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Multiple Zeta Values

Multiple Zeta Values (MZVs) are a set of
numbers generalising the Riemann zeta function
to multiple variables. They arise naturally in
most number theoretic problems involving
periods, particularly in Feynman integrals, and
have a deep connection to motives.

Definition

Let r ∈ N , k1, . . . , kr ∈ N be postive integers,
with kr ≥ 2. We define

ζ(k1, . . . , kr ) :=
∑

0<n1<n2<...<nr

1

nk1
1 nk2

2 · · · n
kr
r
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Mutliple Zeta Values

To a MZV, we can associate two quantities:
weight and depth. The weight of ζ(k1, . . . , kr )
is defined to be n1 + n2 + · · ·+ nr , and the
depth is defined to be r . We can also obtain
MZVs as iterated integrals: To a tuple
(k1, . . . , kr ), we associate a word

w = e1e
k1−1
0 e1e

k2−1
0 e1 . . . e1e

kr−1
0

and a differential form

ωw =

|w |∏
i=1

dti
ti − xi

where xi = n if wi = en
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Multiple Zeta Values

One can then show that

ζ(k1, . . . , kr ) = (−1)r
∫

∆
ωw

where we integrate over the simplex
∆ = {(t1, . . . , t|w |)|0 ≤ t1 ≤ t2 ≤ . . . t|w | ≤ 1}
A renormalisation procedure for these integrals
allows us to define MZVs in divergent cases,
and to define a multiple zeta value associated
to any word in {e0, e1}.
Extending this definition by Q-linearity, we
obtain a map

ζ : Q〈e0, e1〉 → C
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The Double Shuffle Relations

The Q-vector space spanned by MZVs form a
Q-algebra, with one of two products: the
shuffle product and the stuffle product. These
product define (conjecturally all) relations
among MZVs .

MZVs are also known to satsify relations arising
from Drinfel’d’s associator equations. These
imply the double shuffle relations, and are
conjecturally equivalent.

However, double shuffle relations are easier to
work with, play well with the underlying motivic
structure, and let us calculate upper bounds on
the graded dimension of the Q-span of MZVs
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Stuffle Equations

Consider the product ζ(s)ζ(t). Using the
summation definition of the zeta function we
can write

ζ(s)ζ(t) =
∑
m≥1

∑
n≥1

1

msnt

We can split the domain of summation to
obtain

ζ(s)ζ(t) =
∑

m>n≥1

+
∑

n>m≥1

+
∑

m=n≥1

1

msnt

= ζ(t, s) + ζ(s, t) + ζ(s + t)

This is a stuffle relation, and holds for all
MZVs.
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Shuffle Equations

Similarly, considering splitting the domain of
integration, the integral definiton gives further
relations. We illustrate this with an example

ζ(2)ζ(2) =

∫
0≤t1≤t2≤1

∫
0≤s1≤s2≤1

dt1dt2ds1ds2

(1− t1)t2(1− s1)s2

=

∫
0≤t1≤t2≤s1≤s2≤1

+

∫
0≤t1≤s1≤t2≤s2≤1

+

∫
0≤t1≤s1≤s2≤t2≤1

+

∫
0≤s1≤t1≤t2≤s2≤1

+

∫
0≤s1≤t1≤s2≤t2≤1

+

∫
0≤s1≤s2≤t1≤t2≤1

= 2ζ(2, 2) + 4ζ(1, 3)

These are called the shuffle relations.
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Noncommutative Power Series

We can describe these relations more succinctly.
Define

Φ =
∑
w

ζ(w)w ∈ C〈〈e0, e1〉〉

To say that MZVs satsify the shuffle relations is
to say that ∆Φ = Φ⊗ Φ, where ∆ is the
completed coproduct for which

∆ei = ei ⊗ 1 + 1⊗ ei

The stuffle relations can similarly be described
by ∆∗Φ = Φ⊗ Φ for a coproduct ∆∗
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Racinet’s Lie Algebra

With this new formulation, we can define

Definition

Define DMR0 to be the scheme such that, for a
Q-algebra R,

DMR0(R) =

{Φ ∈ R〈〈e0, e1〉〉|Φ grouplike for ∆, ∆∗}

Theorem (Racinet, 2002)

DMR0 is a group scheme

Theorem (Drinfel’d 1991, Furusho 2008)

DMR0(Q) is non empty
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Racinet’s Lie Algebra

We now move from DMR0(Q) to the Lie
algebra dmr0. This amounts to considering the
double shuffle relations modulo products, or
primitive elements of Q〈e0, e1〉.

