Relations and Filtrations of Multiple Zeta Values

Adam Keilthy

University of Oxford
Trinity College Dublin Colloquium:

$$
24 / 01 / 19
$$

Multiple Zeta Values

Multiple Zeta Values

Multiple Zeta Values (MZVs) are a set of numbers generalising the Riemann zeta function to multiple variables. They arise naturally in most number theoretic problems involving periods, particularly in Feynman integrals, and have a deep connection to motives.

Multiple Zeta Values

Multiple Zeta Values (MZVs) are a set of numbers generalising the Riemann zeta function to multiple variables. They arise naturally in most number theoretic problems involving periods, particularly in Feynman integrals, and have a deep connection to motives.

Definition

Let $r \in \mathcal{N}, k_{1}, \ldots, k_{r} \in \mathcal{N}$ be postive integers, with $k_{r} \geq 2$. We define

$$
\zeta\left(k_{1}, \ldots, k_{r}\right):=\sum_{0<n_{1}<n_{2}<\ldots<n_{r}} \frac{1}{n_{1}^{k_{1}} n_{2}^{k_{2}} \cdots n_{r}^{k_{r}}}
$$

Mutliple Zeta Values

Mutliple Zeta Values

To a MZV, we can associate two quantities: weight and depth. The weight of $\zeta\left(k_{1}, \ldots, k_{r}\right)$ is defined to be $n_{1}+n_{2}+\cdots+n_{r}$, and the depth is defined to be r.

Mutliple Zeta Values

To a MZV, we can associate two quantities: weight and depth. The weight of $\zeta\left(k_{1}, \ldots, k_{r}\right)$ is defined to be $n_{1}+n_{2}+\cdots+n_{r}$, and the depth is defined to be r. We can also obtain MZVs as iterated integrals:

Mutliple Zeta Values

To a MZV, we can associate two quantities: weight and depth. The weight of $\zeta\left(k_{1}, \ldots, k_{r}\right)$ is defined to be $n_{1}+n_{2}+\cdots+n_{r}$, and the depth is defined to be r. We can also obtain MZVs as iterated integrals: To a tuple $\left(k_{1}, \ldots, k_{r}\right)$, we associate a word

$$
w=e_{1} e_{0}^{k_{1}-1} e_{1} e_{0}^{k_{2}-1} e_{1} \ldots e_{1} e_{0}^{k_{r}-1}
$$

Mutliple Zeta Values

To a MZV, we can associate two quantities: weight and depth. The weight of $\zeta\left(k_{1}, \ldots, k_{r}\right)$ is defined to be $n_{1}+n_{2}+\cdots+n_{r}$, and the depth is defined to be r. We can also obtain MZVs as iterated integrals: To a tuple $\left(k_{1}, \ldots, k_{r}\right)$, we associate a word

$$
w=e_{1} e_{0}^{k_{1}-1} e_{1} e_{0}^{k_{2}-1} e_{1} \ldots e_{1} e_{0}^{k_{r}-1}
$$

and a differential form

$$
\omega_{w}=\prod_{i=1}^{|w|} \frac{d t_{i}}{t_{i}-x_{i}}
$$

where $x_{i}=n$ if $w_{i}=e_{n}$

Multiple Zeta Values

Multiple Zeta Values

One can then show that

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=(-1)^{r} \int_{\Delta} \omega_{w}
$$

where we integrate over the simplex

$$
\Delta=\left\{\left(t_{1}, \ldots, t_{|w|}\right) \mid 0 \leq t_{1} \leq t_{2} \leq \ldots t_{|w|} \leq 1\right\}
$$

Multiple Zeta Values

One can then show that

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=(-1)^{r} \int_{\Delta} \omega_{w}
$$

where we integrate over the simplex $\Delta=\left\{\left(t_{1}, \ldots, t_{|w|}\right) \mid 0 \leq t_{1} \leq t_{2} \leq \ldots t_{|w|} \leq 1\right\}$ A renormalisation procedure for these integrals allows us to define MZVs in divergent cases, and to define a multiple zeta value associated to any word in $\left\{e_{0}, e_{1}\right\}$.

