S is the homomorphism defined by Sa := b and Sb := a

• D := RS = SR

We say σ satisfies duality if σ = Dσ

We have ζ(w) = ζ(Dw), which we expect: this is just swapping the roles of 0 and 1
in P1 \ {0, 1,∞}. What is unexpected is that we seem to have σ = Dσ for all σ ∈ dmr0.
It is not currently known if duality is a consequence of the double shuffle relations, but
numerical evidence seems to suggest it must be.

Remark 2.21. The map S defined here is, up to a sign, the antipode map in the shuffle
Hopf algebra Q〈a, b〉.

We do, however, know that duality plays nicely with many of the structures on dmr0:
D passes through the motivic coaction [4] and duality is preserved by the Ihara bracket.
While this latter fact follows from Brown’s proof that the Ihara action is motivic [5],
and Racinet’s thesis [27], we present a direct proof of it.

Lemma 2.22 (K.). If φ(a, b) ∈ Q〈a, b〉 satisfies the shuffle equations mod products, then
Dφ(a, b) = −φ(−b,−a)

Proof. If φ(a, b) satisfies the shuffle equations mod products, we must have

φ(a, b) +Rφ(−a,−b) = 0

Applying D to this proves our result.

Theorem 2.23 (K.). Duality is preserved in dmr0 by the Ihara bracket

Proof. The Ihara bracket of two elements is defined by

{φ1, φ2} := dφ2φ1 − dφ1φ2 − [φ1, φ2]

where dφ is the derivation defined on generators by

dφ(a) = 0

dφ(b) = [b, φ]

Now suppose φ1, φ2 ∈ dmr0 satisfy duality, and consider {φ1, φ2}(−b,−a) We have the
following:

[φ1, φ2](−b,−a) = [φ1, φ2]
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Next define a derivation d′φ by

d′φ(a) = [a, φ]

dφ(b)′ = 0

We can easily show by induction on the length of φ that dφ(X)(−b,−a) = d′φ(X(−b,−a))
and hence

dφi(φj)(−b,−a) = −d′φi(φj) for (i, j) ∈ {(1, 2); (2, 1)}

One can then check easily that d′φ(X) = dφ(X)− [X,φ], by induction, and hence

(dφ1(φ1)− dφ2(φ1))(−b,−a) = −dφ1(φ1) + dφ2(φ1) + 2[φ1, φ2]

and so D{φ1, φ2} = −{φ1, φ2}(−b,−a) = {φ1, φ2}

We can also make steps towards a proof that duality holds for all elements of dmr0.
To be precise, we can show that it holds for elements of g, with minor assumptions.
It in fact follows from the definition. However, we once again provide a more direct
proof, as the proof, with some further assumptions, extend to dmr0. We first note that
D preserves solutions to the shuffle equations.

Lemma 2.24 (K.). If φ(a, b) ∈ Q〈a, b〉 satisfies the shuffle equations mod products, then
so does Dφ.

Proof. One can easily check that

(R⊗R) ◦∆ = ∆ ◦R

and
(S ⊗ S) ◦∆ = ∆ ◦ S

Thus
(D⊗D) ◦∆ = ∆ ◦D

proving our result.

We can now show the following.

Proposition 2.25 (K.). Suppose σ3, . . . , σ2k−1 satisfy duality. Suppose also that Dσ2k+1 ∈
g. Then σ2k+1 satisfies duality.

Proof. By our assumption, Dσ2k+1 must be in the span of σ2k+1 and brackets of lower
weight generators. Thus, there exists α ∈ Q such that σ2k+1 − αDσ2k+1 is a linear
combination of brackets of lower weight generators. By the previous theorem, σ2k+1 −
αDσ2k+1 must satisfy duality and thus

(α+ 1)σ2k+1 = (α+ 1)Dσ2k+1

25



Then, as g ⊂ dmr0, we obtain from the stuffle equation and translation invariance of
σ2k+1, evaluated at x1 = 1, xi = 0 i = 2, 3, ..., 2k, that

(σ2k+1|ab2k) = −(σ2k+1|bab2k−1)− (σ2k+1|b2ab2k−2)− · · · − (σ2k+1|b2ka)

=
2k−1∑
i=1

(σ2k+1|bia2b2k−1−i)

...

= (−1)2k(σ2k+1|b2ka) = (σ2k+1|a2kb)

and so
(Dσ2k+1|a2kb) = (σ2k+1|ab2k) = (σ2k+1|a2kb)

Thus, we must have α = 1 and so σ2k+1 = Dσ2k+1

One could alter the assumptions made about Dσ2k+1, however, it is not clear that
the altered assumptions would be weaker. For example, if we simply take Dσ2k+1 ∈ dmr0
[30] we have to make certain assumptions about the nature of dmr0 in order to follow the
same proof method. Note also that we cannot replace σ2k+1 by an arbirtrary element,
as we rely on having non-zero depth one components, and in this, σ-elements are near
unique in dmr0.

We also get an interesting interplay between duality and the proposed symmetric
inner product.We first note the following trivial fact.

Lemma 2.26 (K.).
〈Du,Dv〉S = 〈u, v〉S

Definition 2.27. Given an inner product 〈·, ·〉S , define

〈u, v〉m =


〈u, v〉S if u, v are both of odd depth

−〈u, v〉S if u, v are both of even depth

0 otherwise

Definition 2.28. Define Qo〈a, b〉 to be the subspace of Q〈a, b〉 consisting of polynomials
with monomials only of odd weight.
Let QD〈a, b〉 be the subspace of Qo〈a, b〉 consisting of polynomials equal to their duals.
Let QO〈a, b〉 be the subspace of Qo〈a, b〉 consisting of polynomials with monomials only
of odd depth. Note that we have a surjection π : QD〈a, b〉 → QO〈a, b〉.
Lemma 2.29 (K.). 〈σ, ρ〉m = 0 for all σ, ρ ∈ QD〈a, b〉.
Proof. We have

〈σ, ρ〉m = 〈σodd, ρodd〉S − 〈σeven, ρeven〉S
As duality swaps the parity of depth of elements of Qo〈a, b〉, we get that

〈σ, ρ〉m = 〈σodd, ρodd〉S − 〈Dσodd, Dρodd〉S
= 〈σodd, ρodd〉S − 〈σodd, ρodd〉S = 0
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Lemma 2.30 (K.). If 〈σ, ρ〉m = 0 for all ρ ∈ QD〈a, b〉, then σ ∈ QD〈a, b〉.

Proof.

〈σ, ρ〉m = 0 ∀ ρ ∈ QD〈a, b〉 ⇒ 〈σodd, ρodd〉S = 〈σeven, ρeven〉S ∀ ρ ∈ QD〈a, b〉
⇒ 〈σodd, ρodd〉S = 〈Dσeven, ρodd〉S ∀ ρ ∈ QD〈a, b〉
⇒ 〈σodd −Dσodd, ρodd〉S = 0 ∀ ρodd ∈ QO〈a, b〉

Then, as 〈·, ·〉S is a nondegenerate inner product on QO〈a, b〉, we must have

σodd = Dσeven

which implies
σ = Dσ

as D2 = D.

