
A Discussion of the Kadison-Singer Conjecture

Adam Keilthy

School of Mathematics, Trinity College Dublin
MA4991 Project

Supervised by Professor Richard Timoney

Abstract

The Kadison-Singer problem is a major result in operator theory, recently proven
by Marcus, Spielman and Srivastava. Since its formulation in 1959, it has generated
a significant amount of interest, and much work has been done on it. It has been
tied to problems in frame theory, harmonic analysis, quantum mechanics and has
dozens of equivalent formulations. In this project, we shall discuss briefly the history
of the problem, before discussing the problem itself, five equivalent formulations and
sketching the proof. We then mention some of its implications and some remaining
related open problems.
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1 Introduction

The 1959 Kadison-Singer problem was a major open problem in operator theory un-
til quite recently, when in 2013 a solution was provided by Adam Marcus, Daniel A.
Spielman and Nikhil Srivastava. Between the original formulation of the problem and
its solution, many equivalent problems were formulated, in many fields of mathematics,
including operator theory, discrepancy theory and algebraic geometry. In the following
discussion, we shall introduce several of these equivalent formulations and briefly discuss
the solution.

Let us begin by stating the original statement of the Kadison-Singer problem:

Problem 1.1. Let A be a separable Hilbert space. Does every pure state on a M.A.S.A
of the algebra of bounded linear operators B(A) have a unique extension to a pure state
on B(A)

To those familiar with quantum mechanics, this idea of extensions of states should be
familiar. The problem is believed to have come from a issue which Paul Dirac addressed
in his book [20]. He wanted to find a ”representation”, or an orthonormal basis for
observable quantities:

To introduce a representation in practice

1. We look for observables which we would like
to have diagonal, either because we are inter-
ested in their probabilities or for reasons of
mathematical simplicity;

2. We must see that they all commute - a neces-
sary condition since diagonal matrices always
commute;

3. We then see that they form a complete com-
muting set, and if not we add some more com-
muting observables to them to make them into
a complete commuting set;

4. We set up an orthogonal representation with
this complete commuting set diagonal.

The representation is the completely determined
except for the arbitrary phase factors.

Unfortunately, Dirac was mistaken in this final statement, and this is the Kadison-
Singer problem: we can consider quantum observables as commuting elements of B(A)
and these representations as pure states. In their 1959 paper [26], Kadison and Singer
showed that for certain continuous MASAs, including some arising in quantum field the-
ory, the extension is not unique. While they were careful not to state it as a conjecture,
they also stated that they felt it unlikely that it held in all discrete MASAs. Fortunately
for Dirac, the solution of Marcus, Spielman and Srivastava gave a positive result in the
case of discrete algebras [28].
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2 Background

We will now develop the background needed for the standard statement of the Kadison-
Singer problem. For the majority of this section, no specific reference will be mentioned,
as any textbook on C∗-algebras will suffice. In particular, the author found [29] and
[35] useful introductions. For the purposes of this discussion, we choose C as the ground
field.

2.1 Banach Spaces and Algebras of Operators

Definition 2.1. A Banach space is a vector space equipped with a norm for which
that space is complete with respect to the norm-induced metric.

Definition 2.2. A Hilbert space is a vector space equipped with an inner product,
such that the space is a Banach space with the norm ‖v‖ =

√
< v, v >.

Definition 2.3. A linear operator A : H → H on a Hilbert space H is called bounded
if there exists a λ > 0 such that ‖Ax‖ ≤ λ‖x‖ for all x ∈ H. We denote the space of
linear operators on H by B(H).
We can define a topology on B(H), called the weak-* topology , which is the weakest
topology such that all elements of a space called the predual are continuous. As it is not
necessary for our purposes, we shall not elaborate on this.

Definition 2.4. A Banach algebra is a Banach space B equipped with a bilinear map
B × B → B, (x, y) 7→ xy such that ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ B. We call a Banach
algebra unital if there exists I ∈ B such that ‖I‖ = 1 and xI = Ix = x for all x ∈ B.

Definition 2.5. A state on a unital Banach algebra B is a non-zero linear map f : B →
C such that ‖f‖ = f(I) = 1.