We can
explicitly describe the Lie bracket on dmr0 as
the antisymmetrisation of the Ihara action

◦ : Q〈e0, e1〉 ⊗Q〈e0, e1〉 → Q〈e0, e1〉
u ⊗ en0 e1v 7→ en0ue1v + en0 e1u

∗v + en0 e1(u ◦ v)

where (u1u2 . . . ur )∗ = (−1)rur . . . u1 is the
antipode map.
Drinfel’d shows the existence of a Lie algebra

g = Lie(σ2k+1) ↪→ dmr0
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Two Filtrations on MZVs

We have already encountered two filtrations of
the Q-algebra generated by MZVs, which
descend to filtrations of dmr0.

First we have the weight filtration. This is
conjecturally a grading: there are no known
relations among MZVs of different weights.

Next we have the depth filtration.This is
definitely not a grading. As such, we can
consider the associated graded of dmr0 with
respect to the depth filtration.
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The Problem with Depth

While the depth graded Lie algebra provides
valuable information, and is much simpler to
work with, there are still a few problems with
depth.

Depth is asymmetric: depth is not
invariant under the change of variables
x 7→ 1− x , but the numerical values are.

”Depth graded associator equations” seem
impossible to write down.

There are obstructions due to modular
forms: additional relations and additional
generators
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Motivic Multiple Zeta Values

We can find an additional filtration coming
from the theory of motives. First we define the
category of mixed Tate motives

Theorem (Brown, 2011)

The category of mixed Tate motives MTM is
isomorphic as a Tannakian category to the
motivic fundemental group of P1 \ {0, 1,∞}.

Corollary

The period of a mixed Tate motive is a Q-linear
combination of MZVs.

55



Motivic Multiple Zeta Values

We can find an additional filtration coming
from the theory of motives. First we define the
category of mixed Tate motives

Theorem (Brown, 2011)

The category of mixed Tate motives MTM is
isomorphic as a Tannakian category to the
motivic fundemental group of P1 \ {0, 1,∞}.

Corollary

The period of a mixed Tate motive is a Q-linear
combination of MZVs.

56



Motivic Multiple Zeta Values

We can find an additional filtration coming
from the theory of motives. First we define the
category of mixed Tate motives

Theorem (Brown, 2011)

The category of mixed Tate motives MTM is
isomorphic as a Tannakian category to the
motivic fundemental group of P1 \ {0, 1,∞}.

Corollary

The period of a mixed Tate motive is a Q-linear
combination of MZVs.

57



Motivic Multiple Zeta Values

We can find an additional filtration coming
from the theory of motives. First we define the
category of mixed Tate motives

Theorem (Brown, 2011)

The category of mixed Tate motives MTM is
isomorphic as a Tannakian category to the
motivic fundemental group of P1 \ {0, 1,∞}.

Corollary

The period of a mixed Tate motive is a Q-linear
combination of MZVs.

58



Motivic Multiple Zeta Values

Theorem

MTM is equivalent to the category of
representations of a group scheme
G ≡ Gm n U, where U is prounipotent. This
group acts on realisations of mixed Tate motives

Theorem

The torsor of paths 0Π1 on P1 \ {0, 1,∞} from
0 to 1 is a Tate motive, and hence carries an
action of G

Instead of considering this action, we instead
consider a coaction
∆ : O(0Π1)→ O(G )⊗O(0Π1)
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Motivic Multiple Zeta Values

Proposition

The straight line path dch maps O(0Π1) to the
Q-span of MZVs.

We define H to be the quotient of O(0Π1) by
the “motivic” kernel of this map. This is the
space of motivic multiple zeta values, spanned
by I (a0; a1, . . . , an; an+1), ai ∈ {0, 1}.
We have a period map

per : H → C

And a coaction

∆ : H → H/(I (0; 10; 1))⊗H
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The Motivic Coaction

Theorem (Brown, 2011)

Let X ∈ H be of weight N. If
∆X = X ⊗ 1 + 1⊗ X , then X ∈ Qζm(N).

This is a very powerful tool. Additionally, all
known relations among MZVs are “stable”
under the coaction, so it would make sense to
consider filtrations that are “stable” under the
coaction.

In particular, we will consider the coradical
filtration.
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A Natural Filtration

The coradical filtration has a particularly nice
formulation in terms of words in e0, e1. In
particular, Brown shows that it agrees with
Charlton’s block filtration. Here, we extend
their definition to include divergent zeta values.