Theorem 2.31 (K.).
QD〈a, b〉 = ∩ρ∈QD〈a,b〉ker〈·, ρ〉S

So the symmetric inner product in some sense ”cuts out” polynomials satisfying
duality. Unfortunately, this fact is computationally ineffective, but still interesting.

2.4 Linearised double shuffle equations

While the double shuffle equations are homogeneous for weight, they are not homoge-
neous for depth. Rather, the shuffle equations are, but the stuffle equations are not.
As such, we can further simplify our equations by taking the associated graded of dmr0
with respect to the depth filtration, to obtain dg. This is no longer a free Lie algebra, as
we now obtain relations among σ̄2i+1, the images of σ2n+1, identical to those of Pollack
[26]. However, the equations describing elements of dg become much simpler. Indeed,
we have dg ⊂ ls, the space of solutions to the linearised double shuffle equations [5].

Definition 2.32. We say σ ∈ k〈a, b〉 satisfies the linearised double shuffle equations if
the following conditions hold:

∆σ = σ ⊗ 1 + 1⊗ σ
∆ls
∗ πY σ = πyσ ⊗ 1 + 1⊗ πY σ
(σ|a) = (σ|b) = (σ|ab) = 0

where ∆ls
∗ : k〈Y 〉 → k〈Y 〉 ⊗ k〈Y 〉 is defined on generators by

∆ls
∗ (yi) := yi ⊗ 1 + 1⊗ yi

We denote the space of solutions to the linearised double shuffle equations by ls.

Proposition 2.33 (Brown). ls equipped with the Ihara bracket forms a Lie algebra.
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We can once again translate this into the language of commutative variables.

Definition 2.34. We say f ∈ k[x1, . . . , xn] solves the linearised double shuffle equations
if

f#(x1 . . .xi � xi+1 . . .xn) = 0

f(x1 . . .xi � xi+1 . . .xn) = 0

Remark 2.35. Note that we have � in both the linearised shuffle and linearised stuffle
equations. The primary distinction between � and ? is the lower depth terms, which
disappear in the linearisation.

Remark 2.36. Note that we can now assume σ ∈ ls to be homogeneous in weight and
depth, as our equations are now homogeneous in both.

While it is not immediately obvious that moving to the linearised double shuffle
equations achieves anything of note, one can translate several important conjectures
into conjectures about the nature of dg and ls. For example, Brown [5] defines an
explicit injective linear map

e : S2n → ls

where S2n ⊂ Q[X,Y ] is the vector space of even period polynomials.

Definition 2.37. Define S2n ⊂ Q[X,Y ] to be the vector space of antisymmetric homo-
geneous polynomials P (X,Y ) of degree 2n− 2 satisfying

P (X, 0) = 0

P (±X,±Y ) = P (X,Y )

P (X,Y ) + P (X − Y,X) + P (−Y,X − Y ) = 0

This map provides a reformulation of the (depth graded) Broadhurst-Kreimer con-
jecture on the dimensions of dg:

Conjecture 2.38. The image of e lies in dg and

H1(dg;Q) ∼=
⊕
i≥1

σ̄2i+1Q⊕
⊕
n≥1

(e)(S2n)

H2(dg;Q) ∼=
⊕
n≥1

S2n

Hi(dg;Q) = 0 for all i ≥ 3

This can be made into a much stronger conjecture about the homology of ls.

Conjecture 2.39. Denoting by ls1 the depth 1 component of ls, and by S :=
⊕

n≥1 S2n,
it is conjectured that the following holds:

H1(ls;Q) ∼= ls1 ⊕ e(S)

H2(ls;Q) ∼= S

Hi(ls;Q) = 0 for all i ≥ 3
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Conjecturally, these are equivalent: it is believed that dg ∼= ls. Both would imply
the following conjecture on the dimensions of dg.

Conjecture 2.40. Denoting by D the depth filtration, we have∑
N,d>0

dimQ(grDd ZN )sN td =
1 + E(s)t

1−O(s)t+ S(s)t2 − S(s)t4

where

E(s) =
s2

1− s2
, O(s)

s3

1− s2
, S(s)

s12

(1− s4)(1− s6)

Here E(s) and O(s) are the generating series of the dimensions of spaces of even and odd
single zeta values respectively. S(s) has an interpretation as the generating series for the
graded dimensions of the space of cusp forms for the full modular group PSL2(Z).

This conjecture makes the connection with period polynomials and modular forms
slightly more explicit. However, it is not clear precisely why the connection exists.

Still, the study of solutions to the linearised double shuffle equations gives powerful
machinery, such as the depth-parity theorem [5].

Proposition 2.41. Suppose σ ∈ ls is of weight N and depth d. Then, if N and d are
of opposite parity, σ = 0. That is, there are no non-trivial solutions to the linearised
double shuffle equations with weight and depth of opposite parity.

This in turn gives use a method for tackling so called “totally odd” multiple zeta
values [5],[12]. Multiple lower bounds for the dimensions of the space of totally odd mul-
tiple zeta values have been given. However, as the notation involved is quite particular,
we mention this only as an aside.

Another useful corollary of the depth parity theorem is the following.

Corollary 2.42. For a solution to the double shuffle equations mod products φ ∈ dmr0,
of weight N , the depth d + 1 6≡ N (mod 2) components are uniquely determined by the
lower depths. In particular, σ2n+1 is uniquely determined in depths 1 and 2.

Proof. Suppose φ1 and φ2 are of weight N and agree up to depth d ≡ N (mod 2).
Then the depth d+ 1 component of φ1− φ2 is a solution to the linearised double shuffle
equations and hence, by the depth parity theorem, is 0. Thus φ1 and φ2 agree up to
depth d+ 1 and the depth d+ 1 compenent is uniquely determined.

Remark 2.43. It would be interesting if this corollary could be “dualised”: if we assume
that the duality operator preserves dmr0, then we must have that the depth d − 1 6≡
N (mod 2) component of a weight N element of dmr0 is uniquely determined by the
higher depths, suggesting that a top down approach may be a viable option in solving
the double shuffle equations mod products.
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3 Motivic Multiple Zeta Values and Additional Structures

3.1 Goncherov and Brown’s motivic iterated integrals

Similar our earlier notation for iterated integrals, we introduce the following definition.

Definition 3.1. Define I(a0; a1, a2, . . . , an; an+1 to be the iterated integral of ωa1 . . . ωan
along the straight line path from a0 to an+1, where we define

ωa :=
dz

z − a

Also define the weight of such an iterated integral to be n.

Remark 3.2. Note that, taking a0 = 0, an+1 = 1, we recover our definition of multiple
zeta values by iterated integrals. Once again, we gloss over the technicalities of tangential
basepoints.