We are particularly concerned with states on a special class of algebras, called C∗-
algebras.

Definition 2.6. A C∗-algebra is a complex associative Banach algebra A with a map
∗ : A → A satisfying the following:

1. x∗∗ = (x∗)∗ = x∀x ∈ A

2. (x+ y)∗ = x∗ + y∗∀x, y ∈ A

3. (xy)∗ = y∗x∗∀x, y ∈ A

4. (λx)∗ = λ̄x∗∀λ ∈ C, x ∈ A

5. ‖x∗x‖ = ‖x‖‖x∗‖

We call an element A ∈ A self-adjoint if A = A∗.
We call A unital if there exists I ∈ A such that AI = IA = A∀A ∈ A.
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It can be shown that, for any Hilbert space A, that B(A) is a C∗ algebra.

Definition 2.7. A linear functional on a Banach space B is a map f : B → C, such
that

f(αA+ βB) = αf(A) + βf(B)∀α, β ∈ C, A,B ∈ B.

We can define a unique class of linear functionals on C∗-algebras, generalizing positive
definite transformations of finite dimensional vector spaces.

Definition 2.8. If A is a C∗-algebra, and element A ∈ A is called positive if A = B∗B
for some B ∈ A. Note that if A is positive, A is self-adjoint.

In the case of n× n complex matrices, this is equivalent to A is Hermitian and posi-
tive semidefinite.

Positivity induces a partial order on A defined by

A � B ⇔ A−B is positive.

Definition 2.9. We call a linear functional f : A → C positive if f(A) ∈ {x ∈ R : x ≥
0} for all positive A.

Lemma 2.10. If f : A → C is a positive linear functional, f preserves the order of A,
i.e A � B ⇒ f(A) ≥ f(B).

Proof.

A � B ⇒ A−B positive

⇒ f(A−B) ≥ 0

⇒ f(A)− f(B) ≥ 0

⇒ f(A) ≥ f(B)

Example 2.11. If we consider Mn = {(aij)ni,j=1 : aij ∈ C} is the space of complex n×n
matrices, then f : Mn → C is positive if and only if there exists a positive semidefinite
matrix B such that f(A) = tr(AB) ∀ A ∈Mn.

We use positivity to refine the definition of states and pure states in the case of
C∗-algebras, the objects of interest in the Kadison-Singer problem.

Proposition 2.12. If A is a unital C∗-algebra, then linear functional f is a state if and
only if f is positive and f(I) = 1.

Definition 2.13. A pure state is a state which cannot be written as a non trivial
convex combination of two different states.

We can now begin to understand the statement of the problem.

6



2.2 Kadison-Singer in Finite Dimensions

Before diving into the remaining definitions required, we shall briefly illustrate the prob-
lem in a finite dimensional case. While mathematically uninteresting, it serves as an
illuminating exercise nevertheless.

In two dimensions, the Kadison-Singer problem can be stated as:

“Does every pure state on the space of bounded diagonal
operators on C2 have a unique extension to the space of
bounded operators?”

Here, “bounded operators” is simply the space of 2 × 2 matrices over the complex
numbers, M2×2. A state is a linear map f : M2×2 → C such that:

• f(I) = 1

• f(M) ∈ {x ∈ R, x ≥ 0} whenever M is positive semidefinite.

The space of diagonal operators is

D2 =

{(
a 0
0 d

)
, a, d ∈ C

}
A state on this space can be described by f(M) = f(a, b) = αa+ δd where α, δ must

satisfy:

• δ = 1− α

• α ∈ [0, 1]

In order for a state to be pure, we must have that it is not a non trivial convex
combination of two different states, so we find that the only pure states on D2 are
f(a, d) = a and f(a, d) = d.

The question now is, can we extend these uniquely to a pure state on C2×2.

M2 =

{(
a b
c d

)
, a, b, c, d ∈ C

}
A state on this space is a map g : C2×2 → C with g(M) = g(a, b, c, d) = αa + βb +

γc+ δd, α, β, γ, δ ∈ C. It must also satisfy:

• g(I) = 1.

• g(M) is real and non-negative whenever M is Hermitian, positive semidefinite.