Definition

For a word w in e0, e1, define it’s block degree
to be the number of times the subsequence eiei
(i=0,1) appears in e0we1. Denote this by
degB(w).

Definition

For a vector space V ⊂ Q〈e0, e1〉, define
BnV = V ∩ SpanQ{w | degB ≥ n}
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Block Graded Relations

Then, considering the associated graded of g,
denoted bg, we can discuss block graded
relations.

Theorem

The Ihara action ◦ : g⊗ g→ g is a graded
product i.e

◦ : Bmg⊗ Bng→ Bm+ng

Corollary

The projection g→ bg commutes with the
Ihara action.
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Charlton’s Insertion Conjectures

A word in an alphabet {a, b} can be uniquely
decomposed into alternating blocks.

ababab babab

Thus we can write

I (0;w ; 1) = Ibl(l
(i1)
1 , . . . , l

(ik )
k )

where l (i) ∈ N represents the alternating binary
string of length l beginning with i . Similarly, we
can write

e0we1 = z i1n1
. . . z iknk

where z in ∈ Q〈e0, e1〉 denotes the alternating
word of length n beginning with ei
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Charlton’s Insertion Conjectures

Conjecture (Charlton, 2017)

∑
σ∈Cn

Ibl(lσ(1), . . . , lσ(k)) = 0

where we consider results modulo ζ(2)

Theorem (Charlton, 2017)

∑
σ∈Sn

Ibl(lσ(1), . . . , lσ(k)) ∈ ζ(N)Q

Proof of this theorem relies heavily on explicit
calcuations with the motivic coaction.
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Cyclic Insertion Modulo Products

Theorem ∑
σ∈Cn

Ibl(lσ(1), . . . , lσ(k)) = 0

where the sum is considered modulo products
and terms of lower block degree.

This proves Charlton’s conjecture in low block
degree. Conjecturally, we expect this to hold
modulo products, however, that remains a work
in progress.
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Cyclic Insertion Modulo Products

Proof.

Let σ ∈ bg1, and consider it’s projection pσ in
Q[x1, x2], where for e0we1 = z1z2,

w 7→ x
|z1|
1 x

|z2|
2

It is well known that
pσ(x1, x2) + pσ(x2, x1) = 0, proving the result in
block degree one. Explicit computation of the
Ihara action in terms of these polynomials
shows that this property is preserved.∑

σ∈Cn

p(xσ(1), xσ(2), . . . , xσn) = 0
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Block Shuffle

We can similarly prove by induction that we
have a sort of “block shuffle” relation

Theorem (K.)

∑
σ∈Shk,l

Ibl(lσ(1), . . . , lσ(n)) = 0

for k + l = n, k , l ≥ 1, where the sum is
considered modulo products and terms of lower
block degree.

This provides a whole new class of relations,
that again seem to hold numerically in the
original Lie algebra. Even with these relations,
we cannot uniquely describe bg as via
equations.
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Block Graded Double Shuffle

One might hope to cut out bg by taking block
graded versions of the double shuffle equations.
However, neither shuffle nor stuffle are
compatible with the block filtration, limiting
their use. With the shuffle equations, the
strongest statement we can obtain is

Theorem (Block Graded Shuffle, K.)

Considering bg ⊂ Q〈e0, e1〉, and denoting by
π1 : Q〈e0, e1〉 → Qe0 ⊕Qe1 the natural
projection map, we have that
(π1 ⊗ id) ◦∆(bg) = 0
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Block Graded Double Shuffle

The stuffle equation is more amenable to block
grading

Theorem (Block Graded Stuffle, K.)

Let (m1, . . . ,mk), (n1, . . . , nl) be two
sequences of integers, with mi , ni > 1 and
k ≤ l . Define mk+1 = . . . = ml = 0. Then∑

σ∈Shk,l−k

ζbl(mσ(1) + n1, . . . ,mσ(l) + nl = 0

considered modulo products and terms of lower
degree.

This can be extended to all multiple zeta values
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Further Work

A current objective of the work is to compute
the dimension of the space described by cyclic
insertion, block shuffle and block graded double
shuffle. However, this is proving
computationally challenging. It seems that, in
low weight, these are sufficient to completely
describe the algebra. Will this trend continue?
What other ‘new’ relations hold? Do any of
them lift to true relations? Can we use this to
study depth-graded relations?

Thank you! Questions?
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