Multiple Zeta Values

One can then show that

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=(-1)^{r} \int_{\Delta} \omega_{w}
$$

where we integrate over the simplex $\Delta=\left\{\left(t_{1}, \ldots, t_{|w|}\right) \mid 0 \leq t_{1} \leq t_{2} \leq \ldots t_{|w|} \leq 1\right\}$ A renormalisation procedure for these integrals allows us to define MZVs in divergent cases, and to define a multiple zeta value associated to any word in $\left\{e_{0}, e_{1}\right\}$.
Extending this definition by \mathbb{Q}-linearity, we obtain a map

$$
\zeta: \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \rightarrow \mathbb{C}
$$

The Double Shuffle Relations

The Double Shuffle Relations

The \mathbb{Q}-vector space spanned by MZVs form a \mathbb{Q}-algebra, with one of two products: the shuffle product and the stuffle product. These product define (conjecturally all) relations among MZVs.

The Double Shuffle Relations

The \mathbb{Q}-vector space spanned by MZVs form a \mathbb{Q}-algebra, with one of two products: the shuffle product and the stuffle product. These product define (conjecturally all) relations among MZVs.

MZVs are also known to satsify relations arising from Drinfel'd's associator equations. These imply the double shuffle relations, and are conjecturally equivalent.

The Double Shuffle Relations

The \mathbb{Q}-vector space spanned by MZVs form a \mathbb{Q}-algebra, with one of two products: the shuffle product and the stuffle product. These product define (conjecturally all) relations among MZVs.

MZVs are also known to satsify relations arising from Drinfel'd's associator equations. These imply the double shuffle relations, and are conjecturally equivalent.

However, double shuffle relations are easier to work with, play well with the underlying motivic structure, and let us calculate upper bounds on the graded dimension of the \mathbb{Q}-span of MZVs

Stuffle Equations

Stuffle Equations

Consider the product $\zeta(s) \zeta(t)$.

Stuffle Equations

Consider the product $\zeta(s) \zeta(t)$. Using the summation definition of the zeta function we can write

Stuffle Equations

Consider the product $\zeta(s) \zeta(t)$. Using the summation definition of the zeta function we can write

$$
\zeta(s) \zeta(t)=\sum_{m \geq 1} \sum_{n \geq 1} \frac{1}{m^{s} n^{t}}
$$

Stuffle Equations

Consider the product $\zeta(s) \zeta(t)$. Using the summation definition of the zeta function we can write

$$
\zeta(s) \zeta(t)=\sum_{m \geq 1} \sum_{n \geq 1} \frac{1}{m^{s} n^{t}}
$$

We can split the domain of summation to obtain

Stuffle Equations

Consider the product $\zeta(s) \zeta(t)$. Using the summation definition of the zeta function we can write

$$
\zeta(s) \zeta(t)=\sum_{m \geq 1} \sum_{n \geq 1} \frac{1}{m^{s} n^{t}}
$$

We can split the domain of summation to obtain

$$
\begin{aligned}
\zeta(s) \zeta(t) & =\sum_{m>n \geq 1}+\sum_{n>m \geq 1}+\sum_{m=n \geq 1} \frac{1}{m^{s} n^{t}} \\
& =\zeta(t, s)+\zeta(s, t)+\zeta(s+t)
\end{aligned}
$$

Stuffle Equations

Consider the product $\zeta(s) \zeta(t)$. Using the summation definition of the zeta function we can write

$$
\zeta(s) \zeta(t)=\sum_{m \geq 1} \sum_{n \geq 1} \frac{1}{m^{s} n^{t}}
$$

We can split the domain of summation to obtain

$$
\begin{aligned}
\zeta(s) \zeta(t) & =\sum_{m>n \geq 1}+\sum_{n>m \geq 1}+\sum_{m=n \geq 1} \frac{1}{m^{s} n^{t}} \\
& =\zeta(t, s)+\zeta(s, t)+\zeta(s+t)
\end{aligned}
$$

This is a stuffle relation, and holds for all MZVs.

Shuffle Equations

Shuffle Equations

Similarly, considering splitting the domain of integration, the integral definiton gives further relations.

Shuffle Equations

Similarly, considering splitting the domain of integration, the integral definiton gives further relations. We illustrate this with an example

Shuffle Equations

Similarly, considering splitting the domain of integration, the integral definiton gives further relations. We illustrate this with an example

$$
\begin{aligned}
& \zeta(2) \zeta(2)=\int_{0 \leq t_{1} \leq t_{2} \leq 1} \int_{0 \leq s_{1} \leq s_{2} \leq 1} \frac{d t_{1} d t_{2} d s_{1} d s_{2}}{\left(1-t_{1}\right) t_{2}\left(1-s_{1}\right) s_{2}} \\
& =\int_{0 \leq t_{1} \leq t_{2} \leq s_{1} \leq s_{2} \leq 1}+\int_{0 \leq t_{1} \leq s_{1} \leq t_{2} \leq s_{2} \leq 1}+\int_{0 \leq t_{1} \leq s_{1} \leq s_{2} \leq t_{2} \leq 1}+\int_{0 \leq s_{1} \leq t_{1} \leq s_{2} \leq t_{2} \leq 1}+\int_{0 \leq s_{1} \leq s_{2} \leq t_{1} \leq t_{2} \leq 1} \\
& +\int_{0 \leq s_{1} \leq t_{1} \leq t_{2} \leq s_{2} \leq 1}+\int_{0}(2,2)+4 \zeta(1,3)
\end{aligned}
$$