We call g an extension of f if g(a, 0, 0, d) = f(a, d) for all M ∈ D2. There is an
obvious extension in which we simply define g(a, b, c, d) := f(a, d).
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For a state which is not pure, such as f(a, d) = a+b
2 , this extension is not unique, as

both

g(a, b, c, d) =
a+ b+ c+ d

2

g(a, b, c, d) =
a+ d

2

are extensions of f to states on C2×2.
However, for a pure state, the extension will be unique. Consider the pure state on

D2 given by f(a, d) = d. If g(a, b, c, d) = αa+βb+ γc+ δd is an extension of f , we must
have

α = 0

β = γ̄

δ = 1

in order to satisfy g(a, 0, 0, d) = f(a, d) and g(M) ∈ R . In order that g be positive, we

require that the matrix
(
α β
γ δ

)
be positive semidefinite. Thus

αδ − βγ ≥ 0⇔ −γγ̄ ≥ 0

⇔ γ = 0

Thus the only extension of f(a, d) = d to C2×2 is g(a, b, c, d) = d. We conclude
similarly that f(a, d) = a has a unique extension. Thus, over C2×2, the Kadison-Singer
problem is true.

2.3 `∞ and Ultrafilters

In this section we briefly introduce several concepts, that, while not critical to the
statement of the Kadison-Singer Problem in its standard presentation, prove useful in
understanding many of the equivalent formulations. For sake of brevity, we shall omit
any proofs that do not enlighten some other aspect of the theory. For more detail on
the space `2, we recommend [19], or any introductory functional analysis text. For more
information regarding ultrafilters, we recommend that the reader try [24].

Definition 2.14.

`2 :=

{
{an}∞n=1 : an ∈ C ∀n,

∞∑
n=1

|an|2 <∞

}
Lemma 2.15. `2 is a Hilbert space with norm induced by the bilinear form

〈{an}, {bn}〉 :=

∞∑
n=1

|anbn|

and basis {ei}∞i=1 where

(ei) = {δij}∞j=1
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Definition 2.16. A diagonal operator on `2 is a linear map D : `2 → `2 for which
there exists c1, c2, . . . ∈ C with D(a1, a2, . . .) = (c1a1, c2a2, . . .) for every (a1, a2, . . .) ∈ `2.

We denote by D2 the space of bounded diagonal operators on `2.

Proposition 2.17. D2 and `∞ are isometrically isomorphic.

Definition 2.18. A projection in D2 is an operator PA ∈ D2, A ⊂ N such that

〈PA(ei), ei〉 =

{
0 i ∈ A
1 i /∈ A

We now define a MASA, and a discrete MASA, of which D2 is an example.

Definition 2.19. A maximal Abelian self-adjoint subalgebra , or MASA, of a
C∗-algebra A, is a subalgebra B ⊂ A that is Abelian, closed under the ∗ operator and
is not contained in any larger Abelain self-adjoint subalgebra.

Definition 2.20. For a Hilbert space H, an element P ∈ B(H) is called minimal
projection if P = P ∗ = P 2 and dimP (H) = 1. A MASA B ⊂ B(H) is called discrete
if it is the weak-* closure of the minimal projections it contains.

Example 2.21. D2 is discrete, by definition, and will be our main example of a discrete
MASA.
The space {Mf : f ∈ L∞[0, 1]} ⊂ B(L2[0, 1] is not, where

L2[0, 1] := {f : [0, 1]→ C : f measurable,

∫ 1

0
|f |2 <∞}

L∞[0, 1] := {f : [0, 1]→ C : |f | is measurable and bounded}

and Mf (g) = fg. To be more precise, Lp[0, 1] is the space of equivalence classes of such
functions, where f ≡ g if f = g almost everywhere.

Proposition 2.22 ([35] Ex. 5.15). All discrete MASAs in B(`2) are unitarily equivalent
to D2.

Definition 2.23. Let X be a non empty set. A filter on X is a collection F ⊂ 2X with
the following properties:

• X ∈ F .

• Ø /∈ F .

• If A ∈ F and B ∈ F then A ∩B ∈ F .

• If A ∈ F and A ⊂ B, then B ∈ F .