These satisfy the following, easily verified properties.

• I(a0; a1, . . . , an; a0) = 0

• (Reversal of Paths)I(a0; a1, . . . , an; an+1) = (−1)nI(an+1; an, . . . , a1; a0)

• (Functoriality)I(a0; a1, . . . , an; an+1) = I(1− a0; 1− a1, . . . , 1− an; 1− an+1)

• (Shuffle regularisation)

(−1)kI(0; {0}k, 1, {0}n1−1, . . . , 1, {0}nr−1; 1) =∑
i1+···+ir=k

(
n1 − 1 + i1

i1

)
· · ·
(
nr − 1 + ir

ir

)
I(0; 1, {0}n1+i1−1, . . . , 1, {0}nr+ir−1; 1)

Goncharov [18] defines a motivic analogue of these iterated integrals, denoted Ia(a0; a1, . . . , an; an+1),
as elements of a Q-algebra, satisfing the above mentioned properties of iterated integrals
and with the following coproduct.

Definition 3.3. Let I denote the Q-algebra generated by Goncharov’s motivic iterated
integrals, and define the map

∆ : I → I ⊗ I

by

∆Ia(a0; a1, . . . , an; an+1) : =∑
0=i0<i1<...<ik<ik+1=n+1

k∏
p=0

Ia(aip ; aip+1, . . . , aip+1−1; aip+1)⊗ Ia(a0; ai1 , . . . , aik ; an+1)

where 0 ≤ k ≤ n.
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The terms in the above formula are in one-to-one correspondence with the subse-
quences

{ai1 , . . . , aik} ⊂ {a1, . . . , an}

To be more precise, every term corresponds to a polygon with verticles at the points
ai inscribed into a semicircle.

Example 3.4. The polygon

corresponds to the term

Ia(a0; a1, a2; a3)Ia(a3; a4; a5)Ia(a5; a6; a7)Ia(a7; a8, a9; a10)⊗ Ia(a0; a3, a5, a7; a10)

The additional algebraic structure arising from this coproduct proves to be an in-
credibly powerful tool, as we shall soon see.

By restricting the ai to {0, 1}, we obtain Goncharov’s motivic multiple zeta val-
ues, ζa(n1, . . . , nk), with the two notations related as for standard MZVs. Noting that
Ia(0; 1, 0; 1) = ζa(2) = 0, we obtain a “period map”, from the space of Goncharov motivic
MZVs A to Z/ζ(2):

pera : A → Z/ζ(2)

ζa(n1, . . . , nk) 7→ ζ(n1, . . . , nk) + ζ(2)Z

Brown [4] similarly defines a motivic iterated integral Im(a0; a1, . . . , an; an+1), which
we shall not discuss in any great detail, that extends Goncharov’s definition to one in
which ζm(2) is non zero. They still satisfy all aforementioned properties and, denoting
the space of Brown’s motivic multiple zeta values by H, we obtain an extension of
Goncharov’s period map:

per : H → Z
ζm(n1, . . . , nk) 7→ ζ(n1, . . . , nk)

Furthermore, we can also lift Goncharov’s coproduct to a coaction on the space H
of Brown’s motivic iterated integrals

∆ : H → A⊗H
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using precisely Goncharov’s formula. This coaction filters through certain infinitesimal
coactions.

Definition 3.5. Let HN be the subspace of H consisting of elements of weight N , and
let Lr be the weight r component of L := A>0/A>0A>0. We then define, for 1 ≤ r < N

Dr : HN → Lr ⊗HN−r

Im(a0; a1, . . . , aN ; aN+1) 7→
N−r∑
p=0

Ia(ap; ap+1, . . . , ap+r; ap+r+1)⊗ Im(a0; a1, . . . , ap, ap+r+1, . . . , aN ; aN+1)

where Ia is taken to be its projection into L.

This can similarly be represented by considering segments between points on a semi-
circle.

Example 3.6. The picture

corresponds to the term

Ia(a3; a4, a5, a6; a7)⊗ Ia(a0; a1, a2, a3, a7, a8, a9; a10)

in D3(Ia(a0; a1, a2, a3, a4, a5, a6, a7, a8, a9; a10)).

We then have the following theorem, due to Brown [4].

Theorem 3.7 (Brown). The kernel of D<N := ⊕3≤2r+1<ND2r+1 is ζm(N)Q in weight
N .

Example 3.8. We will compute D3 of 4ζm(2, 3) + 6ζm(3, 2).

D3(ζm(2, 3) = D3(Im(0; 1, 0, 1, 0, 0; 1))

= Ia(1; 0, 1, 0; 0)⊗ Im(0; 1, 0; 1) + Ia(0; 1, 0, 0; 1)⊗ Im(0; 1, 0; 1)

D3(ζm(3, 2) = D3(Im(0; 1, 0, 0, 1, 0; 1))

= Ia(0; 1, 0, 0; 1)⊗ Im(0; 1, 0; 1) + Ia(1; 0, 0, 1; 0)⊗ Im(0; 1, 0; 1)

+ Ia(0; 0, 1, 0; 1)⊗ Im(0; 1, 0; 1)

D3(ζm(2)ζm(3)− ζm(2, 3)− ζm(3, 2)) = 0

(1)

using shuffle renormalisation and reversal of paths. Thus, we must have that 4ζm(2, 3)+
6ζm(3, 2) = αζm(5) for some α ∈ Q.
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Using this machinery, Brown goes on to show the following theorem.

Theorem 3.9 (Brown). In weight N , HN has basis ζm(a1, . . . , an) where ai ∈ {2, 3}.

This basis is called the Hoffman basis, and the corresponding zeta values are called
Hoffman zeta values. Partially confirming a conjecture due to Hoffman, this theorem
has the following immediate corollaries.

Corollary 3.10. In weight N , ZN is spanned by ζ(a1, . . . , an), where ai ∈ {2, 3}.

Corollary 3.11.
∞∑
N=0

dim HN tN =
1

1− t2 − t3

As motivic multiple zeta values, and the motivic coproduct are such powerful tools,
demanding that any algebraic structure we impose on MZVs be compatible with the
motivic theory is not an unreasonable starting point. For example, the weight filtration
is motivic, and from earlier discussion, we can see that it is a grading for motivic MZVs,
and weight is preserved in all known relations. The depth filtration is motivic, but not
a grading. However, it seems that depth graded motivic multiple zeta values may not
be the most natural objects to study. A more natural option is a filtration arising from
a decomposition due to Charlton [8]: the block filtration.

3.2 The block decomposition of MZVs

Call a word in e0, e1 alternating if it is non-empty and has no subsequences of the form
e0e0 or e1e1. There are exactly two alternating words of a given length:

A = {e0, e1, e0e1, e1e0, e0e1e0, e1e0e1, . . .}

Note that every non-empty word w in e0, e1 can be written as a product of alternating
words, and, from the work of Charlton [8], this can be done uniquely, giving a block
decomposition of and a degree function on words in e0, e1.