Shuffle Equations

Similarly, considering splitting the domain of integration, the integral definiton gives further relations. We illustrate this with an example

$$
\begin{aligned}
& \zeta(2) \zeta(2)=\int_{0 \leq t_{1} \leq t_{2} \leq 1} \int_{0 \leq s_{1} \leq s_{2} \leq 1} \frac{d t_{1} d t_{2} d s_{1} d s_{2}}{\left(1-t_{1}\right) t_{2}\left(1-s_{1}\right) s_{2}} \\
& =\int_{0 \leq t_{1} \leq t_{2} \leq s_{1} \leq s_{2} \leq 1}+\int_{0 \leq t_{1} \leq s_{1} \leq t_{2} \leq s_{2} \leq 1}+\int_{0 \leq t_{1} \leq s_{1} \leq s_{2} \leq t_{2} \leq 1}+\int_{0 \leq s_{1} \leq t_{1} \leq s_{2} \leq t_{2} \leq 1}+s_{0 \leq s_{2} \leq t_{1} \leq t_{2} \leq 1} \\
& +\int_{0 \leq s_{1} \leq t_{1} \leq t_{2} \leq s_{2} \leq 1}+\int_{0(2,2)+4 \zeta(1,3)}
\end{aligned}
$$

These are called the shuffle relations.

Noncommutative Power Series

Noncommutative Power Series

We can describe these relations more succinctly. Define

Noncommutative Power Series

We can describe these relations more succinctly. Define

$$
\Phi=\sum_{w} \zeta(w) w \in \mathbb{C}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle
$$

Noncommutative Power Series

We can describe these relations more succinctly. Define

$$
\Phi=\sum_{w} \zeta(w) w \in \mathbb{C}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle
$$

To say that MZVs satsify the shuffle relations is to say that $\Delta \Phi=\Phi \otimes \Phi$, where Δ is the completed coproduct for which

$$
\Delta e_{i}=e_{i} \otimes 1+1 \otimes e_{i}
$$

Noncommutative Power Series

We can describe these relations more succinctly. Define

$$
\Phi=\sum_{w} \zeta(w) w \in \mathbb{C}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle
$$

To say that MZVs satsify the shuffle relations is to say that $\Delta \Phi=\Phi \otimes \Phi$, where Δ is the completed coproduct for which

$$
\Delta e_{i}=e_{i} \otimes 1+1 \otimes e_{i}
$$

The stuffle relations can similarly be described by $\Delta^{*} \Phi=\Phi \otimes \Phi$ for a coproduct Δ^{*}

Racinet's Lie Algebra

With this new formulation, we can define

Racinet's Lie Algebra

With this new formulation, we can define

Definition

Define DMR_{0} to be the scheme such that, for a \mathbb{Q}-algebra R,

$$
\begin{array}{r}
\operatorname{DMR}_{0}(R)= \\
\left\{\Phi \in R\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle \mid \Phi \text { grouplike for } \Delta, \Delta^{*}\right\}
\end{array}
$$

Racinet's Lie Algebra

With this new formulation, we can define

Definition

Define DMR_{0} to be the scheme such that, for a \mathbb{Q}-algebra R,

$$
\begin{array}{r}
\operatorname{DMR}_{0}(R)= \\
\left\{\Phi \in R\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle \mid \Phi \text { grouplike for } \Delta, \Delta^{*}\right\}
\end{array}
$$

Theorem (Racinet, 2002)
$D M R_{0}$ is a group scheme

Racinet's Lie Algebra

With this new formulation, we can define

Definition

Define DMR_{0} to be the scheme such that, for a \mathbb{Q}-algebra R,

$$
\operatorname{DMR}_{0}(R)=
$$

$\left\{\Phi \in R\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle \mid \Phi\right.$ grouplike for $\left.\Delta, \Delta^{*}\right\}$

Theorem (Racinet, 2002)
$D M R_{0}$ is a group scheme

Theorem (Drinfel'd 1991, Furusho 2008)
$D M R_{0}(\mathbb{Q})$ is non empty

Racinet's Lie Algebra

We now move from $\operatorname{DMR}_{0}(\mathbb{Q})$ to the Lie algebra $\mathfrak{d m r}_{0}$. This amounts to considering the double shuffle relations modulo products, or primitive elements of $\mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$.