We call a filter F an ultrafilter if in addition:

• For every A ⊂ X, exactly one of A or X \A is in F .
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Example 2.24. Choose x ∈ X and define Ux := {A ⊂ X : x ∈ A}. This clearly satisfies
the definition of an ultrafilter. Such ultrafilters are called principal ultrafilters.

If X is finite, then every ultrafilter is principal. Indeed, even for infinite X, if U is an
ultrafilter containing a finite set, U is a principal ultrafilter. However, if we assume the
axiom of choice, we can construct non-principal, or free ultrafilters for infinite X. As we
will see in Theorem 2.32, this gives rise to ’non-principal’ pure states, which makes the
Kadison-Singer Problem significantly more difficult than the case presented in Section
2.2.

Lemma 2.25. A filter F ⊂ 2X is an ultrafilter if and only if it is a maximal filter with
respect to inclusion of collections of sets.

The proof of this statement follows easily by assuming the contrary and applying the
definition of an ultrafilter.

Lemma 2.26. Let U ⊂ 2X be an ultrafilter and suppose A = ∪ki=1Ai ∈ U . Then Ai ∈ U
for some i.

Proof. As the case where k = 1 is obvious, we shall consider k ≥ 2. If Ak ∈ U we
are done. Otherwise X \ Ak = ∪k−1i=1Ai ∈ U . Thus A \ Ak = A ∩ (X \ Ak) ∈ U . But
A\Ak ⊂ ∪k−1i=1Ai, so ∪k−1i=1Ai ∈ U . By induction, U contains some set Ai, 1 ≤ i ≤ k−1.

The collection of all ultrafilters of N is denoted β(N). This can in fact be identified
with the Stone-Čech compactification of N [32], [18]. As we will soon see β(N) can be
identified with the space of pure states on D2.

Definition 2.27. Define β(N) := {U : U is an ultrafilter on N} and let

Â := {U ∈ β(N) : A ∈ U} ∀A ⊂ N

A := {Â : A ⊂ N}

Lemma 2.28. A forms a base for a topology on β(N).

Proof. Clearly ∪Â∈AÂ = β(N). We also have

U ∈ Â ∩ B̂ ⇔ A,B ∈ U ⇔ A ∩B ∈ U ⇔ U ∈ Â ∩B

Thus the set of all unions of the members of A defines a topology.

Similarly, one can show that A is closed under complements, and thus every set Â is
both closed and open.

Proposition 2.29. β(N) is compact, Hausdorff, and the principal ultrafilters are dense
in β(N).
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As a corollary of this, we can conclude that C(β(N)), the space of continuous func-
tions on β(N), is a C∗-algebra with conjugation as the ∗ operator.

Furthermore, one can show that D2 and C(β(N)) are isometrically isomorphic, ex-
tending f ∈ D2 uniquely to f ∈ C(β(N)) by f(U) = U-limfn, where we define U-lim as
follows.
Given a bounded sequence (a1, a2, . . .), ai ∈ C, this sequence may not have a limit in the
normal sense. However, given an ultrafilter U , we can define another limit point, that is
unique if it exists.

Definition 2.30. Given a bounded sequence (a1, a2, . . .), and an ultrafilter U ∈ β(N),
we say a point x ∈ C is a U-limit of a if, for every neighbourhood S of x, we have
{i : ai ∈ S} ∈ U . We say

x = U-lim(ai).

It follows quite easily from definition that:

• U-lim(ai + bi) = U-lim(ai) + U-lim(bi)

• U-lim(λai) = λU-lim(ai)

Thus D2 is a C∗-algebra. This isometry implies a stronger connection between D2

and β(N), which manifests as follows.

Definition 2.31. For any ultrafilter U ∈ β(N), we define the linear functional fU : D2 →
C by

fU (D) := U-lim(diagD)

where diagD = (〈De1, e1〉, 〈De2, e2〉, . . .).

Theorem 2.32. The pure states on D2 are exactly the functions {fU : U ∈ β(N)}.