Definition 3.12. Given a word w in e0, e1, define its block degree degB(w) to be the
number of alternating words in its block decomposition minus one. Equivalently

degB(w) = number of subsequences of w of the form eiei

Define the block degree of the empty word to be degB(∅) = 0.

Remark 3.13. Note that, unlike depth, the block degree of a word is preserved under
the action of the duality operator D = RS, suggesting it may be a more natural degree
to assign to the corresponding MZVs.
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This induces a filtration on words and hence on multiple zeta values. Note that, for
convergent words w, degB(w) = degB(e0we1), and hence considering endpoints in the
corresponding iterated integral is irrelevant. Thus, our definitions are best restricted
to convergent words. However, as divergent words will on occasion appear in our cal-
cualations, we must choose a convention for such words. We shall initially choose to
simply take the ”true” block degree of w to be degB(w), regardless of the convergence
or divergence of w.

Definition 3.14. Define the block filtration on H, and hence Z, by

BnH := 〈ζm(w)|w convergent with degB(w) ≤ n〉Q

Remark 3.15. Demanding that w be convergent is vital in this definition, or else we have
issues such as ζm(3) = 0 in the associated graded: as we have ζm(e0e1e0) = −2ζm(e1e

2
0),

we find that ζB(e1e
2
0) = ζB(3) = 0 in the block grading if we take degBe0e1e0 = 0. In

order to avoid this issue, we must either take the above definition, or define block degree
at the level of iterated integrals and account for endpoints.

For example, B0H =
⊕

n≥0 ζ
m({2}n)Q. Then, as ζm({2}n) ∈ ζm(2)nQ, we have

B0Z ∼= Q[π2].
The block filtration is particularly nice for two main reasons: it is easy to determine

for the Hoffman basis, and it is preserved by the motivic coaction.

Lemma 3.16 (Brown). The block filtration induces the level filtration on the subspace
spanned by the Hoffman motivic multiple zeta values ζm(n1, . . . , nr), with ni ∈ {2, 3},
where the level is the number of indices equal to 3.

Proof. The word corresponding to (n1, . . . , nr), with ni ∈ {2, 3} of level m has exactly
m occurences of the subsequence e0e0 and none of e1e1. Therefore, it’s block degree is
exactly m+ 1.

As level is motivic, this motivates the following proposition, due to Brown.

Proposition 3.17 (Brown). Let GdRMT (Z) denote the de Rham motivic Galois group of

the category MT (Z), and let UdRMT (Z) denote its unipotent radical. Then Bn is stable

under the action of GdRMT (Z), and UdRMT (Z) acts trivially on grB· Zm. Equivalently

∆(BnH ⊂ O(UdRMT (Z))⊗ Bn−1H

Proof. The motivic coaction factors through D2r+1, and thus it suffices to show that

D2r+1BkH ⊂ O(UdRMT (Z))⊗ Bk−1H

Suppose a0 = 0, aN+1 = 1, and a1a2 . . . aN is convergent of B-degree k. It a can
then be written unqiuely as

w = v1v2 . . . vk
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of k alternating words vi ∈ A. Note that, in the formula for D2r+1, all terms with
ap = ap+2r+2 vanish. Thus, we can assume ap 6= ap+2r+2, and so every non-zero term on
the right hand side is convergent and of total B-degree at most k.Here, we have invoked
the following obvious lemma:

Lemma 3.18. A word w is convergent if and only if it begins in e1 and

degB(w)− |w| ≡ 0 (mod 2)

where |w| denotes the length of w.

We can furthermore conclude that

apap+1 . . . ap+2r+2 6∈ A

as any alternating word of odd length must begin and end with the same letter. Thus
ap and ap+2r+2 are not letters in the same word vi, implying that the right hand tensor
factor of each term in the coproduct have B-degree strictly less than k.

We get the following neat corollary, further emphasizing the block filtration as the
natural, filtration on H.

Corollary 3.19 (Brown). The block filtration on H is precisely the coradical filtration.

3.3 Block graded relations

As the block filtration is motivic, we would expect that, upon taking the associated
graded, we obtain fairly simple relations. Indeed, by simply doing the calculations, we
find that, up to weight 5, there are no non trivial relations other than duality among
convergent block graded multiple zeta values.

In light of lemma 3.16 and the main theorem of [4], one has the following theorem:

Theorem 3.20 (Brown). Every element in BnH of weight N can be written uniquely as
a Q-linear combination of motivic Hoffman elements of weight N and level at most n.

This would lead us to expect that we get the following dimensions in the associated
graded:

∞∑
n=0

dim grBmHnsmtn =
1

1− t2 − st3

Precisely, in the associated graded, we have exactly the following relations among
nonzero MZVs and we would like these to be the only relations. Any convergent zeta
values not appearing in the table become zero in the block grading.

Weight 1 2 3 4 5

∅ ζB(2) ζB(3) = ζB(1, 2) ζB(2, 2) ζB(2, 3) = ζB(1, 2, 2)
ζB(3, 2) = ζB(2, 1, 2)
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Remark 3.21. We denote by ζB(w) the projection of ζm(w) into grBH.

Remark 3.22. Note the ζB(N) = 0 for all N > 3, as degB(ζm(N)) = n−1, but, writing
ζm(N) in the Hoffman basis, we have ζm(N) ∈ BN

3
H.

However, if we were to have allowed divergent words in our definition, we would
obtain more relations and in fact lose linear independence of the Hoffman basis.

Example 3.23. As 2ζm(2, 3) + 2ζm(3, 2) = ζm(2, 2, 1), in the block graded we get
ζB(2, 3) + ζB(3, 2) = 0. Thus they cannot be linearly independent. Indeed, we will
always find that the Hoffman elements are not linearly independent in odd weight in the
associated graded, as we can always write ζm(2, . . . , 2, 1) as a Q-linear combination of
Hoffman elements, and degB(e1e0 . . . e1) = 0, for all N ≥ 3.

Thus, in our calculations, we no longer have that the Hoffman basis for motivic
multiple zeta values is a basis. While this doesn’t severely impact our ability to perform
calculations using the double shuffle relations, we are hampered in our use of the motivic
coaction due to the reliance on renormalisation. This is something we hope to overcome,
as ζ(N) = 0 in the block grading, for all N > 3. This means that Brown’s algorithm for
decomposition of MZVs into a basis [5] becomes exact in the block grading.

Using that the Hoffman basis for motivic multiple zeta values is a spanning set, we
can explicitly compute the parts of the infinitesimal motivic coaction.

Lemma 3.24 (K.). If we define the block filtration without change for divergent words
w, D3 acts trivially on grBH.