Racinet's Lie Algebra

We now move from $\operatorname{DMR}_{0}(\mathbb{Q})$ to the Lie algebra $\mathfrak{d m r}_{0}$. This amounts to considering the double shuffle relations modulo products, or primitive elements of $\mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$. We can explicitly describe the Lie bracket on $\mathfrak{d m r}_{0}$ as the antisymmetrisation of the Ihara action

Racinet's Lie Algebra

We now move from $\operatorname{DMR}_{0}(\mathbb{Q})$ to the Lie algebra $\mathfrak{d m r}_{0}$. This amounts to considering the double shuffle relations modulo products, or primitive elements of $\mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$. We can explicitly describe the Lie bracket on $\mathfrak{d m r}_{0}$ as the antisymmetrisation of the Ihara action
$\circ: \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \otimes \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \rightarrow \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$

$$
u \otimes e_{0}^{n} e_{1} v \mapsto e_{0}^{n} u e_{1} v+e_{0}^{n} e_{1} u^{*} v+e_{0}^{n} e_{1}(u \circ v)
$$

where $\left(u_{1} u_{2} \ldots u_{r}\right)^{*}=(-1)^{r} u_{r} \ldots u_{1}$ is the antipode map.

Racinet's Lie Algebra

We now move from $\operatorname{DMR}_{0}(\mathbb{Q})$ to the Lie algebra $\mathfrak{d m r}_{0}$. This amounts to considering the double shuffle relations modulo products, or primitive elements of $\mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$. We can explicitly describe the Lie bracket on $\mathfrak{d m r}_{0}$ as the antisymmetrisation of the Ihara action
$\circ: \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \otimes \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \rightarrow \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$

$$
u \otimes e_{0}^{n} e_{1} v \mapsto e_{0}^{n} u e_{1} v+e_{0}^{n} e_{1} u^{*} v+e_{0}^{n} e_{1}(u \circ v)
$$

where $\left(u_{1} u_{2} \ldots u_{r}\right)^{*}=(-1)^{r} u_{r} \ldots u_{1}$ is the antipode map.
Drinfel'd shows the existence of a Lie algebra

$$
\mathfrak{g}=\operatorname{Lie}\left(\sigma_{2 k+1}\right) \hookrightarrow \mathfrak{d m}_{0}
$$

Two Filtrations on MZVs

Two Filtrations on MZVs

We have already encountered two filtrations of the \mathbb{Q}-algebra generated by MZVs, which descend to filtrations of $\mathfrak{d m r}_{0}$.

Two Filtrations on MZVs

We have already encountered two filtrations of the \mathbb{Q}-algebra generated by MZVs, which descend to filtrations of $\mathfrak{d m r}_{0}$.

First we have the weight filtration.

Two Filtrations on MZVs

We have already encountered two filtrations of the \mathbb{Q}-algebra generated by MZVs, which descend to filtrations of $\mathfrak{d m r}{ }_{0}$.

First we have the weight filtration. This is conjecturally a grading: there are no known relations among MZVs of different weights.

Two Filtrations on MZVs

We have already encountered two filtrations of the \mathbb{Q}-algebra generated by MZVs, which descend to filtrations of $\mathfrak{d m r}{ }_{0}$.

First we have the weight filtration. This is conjecturally a grading: there are no known relations among MZVs of different weights.

Next we have the depth filtration.

Two Filtrations on MZVs

We have already encountered two filtrations of the \mathbb{Q}-algebra generated by MZVs, which descend to filtrations of $\mathfrak{d m r}{ }_{0}$.

First we have the weight filtration. This is conjecturally a grading: there are no known relations among MZVs of different weights.

Next we have the depth filtration. This is definitely not a grading.

Two Filtrations on MZVs

We have already encountered two filtrations of the \mathbb{Q}-algebra generated by MZVs, which descend to filtrations of $\mathfrak{d m r}{ }_{0}$.

First we have the weight filtration. This is conjecturally a grading: there are no known relations among MZVs of different weights.

Next we have the depth filtration. This is definitely not a grading. As such, we can consider the associated graded of $\mathfrak{d m r _ { 0 }}$ with respect to the depth filtration.

The Problem with Depth

The Problem with Depth

While the depth graded Lie algebra provides valuable information, and is much simpler to work with, there are still a few problems with depth.