Proof. See the introduction of [33]. We shall sketch a proof here for the interested
reader. D2 ' C(β(N)) and so the dual space, by the Riesz-Markov-Kakutani theorem
theorem[22, IV.6.3], can be identified with the space of Borel measures on β(N). States
then correspond to regular Borel probability measures of β(N), [31, Chp. 2]. Pure states
correspond to extreme points, which are precisely the point mass measures and are in
one to one correspondence with ultrafilters of N.

Using this result, we could have quickly found all pure states on{(
a 0
0 d

)
, a, d ∈ C

}
by noting that the only ultrafilters on {1, 2} are the principal ultrafilters

U1 = {{1}, {1, 2}}
U2 = {{2}, {1, 2}}

which give rise to the pure states f1(a, d) = a and f2(a, d) = d.
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2.4 Statement of the Kadison-Singer Problem

Theorem 2.33. Let A be a discrete MASA of B(H), the algebra of bounded
linear operators on a separable Hilbert space. Let ρ : A → C be a pure state on
that subalgebra. Then there exists a pure state extension ρ′ : B(H)→ C of ρ that
is unique.

For purposes of this discussion, we shall take H = `2 and A to be the space of
bounded diagonal operators; the ideas presented below transfer to the more general
case, but notation and theory are less dense.

We can easily show the existence of a pure state extension, as in [25, Theorem 4.3.13],
or [35].

Theorem 2.34 (Krein-Milman). If S is convex and compact in a locally convex space,
then S is the closed convex hull of its extreme points. In particular, S has extreme points.

Proposition 2.35. Let ρ : D2 → C be a pure state on the space of bounded diagonal
operators. Then there exists a pure state extension ρ′ : B(`2)→ C of ρ.

Proof. We first define, for any H ∈ B(`2), the diagonal of H to be D(H) where

〈D(H)ei, ej〉 =

{
〈Hei, ej〉 i = j

0 i 6= j

Then, for a pure state f on D2, define g : B(`2)→ C by g(H) := f(D(H))
g is clearly linear and g(I) = f(D(I) =)f(I) = 1. Now suppose H ∈ `2 is positive.

Then 〈Hei, ei〉 ∈ {x ∈ R : x ≥ 0} for all i and so D(H) is clearly positive. Thus
g(H) = f(D(H)) ∈ {x ∈ R : x ≥ 0}. Thus g is a state extension.

Then note that the set of extensions of f to a state of B(`2) is weak*-compact and
convex. Thus, if we start this a pure state f , by the Krein-Milman theorem, the set of
extensions has an extreme point. By convexity of the set, and the definition of extreme
points, this extreme point is a pure state of B(H).

However, proof of its uniqueness is quite challenging, as so we shall instead discuss
the proof of an equivalent statement.
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3 Equivalent Formulations

3.1 Anderson’s Paving Conjecture

Theorem 3.1. For every ε > 0, there exists r ∈ N such that, for every self adjoint
H ∈ B(`2) with D(H) = 0, there exists a partition {A1, A2, . . . , Ar} of N such that
‖PAiHPAi‖ ≤ ε‖H‖ for all 1 ≤ i ≤ r.

This is one of the first and most commonly discussed equivalent formulation, called
Anderson’s Infinite Dimensional Paving Conjecture, introduced in [3][2][4]. It can in
fact, be simplified further to a finite dimensional case. The above statement can be
shown to be equivalent to the following.

Claim 3.2. For every ε > 0, there exists r ∈ N such that, for every self adjoint H ∈
B(`2

n) with D(H) = 0, there exists a partition {A1, A2, . . . , Ar} of {1, 2, . . . , n} such
that ‖PAiHPAi‖ ≤ ε‖H‖ for all 1 ≤ i ≤ r. Here `2

n is Cn with the `2 norm.

For proof of this, we recommend [33] or [10]. We will only discuss the equivalence of
the Kadison-Singer Problem and Anderson’s Infinite-Dimensional Paving Conjecture.

We state the following without proof.

Lemma 3.3. Let U ∈ β(N) and let fU : D2 → C be the corresponding pure state. Then
the following are equivalent

1. fU has a unique extension to a state on B(`2).