Proof. It suffices to show this holds for the Hoffman basis for motivic multiple zeta
values. Suppose Im(0; 1010 . . . 1010; 1) represents an element of the Hoffman basis. The
binary sequence then consists of alternating 0s and 1s, with the occasional 00. Thus,
D3I

m(0; 1010 . . . 1010; 1) consists of a sum over terms whose left tensor factor is of weight
3. If we allow divergent words, all weight three elements vanish.

3.4 Block grading with divergent words

If, instead of taking the block degree as we have defined it, we took degB
∗(w) :=

degB(e0we1), it is possible that the issues associated with divergent words could be re-
solved. For example degB

∗(e0e1e0) = 1 = degB
∗(e1e

2
0), and so we could allow ζm(e0e1e0),

without ζm(3) = 0 in the associated graded. This is a possibility not yet fully explored.
It does seem to resolve many of our issues though: for example degB

∗(ζm(2, . . . , 2, 1) =
1, and we have

ζm(2, . . . , 2, 1) = Im(0; 1, 0, 1, . . . , 0, 1; 1)

= −Im(0; 0, 1, 0, . . . , 1, 0; 1) (Apply reversal of paths and functoriality)

=
∑

i1+···+ir

(
i1 + 1

i1

)
· · ·
(
ir + 1

ir

)
Im(0; 1, {0}i1+1, . . . , 1, {0}ir+1; 1) (Shuffle regularisation)

= 2

r−1∑
i=0

ζm({2}i, 3, {2}r−1−i)
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When taking the block graded version of this, ζB(2, . . . , 2, 1) does not get quotiented
out, preserving linear independence of these Hoffman elements. Thus we believe this to
be the correct formulation. Indeed, expression of divergent MZVs in terms of convergent
MZVs via shuffle regularisation preserves this definition of block degree.

Proposition 3.25 (K.). degB
∗(w) = N implies ζm(w) ∈ BnH

Proof. As degB
∗(w) = degB(w) for convergent words w, we need only consider divergent

words. Furthermore, duality allows us to reduce our analysis to the case were w = e0u
for some word u. We first consider the case where w = e0ve0 for some v.

Suppose w = ek0e1e
n1
0 . . . e1e

nr
0 . Shuffle regularisation of the corresponding iterated

integral gives

(−1)kIm(0; {0}k, 1, {0}n1 , . . . , 1, {0}nr ; 1) =∑
i1+···+ir=k

(
n1 + i1
i1

)
· · ·
(
nr + ir
ir

)
Im(0; 1, {0}n1+i1 , . . . , 1, {0}nr+ir ; 1)

Each term on the right hand side arises from inserting one of the first k 0’s into the
sequence at some point after the first 1. Each inserted 0 either increases the number of
repetitions of 0 in the sequence by 1, or decreases the number of repetitions of 1 by 1. So
for any given insertion of 0’s, we can increase the block degree of (1, {0}n1 , . . . , 1, {0}nr)
by at most k. Thus, the adjusted B-degree of every term on the right hand side is at
most degB(1, {0}n1 , . . . , 1, {0}nr) + k = degB

∗(w). Thus the result is shown for words
starting and ending with e0.

For words w = e0ve1, we have degB
∗(w) = degB(w) + 2. Applying shuffle regularisa-

tion to the corresponding iterated integral, we can split the sum into two parts:

(−1)kIm(0; {0}k, 1, {0}n1 , . . . , 1; 1) =∑
i1+···+ir=k,ir≥1

(
n1 + i1
i1

)
· · ·
(
nr + ir
ir

)
Im(0; 1, {0}n1+i1 , . . . , 1, {0}nr1+ir−1 , 1, {0}ir ; 1)+

∑
i1+···+ir−1=k

(
n1 + i1
i1

)
· · ·
(
nr−1 + ir−1

ir−1

)
Im(0; 1, {0}n1+i1 , . . . , 1, {0}nr1+ir−1 , 1; 1)

As argued before, all terms in the first line have adjusted B-degree at most

degB(1, {0}n1+i1 , . . . , 1, {0}nr1+ir−1 , 1) + k − 1 < degB
∗(w)

Terms in the second line are still divergent, with adjusted B-degree at most degB
∗(w).

Applying duality and shuffle regularisation once more, we see that degB
∗(w) is an upper

bound for the B-degree of all convergent terms on the right hand side, proving the
claim.

This proof also highlights a few interesting facts about shuffle regularisation in the
associated graded.
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Corollary 3.26 (K.). For a word w beginning with e0, all terms ζB(n1, . . . , nr) ap-
pearing on the right hand side of the equality ζB(w) = . . . have that #{i|ni = 1} =
number of e1e1 subsequences in w as a common constant.

Proof. If we have a term on the right hand side corresponding the iterated integral arising
from insertion of 0’s between two adjacent 1’s, it will have strictly lower block degree, as
degB(ei+1

0 e1e1) = i+ 1, but degB(e0e1e
i
0e1) = i− 1, so we “lose” two repetitions. Thus,

terms where adjacent 1’s are separated drop out in the associated graded.

Corollary 3.27 (K.). In the shuffle regularisation of ζB(n1, . . . , nr−1, 1), all terms
ζB(m1, . . . ,mk) have #{i|mi = 1} as a common constant, which is equal to n1 + · · · +
nr−1 + 1− 2r.

Extending our table of relations from the previous section to include relations fea-
turing divergent zeta values, we find the following, where we again omit any elements
equal to 0:

Weight 1 2 3 4

∅ ζB(e0e1) = −ζB(2) ζB(e0e1e0) = −2ζB(3) ζB(e+ 02e1e0) = 3ζB(4)
ζB(2, 1) = 2ζB(3) ζB(e0e1e

2
0) = −3ζB(4)

ζB(e0e
2
1e0) = −2ζB(1, 3)

ζB(3, 1) = −2ζB(1, 3)
ζB(e0e1e0e1) = 4ζB(1, 3)
ζB(1, 2, 1) = −3ζB(4)
ζB(2, 1, 1) = 3ζB(4)

We have omitted the weight 5 relations for sake of brevity. We find simply that every
value is 0, or a linear combination of ζB(2, 3) and ζB(3, 2).

Note that, in this formulation, we have ζB(e0e1e0) = −2ζB(3) is non-zero, so our
proof that D3 is trivial on all elements of grBH no longer holds, as weight three is now
non-zero. We will instead move from H to A = H/ζm(2), in which ∆ is a true coproduct
rather than a coaction. Much work is needed to be done here, but a successful theory of
block graded renormalised MZVs has the potential to be quite powerful. And it appears
that this is the correct choice of extension of the block filtration to divergent MZVs, as
it is motivic. We first show the following.