The Problem with Depth

While the depth graded Lie algebra provides valuable information, and is much simpler to work with, there are still a few problems with depth.

- Depth is asymmetric: depth is not invariant under the change of variables $x \mapsto 1-x$, but the numerical values are.

The Problem with Depth

While the depth graded Lie algebra provides valuable information, and is much simpler to work with, there are still a few problems with depth.

■ Depth is asymmetric: depth is not invariant under the change of variables $x \mapsto 1-x$, but the numerical values are.
■ "Depth graded associator equations" seem impossible to write down.

The Problem with Depth

While the depth graded Lie algebra provides valuable information, and is much simpler to work with, there are still a few problems with depth.

- Depth is asymmetric: depth is not invariant under the change of variables $x \mapsto 1-x$, but the numerical values are.

■ "Depth graded associator equations" seem impossible to write down.

- There are obstructions due to modular forms: additional relations and additional generators

Motivic Multiple Zeta Values

Motivic Multiple Zeta Values

We can find an additional filtration coming from the theory of motives. First we define the category of mixed Tate motives

Motivic Multiple Zeta Values

We can find an additional filtration coming from the theory of motives. First we define the category of mixed Tate motives

Theorem (Brown, 2011)
The category of mixed Tate motives MTM is isomorphic as a Tannakian category to the motivic fundemental group of $\mathbb{P}^{1} \backslash\{0,1, \infty\}$.

Motivic Multiple Zeta Values

We can find an additional filtration coming from the theory of motives. First we define the category of mixed Tate motives

Theorem (Brown, 2011)
The category of mixed Tate motives MTM is isomorphic as a Tannakian category to the motivic fundemental group of $\mathbb{P}^{1} \backslash\{0,1, \infty\}$.

Corollary

The period of a mixed Tate motive is a \mathbb{Q}-linear combination of MZVs.

Motivic Multiple Zeta Values

Motivic Multiple Zeta Values

Theorem
MTM is equivalent to the category of representations of a group scheme $G \equiv \mathbb{G}_{m} \ltimes U$, where U is prounipotent. This group acts on realisations of mixed Tate motives

Motivic Multiple Zeta Values

Theorem

MTM is equivalent to the category of representations of a group scheme $G \equiv \mathbb{G}_{m} \ltimes U$, where U is prounipotent. This group acts on realisations of mixed Tate motives

Theorem

The torsor of paths ${ }_{0} \Pi_{1}$ on $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ from
0 to 1 is a Tate motive, and hence carries an action of G

Motivic Multiple Zeta Values

Theorem

MTM is equivalent to the category of representations of a group scheme
$G \equiv \mathbb{G}_{m} \ltimes U$, where U is prounipotent. This group acts on realisations of mixed Tate motives

Theorem

The torsor of paths ${ }_{0} \Pi_{1}$ on $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ from
0 to 1 is a Tate motive, and hence carries an action of G

Instead of considering this action, we instead consider a coaction
$\Delta: \mathcal{O}\left({ }_{0} \Pi_{1}\right) \rightarrow \mathcal{O}(G) \otimes \mathcal{O}\left({ }_{0} \Pi_{1}\right)$

Motivic Multiple Zeta Values

Motivic Multiple Zeta Values

Proposition

The straight line path dch maps $\mathcal{O}\left(0 \Pi_{1}\right)$ to the \mathbb{Q}-span of MZVs.

Motivic Multiple Zeta Values

Proposition

The straight line path dch maps $\mathcal{O}\left(0 \Pi_{1}\right)$ to the \mathbb{Q}-span of MZVs.

We define \mathcal{H} to be the quotient of $\mathcal{O}\left({ }_{0} \Pi_{1}\right)$ by the "motivic" kernel of this map. This is the space of motivic multiple zeta values, spanned by $I\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right), a_{i} \in\{0,1\}$.

Motivic Multiple Zeta Values

Proposition

The straight line path dch maps $\mathcal{O}\left(0 \Pi_{1}\right)$ to the \mathbb{Q}-span of MZVs.

We define \mathcal{H} to be the quotient of $\mathcal{O}\left({ }_{0} \Pi_{1}\right)$ by the "motivic" kernel of this map. This is the space of motivic multiple zeta values, spanned by $I\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right), a_{i} \in\{0,1\}$.
We have a period map

$$
\text { per : } \mathcal{H} \rightarrow \mathbb{C}
$$

Motivic Multiple Zeta Values

Proposition

The straight line path dch maps $\mathcal{O}\left(0 \Pi_{1}\right)$ to the \mathbb{Q}-span of MZVs.