Proposition 3.28 (K.). Defining BnH := 〈ζm(w)|degB
∗(w) ≤ n〉Q, this extended block

filtration is motivic:

∆BnH ⊂
n−1∑
k=1

BkH⊗ Bn−kH

Proof. Consider Im(0;w; 1), w a word in {0, 1} such that degB
∗(w) ≤ n. We wish to show

that every term of ∆Im(0;w; 1) is in BkH ⊗ Bn−kH, for some 1 ≤ k < n. Proposition
3.17 shows this for w convergent, so we need only consider the case of divergent w.
Furthermore, as duality preserves block degree, we may assume
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Im(0;w; 1) = Im(0; {0}mv1, . . . , vr; 1)

where vi are alternating.
We once again consider the infinitesimal actions D2a+1. All non-zero terms in

D2a+1(Im(0; {0}mv1, . . . , vr; 1) will be of the form

Ia(0; {0}su; 1)⊗ Im(0; {0}t1v; 1) for s+ t = m s ≥ 1

or

Ia(0; y; 1)⊗ Im(0; {0}m, xz; 1)

where w = {0}mu1v in the first case and w = {0}mxyz in the latter. In the second case,
one can see that the result holds by following the arguments of Proposition 3.17. In the
first case, we must do slightly more work.

Note that
degB

∗(w) = degB({0}m+1u1v1) = m+ degB(u1v1)

and that

degB
∗({0}su) = s+ degB(w1)

degB
∗({0}t1v) = t+ degB(1v1)

Thus degB
∗({0}su) + degB

∗({0}t1v) = m+ degB(w1) + degB(1v1). We see that

degB(ua) + degB(av) = degB(uav)

for u, v words in {0, 1}, and a ∈ {0, 1}, as this overlapped concatenation can neither
create nor destroy subsequences of the form ii. Finally, we note that, if degB

∗({0}su)=
0, we must have s = 0, which puts us into the second case. Thus, the extended block
filtration is motivic.

We can in fact show the following, stronger, statement quite easily.

Theorem 3.29 (K.). The motivic coproduct is graded for the extended block filtration:

∆grBnA ⊂
n⊕
k=1

−1grBkA⊗ grBn−kA

Proof. Consider Ia(0;w; 1), w a word in {0, 1} such that degB
∗(w) = n. Then we can

decompose 0w1 = b1b2 . . . bn+1 into alternating blocks, and consider the action of D2n+1

on Ia(b1 . . . bn+1). All terms in D2n+1I
a(b1 . . . bn+1) will be of the form

Ia(x; b′′i bi+1 . . . b
′
i+j ; y)⊗ Ia(b1 . . . bi−1b

′
ixyb

′′
i+jbi+j+1 . . . bn+1)
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for some 1 ≤ i ≤ n+ 1, where bi = b′ixb
′′
i , bi+j = b′i+jyb

′′
i+j . For the left hand term to be

non-zero, we must have x 6= y, and so we see

degB(xb′′i bi+1 . . . b
′
i+jy) = j

degB(b1 . . . b
′
ixyb

′′
i+j . . . bn+1 = n− j

by counting the blocks. Then, as we included the endpoints in our calculations, we get
that the total extended block degree of any term in the coproduct is n.

Knowing that the motivic coproduct is block graded, we can then use it to describe
relations among block graded MZVs. Define

AB :=
∞⊕
n=1

grBnA

and let L := AB>0/AB>0AB>0 be the Lie coalgebra of indecomposables. Its dual, which we
shall denote by bg, encodes all relations among block graded MZVs modulo ζm(2) and
products. We expect it to be Lie algebra with a unique generator in every odd weight,
similar to ls, however we expect here that it will be a free Lie algebra.

As the coproduct on AB is precisely the motivic coproduct, the dual product on Ubg
will be the block-graded Ihara product.

Lemma 3.30 (K.). The block graded Ihara product is given by

w ◦B en0
0 e1 . . . e1e

nk
0 =

k∑
i=0

(1− δw1,e0δni,0)en0
0 e1 . . . e

ni
0 we1 . . . e1e

nk
0

+

k−1∑
i=0

(1− δw1,e0δni+1,0)en0
0 e1 . . . e

ni
0 e1we

ni+1

0 . . . e1e
nk
0

where w = w1 . . . wr, w
∗ = (−1)rwr . . . w1, and δa,b = 1 if a = b and 0 otherwise.

Proof. Expanding the recursive definition of the Ihara product we get

w ◦ en0
0 e1 . . . e1e

nk
0 =

k∑
i=0

en0
0 e1 . . . e

ni
0 we1 . . . e1e

nk
0 +

k−1∑
i=0

en0
0 e1 . . . e

ni
0 e1we

ni+1

0 . . . e1e
nk
0

in which every term is of the form en0
0 e1 . . . e

ni
0 we1 . . . e1e

nk
0 or en0

0 e1 . . . e
ni
0 e1we

ni+1

0 . . . e1e
nk
0 .

Considering the first form, and assuming ni 6= 0, we have

degB(e0 · en0
0 e1 . . . e

ni
0 we1 . . . e1e

nk
0 · e1) = degB(e0 · en0

0 e1 . . . e
ni
0 ) + degB(e0we1) + degB(e1 . . . e1e

nk
0 · e1)

= degB(e0we1) + degB(e0 · en0
0 e1 . . . e

ni
0 e1 . . . e1e

nk
0 · e1)

using degB(uxv) = degB(ux) + degB(xv) for a letter x. Thus

degB
∗(e0 · en0

0 e1 . . . e
ni
0 we1 . . . e1e

nk
0 · e1) = degB

∗(w) + degB
∗(en0

0 e1 . . . e
ni
0 e1 . . . e1e

nk
0 )
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Now, if ni = 0, we instead get

degB(e0 · en0
0 e1 . . . e1we1 . . . e1e

nk
0 · e1) = degB(e0 · en0

0 e1 . . . e1) + degB(e1we1) + degB(e1 . . . e1e
nk
0 · e1)

= degB(e1we1) + degB(e0 · en0
0 e1 . . . e1e1 . . . e1e

nk
0 · e1)− 1

Then

degB(e1we1) =

{
degB(e0we1) + 1 if w1 = e1

degB(e0we1)− 1 if w1 = e0

Thus the extended degree of such terms is degB
∗(w) + degB

∗(en0
0 e1 . . . e

ni
0 e1 . . . e1e

nk
0 )

unless w1 = e0 and ni = 0. Hence, we can block grade by introducing these (1 −
δw1,e0δni,0) factors. Similar analysis gives the δ factors in the second sum.

As generators of bg, we choose generating series of weight 2k + 1, block degree 1
Hoffman elements.

Definition 3.31. Define p2k+1 as the block grading of one of the following, after rescaling
by 1/ζm(2k + 1):

p2k+1 :=

k−1∑
i=0

ζm({2}i, 3, {2}k−1−i)(e1e0)ie1e
2
0(e1e0)k−1−i

p2k+1 := x1 . . . xk

k∑
i=1

ζm({2}i, 3, {2}k−1−i)xi+1

p2k+1 :=
k−1∑
i=0

ζm({2}i, 3, {2}k−1−i)x2i+2y2k−2i−1

Note that the first two definitions are equivalent by our standard transition between
commutative and noncommutative polynomials. The third is more like the work of
Zagier [33]. Indeed, we can use his work to express the third definition more concisely.

Lemma 3.32 (K.).

p2k+1 = (−1)k
[
y((x+ y)2k + (x− y)2k − 2y2k)− (1− 1

22k
)x((x+ y)2k − (x− y)2k)

]
Proof. From theorem 1 of [33], we have that, modulo ζm(2)

ζm({2}a, 3, {2}b) = 2×(−1)a+b+1

[(
2a+ 2b+ 2

2a+ 2

)
− (1− 1

22a+2b+2

(
2a+ 2b+ 2

2b+ 1

)]
ζm(2a+2b+3)

Filling this into our definition of p2k+1 and simplifying, we get the desired polynomial.
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4 Further Work and Conjectures

4.1 Some partial results on duality

As it is conjectured that the double shuffle equations describe all non-trivial relations
among multiple zeta values, in particular the duality arising from symmetry of P1 \ {0, 1,∞},
we considered various methods of deriving duality as a consequence of the double shuffle
relations. Some progress has been made towards this [23][24], but is restricted to sums of
zeta values or low depths, or invokes the so-called ‘derivation’ relations [22] as a stepping
stone.

Our approach, while ultimately incomplete, instead considers elements of dmr0, and
attempts to show duality holds here. We first observe that

Q〈a, b〉 = QD〈a, b〉 ⊕Q−D〈a, b〉

where

QD〈a, b〉 := {φ ∈ Q〈a, b〉|Dφ = φ}
Q−D〈a, b〉 := {φ ∈ Q〈a, b〉|Dφ = −φ}

If we assume Ddmr0 ⊂ dmr0, then dmr0 splits similarly. Indeed, as the double shuffle
equations are motivic, one expects this to be the case [30]. Hence, it would suffice to
show that no non-zero φ ∈ dmr0 satisfied Dφ = −φ. Suppose such a φ exists: we may
suppose, without loss of generality, that it is homogeneous of weight N .

If N = 2k, the depth k component of φ must be 0. We can similarly show that, for
N = 2k + 1, the depth k component of φ must be zero. Hence the problem of duality
is reduced to the existence of solutions to the linearised double shuffle equations of high
depth relative to weight.

Here, by applying techniques similar to those of [21], we found limited success, with
certain parity constraints being necessary, invoking the depth-parity theorem as an initial
step. We will loosely sketch the idea, but will not fill in the details, as much of the proof
is dependent on choice of n.

Sketch. Start by defining a right action of GLn(Q) on Q[x1, . . . , xn] by

(f |S)(x) := f(xS−1)

Next define R := J − (n − 1)I, where J is the matrix with 1 in each entry. Letting
g := f |R, we note that f solving the linearised double shuffle equations is equivalent to
g solving slightly modified versions. In particular, the equations solved by g imply that
g is invariant under the action of two subgroups W,W ′ < GLn(Q). If we can show that
〈W,W ′〉 contains a subgroup Γ of finite index in GLn(Q), we can apply [21] Proposition
8 to conclude that g, and hence f is constant. From here, it is easy to conclude that f
is 0.

There is also potential to utilise the motivic coaction, and possibly Brown’s algorithm
for decomposition of motivic MZVs into a given basis [4], to prove the duality relation.
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Lemma 4.1 (K.). The duality operator D commutes with the infinitesimal coaction
operators D2r+1.

Proof.

DrDI
m(0; a1, . . . , an; 1) = Dr(−1)nIm(0; 1− an, . . . , 1− a1; 1)

=

n−r∑
p=0

(−1)nIa(1− an−p; 1− an−p−1, . . . , 1− an−p−r; 1− an−p−r−1)

⊗ Im(0; 1− an, . . . , 1− an−p, 1− an−p−r−1, . . . , 1− a1; 1)

= D⊗D
n−r∑
p=0

Ia(1− an−p; an−p−r, . . . , an−p−1; 1− an−p−r−1)⊗ Im(0; a1, . . . , an−p−r−1, an−p, . . . , an; 1)

= D⊗D
n−r∑
p=0

Ia(1− ap+r+1; ap+1, . . . , ap+r; 1− ap)⊗ Im(0; a1, . . . , ap, ap+r+1, . . . , an; 1)

Then noting that ap = ap+r+1 ⇔ 1 − ap = 1 − ap+r+1, the only non-zero terms in
DrI

m(0; a1, . . . , an; 1) or DrDI
m(0; a1, . . . , an; 1) are those with ap = 1 − ap+r+1. Thus

we have

DrDI
m(0; a1, . . . , an; 1) = D⊗DDrI

m(0; a1, . . . , an; 1)

Corollary 4.2. Dζm(N) = cζm(N) for some c ∈ Q.

Proof. Suppose we have some σ ∈ HN such that D<Nσ = 0. Such a σ always exists as
a consequence of the double shuffle relations. Thus σ = αζm(N).Furthermore, we can
choose σ so that α 6= 0. D commutes with D<N and so D<NDσ = 0. Hence we have

αDζm(N) = Dσ = βζm(N)

for some β ∈ Q. The result follows.

However, this method only serves to restrict the dimension of the vector spaces of
weight N. Fixing the coefficient requires more machinery.

4.2 On the coefficients of a rational associator

As the double shuffle equations are defined over the integers, we can consider their
reduction modulo primes to gain some information about the complexity of its coeffi-
cients.Continuing our slight abuse of notation, we shall refer to every depth of a solution
as Φ, as the depth can be inferred from the number of variables.

Theorem 4.3 (K.). There are no non-trivial solutions to the shuffle equation modulo
p, p prime.
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Proof. Suppose Φ sovles the shuffle equations. Then, for any k ≥ 1, we have

Φ(x1,1, x1,2, . . . , x1,k)Φ(x2,1, x2,2, . . . , x2,k) · · ·Φ(xp,1, xp,2, . . . , xp,k)

= Φ\(x1,1 . . .x1,k � x2,1 . . .x2,k � · · ·� xp,1 . . .xp,k)

where Φ\ is as defined previously.
The right hand side will split as a sum as follows

p∑
i=1

Φ\(xi,1(x1,1 . . .x1,k � · · ·� xi,2 . . .x2,k � · · ·� xp,1 . . .xp,k))

so upon setting x1,j = x2,j = · · · = xp,j = xj for each 1 ≤ j ≤ k, we find

Φ(x1, . . . , xk)
p =

p∑
i=1

Φ\(x1(x1 . . .xk � · · ·� x2 . . .xk � · · ·� x1 . . .xk))

= pΦ\(x1(x2 . . .xk � x1 . . .xk � · · ·� x1 . . .xk))

as the shuffle product is commutative. Thus, we have

Φ(x1, . . . , xk)
p ≡ 0 mod p

and hence
Φ(x1, . . . , xk) ≡ 0 mod p

for every k ≥ 1.