We define \mathcal{H} to be the quotient of $\mathcal{O}\left({ }_{0} \Pi_{1}\right)$ by the "motivic" kernel of this map. This is the space of motivic multiple zeta values, spanned by $I\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right), a_{i} \in\{0,1\}$.
We have a period map

$$
\text { per : } \mathcal{H} \rightarrow \mathbb{C}
$$

And a coaction

$$
\Delta: \mathcal{H} \rightarrow \mathcal{H} /(I(0 ; 10 ; 1)) \otimes \mathcal{H}
$$

The Motivic Coaction

The Motivic Coaction

Theorem (Brown, 2011)

Let $X \in \mathcal{H}$ be of weight N. If
$\Delta X=X \otimes 1+1 \otimes X$, then $X \in \mathbb{Q} \zeta^{\mathfrak{m}}(N)$.

The Motivic Coaction

Theorem (Brown, 2011)
Let $X \in \mathcal{H}$ be of weight N. If
$\Delta X=X \otimes 1+1 \otimes X$, then $X \in \mathbb{Q} \zeta^{\mathfrak{m}}(N)$.
This is a very powerful tool. Additionally, all known relations among MZVs are "stable" under the coaction, so it would make sense to consider filtrations that are "stable" under the coaction.

The Motivic Coaction

Theorem (Brown, 2011)
Let $X \in \mathcal{H}$ be of weight N. If
$\Delta X=X \otimes 1+1 \otimes X$, then $X \in \mathbb{Q} \zeta^{\mathfrak{m}}(N)$.
This is a very powerful tool. Additionally, all known relations among MZVs are "stable" under the coaction, so it would make sense to consider filtrations that are "stable" under the coaction.

In particular, we will consider the coradical filtration.

A Natural Filtration

The coradical filtration has a particularly nice formulation in terms of words in e_{0}, e_{1}. In particular, Brown shows that it agrees with Charlton's block filtration. Here, we extend their definition to include divergent zeta values.

A Natural Filtration

The coradical filtration has a particularly nice formulation in terms of words in e_{0}, e_{1}. In particular, Brown shows that it agrees with Charlton's block filtration. Here, we extend their definition to include divergent zeta values.

Definition

For a word w in e_{0}, e_{1}, define it's block degree to be the number of times the subsequence $e_{i} e_{i}$ $(i=0,1)$ appears in $e_{0} w e_{1}$. Denote this by $\operatorname{deg}_{\mathcal{B}}(w)$.

A Natural Filtration

The coradical filtration has a particularly nice formulation in terms of words in e_{0}, e_{1}. In particular, Brown shows that it agrees with Charlton's block filtration. Here, we extend their definition to include divergent zeta values.

Definition

For a word w in e_{0}, e_{1}, define it's block degree to be the number of times the subsequence $e_{i} e_{i}$ $(i=0,1)$ appears in $e_{0} w e_{1}$. Denote this by $\operatorname{deg}_{\mathcal{B}}(w)$.

Definition

For a vector space $V \subset \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$, define $B_{n} V=V \cap \operatorname{Span}_{\mathbb{Q}}\left\{w \mid \operatorname{deg}_{\mathcal{B}} \geq n\right\}$

Block Graded Relations

Block Graded Relations

Then, considering the associated graded of \mathfrak{g}, denoted $\mathfrak{b g}$, we can discuss block graded relations.

Block Graded Relations

Then, considering the associated graded of \mathfrak{g}, denoted $\mathfrak{b g}$, we can discuss block graded relations.

Theorem
The Ihara action $\circ: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ is a graded product i.e

$$
\circ: B_{m} \mathfrak{g} \otimes B_{n} \mathfrak{g} \rightarrow B_{m+n} \mathfrak{g}
$$

Block Graded Relations

Then, considering the associated graded of \mathfrak{g}, denoted $\mathfrak{b g}$, we can discuss block graded relations.
Theorem
The Ihara action $\circ: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ is a graded product i.e

$$
\circ: B_{m} \mathfrak{g} \otimes B_{n} \mathfrak{g} \rightarrow B_{m+n} \mathfrak{g}
$$

Corollary

The projection $\mathfrak{g} \rightarrow \mathfrak{b g}$ commutes with the Ihara action.

Charlton's Insertion Conjectures

Charlton's Insertion Conjectures

A word in an alphabet $\{a, b\}$ can be uniquely decomposed into alternating blocks.

ababab babab

Charlton's Insertion Conjectures

A word in an alphabet $\{a, b\}$ can be uniquely decomposed into alternating blocks.

ababab babab

Thus we can write

$$
I(0 ; w ; 1)=I_{b}\left(l_{1}^{\left(i_{1}\right)}, \ldots, I_{k}^{\left(i_{k}\right)}\right)
$$

where $I^{(i)} \in \mathbb{N}$ represents the alternating binary string of length / beginning with i.