Corollary 4.4. There are no non-trivial integer solutions to the shuffle equation.

Proof. By the above theorem, if an integer solution exists, the coefficients of all terms
of positive degree must be divisible by p, for every prime p. Clearly this is impossible
unless all terms of positive degree vanish.

Corollary 4.5. In any Φ coming from a rational λ-associator, λ 6= 0, every prime must
appear in the denominator of a coefficient of Φ(x1, . . . , xk) for some k ≥ 1. That is to
say, the denominators of coefficients are, in some sense, arbitrarily complicated.

Proof. Suppose otherwise: that for some prime p, every coefficient in Φ is an element
of Zp. As the associator equations imply the shuffle equation, the above argument still
holds, and so we get that Φ is trivial mod p. But, it is known that the coefficient of x
in Φ(x) must be λ2

24 [13]. Thus, Φ cannot be trivial mod p for any p > 2, and since 2|24,
the result follows.

We believe these ideas could be further refined to give more precise results on the
growth of coefficients, however, as this is not in line with our current goals, it shall
remain an interesting observation.
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4.3 Relations and obstructions from period polynomials

One of the challenges in defining canonical σ elements, and in working with ls is the
existence of relations between σ elements in low depth, such as Ihara’s relation

3{σ5, σ7} = {σ3, σ9} modulo depths ≥ 4

However, we can explicitly describe all quadratic relations, as they all arise from
period polynomials [17], [26].

Our map ρ : Q〈a, b〉 →
⊕∞

n=1 Q[y0, . . . , yn] descends to a map

ρ̄ : ls→
∞⊕
n=1

Q[y0, . . . , yn]→
∞⊕
n=1

Q[x1, . . . , xn]

The Ihara bracket gives a map

{·, ·} : ls1 ∧ ls1 → ls2

which on application of ρ̄ gives a map

D1 ∧D1 → D2

where Di is the Q-vector space of even polynomials in i variables. We find that D1 ∧D1

is isomorphic to the space of antisymmetric even polynomials p(x1, x2). The image of
p(x1, x2) under the induced map is

p(x1, x2) + p(x2 − x1,−x1) + p(−x2, x1 − x2)

Recalling Definition 2.37, we conclude that the kernel of this map is isomorphic to
S. In fact, one can show relatively easily that the following sequence is exact:

0→ S→ D1 ∧D1 → D2 → 0

Example 4.6. The smallest non-trivial period polynomial, arising from the cusp form
of weight 12, is given by s12 = X8Y 2− 3X6Y 4 + 3X4Y 6−X2Y 8. From the short exact
sequence, and the isomorphism ρ̄, we can immediately see Ihara’s relation:

3{σ̄5, σ̄7} − {σ̄3, σ̄9} = 0

Using the map ls → DerΘL(a, b) that sends σ̄2n+1 to ε∨2n+2, we can apply Pollack’s
work to describe all such quadratic relations and their connection to modular forms.

Definition 4.7. For f a cusp form of weight n, define the period polynomial of f to be

rf (X,Y ) =
∑

af (k)Xn−2−kY k =

∫ i∞

0
f(τ)(X − τY )n−2dτ
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In [32], Zagier extends this definition to all modular forms. Denote by

r+
f =

1

2
(rf (X,Y ) + rf (X,−Y )

the even degree part of rf . This is an element of S. In his thesis, Pollack shows the
following, as a special case of his main theorem.

Theorem 4.8. For n a fixed positive even integer∑
p+q=n+2

β(p, q)[ε∨p , ε
∨
q ] = 0

if and only if there exists a modular form f of weight n such that

r+
f (X,Y ) =

∑
p+ q = n+ 2β(p, q)(Xp−2Y q−2 −Xq−2Y p−2)

This gives us a way of generating relations, in fact all quadratic relations, among the
σ̄2n+1.

Example 4.9. The relation

2{σ̄3, σ̄13} − 7{σ̄5, σ̄11}+ 11{σ̄7, σ̄9} = 0

arises from the cusp form of weight 16, with even period polynomial

2(X2Y 12 −X12Y 2)− 7(X4Y 10 −X10Y 4) + 11(X6Y 8 −X8Y 6)

Modular forms and period polynomials also play a role in defining exceptional gen-
erators. The map

e : S→ ls

defines elements ef ∈ ls that in some sense describe the failure of relations in ls to hold
in dmr0. For example

3{σ5, σ7} − {σ3, σ9} ∈ Qef

for f the cusp form of weight 12. Thus, these exceptional elements become vital in
computation of the dimension of solution spaces to the double shuffle equations. In fact,
we have that the Conjecture 2.38 is equivalent to showing that e(S) ⊂ dg, which was
verified by Brown up to weight 20, and that the Lie subalgebra of dg generated by the
elements ad2n(a)(b) and ef has the homology described in Conjecture 2.38.
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4.4 Analytic continuation methods

While not truly featuring in this work, it would be unsatisfactory to discuss the possibility
of a rational associator without briefly commenting on some wholly analytic techniques
that may be attempted. Single zeta values have, in some sense, an additional ”structure”,
in that they arise as special points of the Riemann ζ-function. But by considering the
ζ function at negative integers, we get rational numbers, satisfying the same (known)
relations. Thus, ζ(−n) makes an excellent candidate for the coefficient of x1x

n−1
0 in a

rational associator Φ. If one could extend multiple zeta values to the negative integers,
in such a way as to satisfy both shuffle and stuffle relations, this would define a rational
associator. However, current analytic continuations seem to only satisfy stuffle [28], but
not shuffle. Thus, we cannot currently exploit this technique.

One possible method we believe to have potential is to invoke Hurwitz multiple zeta
functions

ζ(s1, s2, . . . , sk; a) :=
∑

n1>n2>...>nk≥0

1

ns11 n
s2
2 . . . n

sk−1

k−1 (nk + a)sk

By considering derivatives with respect to a, one can renormalise a divergent value of
the Hurwitz zeta function as a convergent sum of convergent values, and hence continue,
analytically, the zeta function to the negative integers.

Example 4.10. We have ∂ζ
∂a(s; a) = −sζ(s+ 1; a) and in general

∂nζ

∂an
(s; a) = (−1)n(s)nζ(s+ n; a)

where (s)n := s(s+1)(s+2)(· · · )(s+n−1) is a rising Pochhammer symbol. Thus, upon
Taylor expanding ζ(s; a) around a = 1, we get

ζ(s; a) = a−s +

∞∑
n=0

(−a)n

n!
(s)nζ(s+ n)

and hence

ζ(s) = 1 +
∞∑
n=0

(−1)n

n!
(s)nζ(s+ n)

allowing us to push convergence into the left half-plane.

To the best of the author’s knowledge, this has not been examined thoroughly, bar
by [28], and may merit further study.
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