Charlton's Insertion Conjectures

A word in an alphabet $\{a, b\}$ can be uniquely decomposed into alternating blocks.

ababab babab

Thus we can write

$$
I(0 ; w ; 1)=I_{b l}\left(l_{1}^{\left(i_{1}\right)}, \ldots, I_{k}^{\left(i_{k}\right)}\right)
$$

where $I^{(i)} \in \mathbb{N}$ represents the alternating binary string of length / beginning with i. Similarly, we can write

$$
e_{0} w e_{1}=z_{n_{1}}^{i_{1}} \ldots z_{n_{k}}^{i_{k}}
$$

where $z_{n}^{i} \in \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$ denotes the alternating word of length n beginning with e_{i}

Charlton's Insertion Conjectures

Conjecture (Charlton, 2017)

$$
\sum_{\sigma \in \mathrm{C}_{n}} I_{b}\left(I_{\sigma(1)}, \ldots, I_{\sigma(k)}\right)=0
$$

where we consider results modulo $\zeta(2)$

Charlton's Insertion Conjectures

Conjecture (Charlton, 2017)

$$
\sum_{\sigma \in \mathrm{C}_{n}} I_{b}\left(I_{\sigma(1)}, \ldots, I_{\sigma(k)}\right)=0
$$

where we consider results modulo $\zeta(2)$

Theorem (Charlton, 2017)

$$
\sum_{\sigma \in S_{n}} I_{b}\left(I_{\sigma(1)}, \ldots, I_{\sigma(k)}\right) \in \zeta(N) \mathbb{Q}
$$

Charlton's Insertion Conjectures

Conjecture (Charlton, 2017)

$$
\sum_{\sigma \in \mathrm{C}_{n}} I_{b}\left(I_{\sigma(1)}, \ldots, I_{\sigma(k)}\right)=0
$$

where we consider results modulo $\zeta(2)$

Theorem (Charlton, 2017)

$$
\sum_{\sigma \in S_{n}} I_{b}\left(I_{\sigma(1)}, \ldots, I_{\sigma(k)}\right) \in \zeta(N) \mathbb{Q}
$$

Proof of this theorem relies heavily on explicit calcuations with the motivic coaction.

Cyclic Insertion Modulo Products

Cyclic Insertion Modulo Products

Theorem

$$
\sum_{\sigma \in C_{n}} I_{b}\left(I_{\sigma(1)}, \ldots, I_{\sigma(k)}\right)=0
$$

where the sum is considered modulo products and terms of lower block degree.

Cyclic Insertion Modulo Products

Theorem

$$
\sum_{\sigma \in C_{n}} I_{b}\left(I_{\sigma(1)}, \ldots, I_{\sigma(k)}\right)=0
$$

where the sum is considered modulo products and terms of lower block degree.

This proves Charlton's conjecture in low block degree. Conjecturally, we expect this to hold modulo products, however, that remains a work in progress.

Cyclic Insertion Modulo Products

Cyclic Insertion Modulo Products

Proof.

Let $\sigma \in \mathfrak{b g}_{1}$, and consider it's projection p_{σ} in $\mathbb{Q}\left[x_{1}, x_{2}\right]$, where for $e_{0} w e_{1}=z_{1} z_{2}$,

$$
w \mapsto x_{1}^{\left|z_{1}\right|} x_{2}^{\left|z_{2}\right|}
$$

It is well known that $p_{\sigma}\left(x_{1}, x_{2}\right)+p_{\sigma}\left(x_{2}, x_{1}\right)=0$, proving the result in block degree one. Explicit computation of the Ihara action in terms of these polynomials shows that this property is preserved.

$$
\sum_{\sigma \in \mathrm{C}_{n}} p\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma_{n}}\right)=0
$$

Block Shuffle

Block Shuffle

We can similarly prove by induction that we have a sort of "block shuffle" relation

Block Shuffle

We can similarly prove by induction that we have a sort of "block shuffle" relation

Theorem (K.)

$$
\sum_{\sigma \in S h_{k, l}} I_{b}\left(l_{\sigma(1)}, \ldots, l_{\sigma(n)}\right)=0
$$

for $k+I=n, k, I \geq 1$, where the sum is considered modulo products and terms of lower block degree.

Block Shuffle

We can similarly prove by induction that we have a sort of "block shuffle" relation

Theorem (K.)

$$
\sum_{\sigma \in S h_{k, l}} I_{b l}\left(l_{\sigma(1)}, \ldots, l_{\sigma(n)}\right)=0
$$

for $k+I=n, k, I \geq 1$, where the sum is considered modulo products and terms of lower block degree.

This provides a whole new class of relations, that again seem to hold numerically in the original Lie algebra.

Block Shuffle

We can similarly prove by induction that we have a sort of "block shuffle" relation

Theorem (K.)

$$
\sum_{\sigma \in S h_{k, l}} I_{b}\left(l_{\sigma(1)}, \ldots, I_{\sigma(n)}\right)=0
$$

for $k+I=n, k, I \geq 1$, where the sum is considered modulo products and terms of lower block degree.

This provides a whole new class of relations, that again seem to hold numerically in the original Lie algebra. Even with these relations, we cannot uniquely describe $\mathfrak{b g}$ as via

Block Graded Double Shuffle

Block Graded Double Shuffle

One might hope to cut out $\mathfrak{b g}$ by taking block graded versions of the double shuffle equations. However, neither shuffle nor stuffle are compatible with the block filtration, limiting their use.

Block Graded Double Shuffle

One might hope to cut out $\mathfrak{b g}$ by taking block graded versions of the double shuffle equations. However, neither shuffle nor stuffle are compatible with the block filtration, limiting their use. With the shuffle equations, the strongest statement we can obtain is

Block Graded Double Shuffle

One might hope to cut out $\mathfrak{b g}$ by taking block graded versions of the double shuffle equations. However, neither shuffle nor stuffle are compatible with the block filtration, limiting their use. With the shuffle equations, the strongest statement we can obtain is

Theorem (Block Graded Shuffle, K.)
Considering $\mathfrak{b g} \subset \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$, and denoting by $\pi_{1}: \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \rightarrow \mathbb{Q} e_{0} \oplus \mathbb{Q} e_{1}$ the natural projection map, we have that $\left(\pi_{1} \otimes i d\right) \circ \Delta(\mathfrak{b g})=0$

Block Graded Double Shuffle

Block Graded Double Shuffle

The stuffle equation is more amenable to block grading

Block Graded Double Shuffle

The stuffle equation is more amenable to block grading

Theorem (Block Graded Stuffle, K.)

Let $\left(m_{1}, \ldots, m_{k}\right),\left(n_{1}, \ldots, n_{l}\right)$ be two sequences of integers, with $m_{i}, n_{i}>1$ and $k \leq l$. Define $m_{k+1}=\ldots=m_{l}=0$. Then

$$
\sum_{\sigma \in S h_{k, l-k}} \zeta_{b l}\left(m_{\sigma(1)}+n_{1}, \ldots, m_{\sigma(I)}+n_{l}=0\right.
$$

considered modulo products and terms of lower degree.

Block Graded Double Shuffle

The stuffle equation is more amenable to block grading

Theorem (Block Graded Stuffle, K.)

Let $\left(m_{1}, \ldots, m_{k}\right),\left(n_{1}, \ldots, n_{l}\right)$ be two sequences of integers, with $m_{i}, n_{i}>1$ and $k \leq l$. Define $m_{k+1}=\ldots=m_{l}=0$. Then

$$
\sum_{\sigma \in S h_{k, l-k}} \zeta_{b l}\left(m_{\sigma(1)}+n_{1}, \ldots, m_{\sigma(I)}+n_{l}=0\right.
$$

considered modulo products and terms of lower degree.

This can be extended to all multiple zeta values

Further Work

Further Work

A current objective of the work is to compute the dimension of the space described by cyclic insertion, block shuffle and block graded double shuffle. However, this is proving computationally challenging. It seems that, in low weight, these are sufficient to completely describe the algebra. Will this trend continue?

Further Work

A current objective of the work is to compute the dimension of the space described by cyclic insertion, block shuffle and block graded double shuffle. However, this is proving computationally challenging. It seems that, in low weight, these are sufficient to completely describe the algebra. Will this trend continue? What other 'new' relations hold? Do any of them lift to true relations? Can we use this to study depth-graded relations?

Further Work

A current objective of the work is to compute the dimension of the space described by cyclic insertion, block shuffle and block graded double shuffle. However, this is proving computationally challenging. It seems that, in low weight, these are sufficient to completely describe the algebra. Will this trend continue? What other 'new' relations hold? Do any of them lift to true relations? Can we use this to study depth-graded relations?

Thank you! Questions?