2. For every self-adjoint H ∈ B(`2) with D(H) = 0 and every ε > 0, there exists
A ∈ U with −εPA � PAHPA � εPA.

Theorem 3.4. The following are equivalent:

1. Anderson’s Infinite Dimensional Paving Conjecture holds

2. For every ε > 0 and every self-adjoint H ∈ B(`2) with D(H) = 0, there exists
r ∈ N and a partition A1, . . . , Ar or N such that −εPAj � PAjHPAj � εPAj for
every 1 ≤ j ≤ r.

3. The Kadison-Singer Problem holds.

Proof. We now show that (1) and (3) are both equivalent to (2).

(1)⇒ (2) It is straight forward to show that ‖PAHPA‖ ≤ ε‖H‖ implies −εPA � PAHPA �
εPA for any A ⊂ N.

(2)⇒ (1) Suppose (2) holds, but (3) does not. Then there exists and ε > 0 such that, for
every r ∈ N, there exists a self-adjoint Hr ∈ B(`2) with D(Hr) = 0, but no partition
A1, . . . , Ar of N satisfies ‖PAiHrPAi‖ ≤ ε‖Hr‖ for all 1 ≤ i ≤ r. This implies, that
no partition exists so that −εPAi � PAiHrPAi � εPAi for every 1 ≤ i ≤ r.
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Without loss of generality, we may assume ‖Hr‖ = 1. Define H =
⊕∞

i=1Hi. As
the countable product of countable sets is countable, H is an operator on `2. We
have that H is self-adjoint, D(H) = 0 and that ‖H‖ = 1, so H ∈ B(`2). Then,
by (2), there exists r ∈ N and a partition A1, . . . , Ar of N such that −εPAi �
PAiHPAi � εPAi for every 1 ≤ i ≤ r. Restricting to the rth part of the direct sum,
we get −εPAi � PAiHrPAi � εPAi for every 1 ≤ i ≤ r, a contradiction.

(2)⇒ (3) Choose an ultrafilter U ∈ β(N), a self-adjoint H ∈ B(`2) with D(H) = 0, and
an ε > 0. By (2), there exists a partition A1, . . . , Ar of N such that −εPAi �
PAiHPAi � εPAi for every 1 ≤ i ≤ r. By Lemma 2.26, some Ai ∈ U . Since this
is true for all such H and ε, Lemma 3.3 implies fU extends uniquely to B(`2). As
all pure states are of the form fU for some U ∈ β(N), by Theorem 2.32, and U was
arbitrary, this implies (3).

(3)⇒ (2) Choose a self-adjoint H ∈ B(`2) with D(H) = 0 and choose ε > 0. Since (3)
holds, Lemma 3.3 tells us that, for every U ∈ β(N), there exists AU ∈ U with
−εPAU � PAUHPAU � εPAU .

Then {ÂU : U ∈ β(N)} is an open cover of β(N). As β(N) is compact, by Theorem
2.29, there is a finite subcover {Â1, Â2, . . . , Âk} such that −εPAi � PAiHPAi �
εPAi for all 1 ≤ i ≤ r. Then note that A1 ∪ · · · ∪Ak = N, if Â1 ∪ · · · ∪ Âk = β(N).
While this may not form a partition of N, the partition of N obtained by all possible
intersections of A1, . . . , Ak will give the desired result with r ≤ 2k.

From this, and the reduction to Anderson’s Finite Dimensional Paving Conjecture,
we can establish many further equivalent formulations. See [30], [10] and [1] for further
details

Theorem 3.5. The following are equivalent:

1. The Kadison-Singer Problem holds.

2. ∀ε > 0, ∃r ∈ N, ∀n ∈ N and for every self-adjoint matrix A ∈ Cn×n with D(A) = 0,
there exists a partition A1, . . . , Ar of {1, 2, . . . , n} such that ‖PAiAPAi‖ ≤ ε‖A‖ for
all 1 ≤ i ≤ r.

3. ∀ε > 0, ∃r ∈ N, ∀n ∈ N and for every matrix A ∈ Cn×n with D(A) = 0, there
exists a partition A1, . . . , Ar of {1, 2, . . . , n} such that ‖PAiAPAi‖ ≤ ε‖A‖ for all
1 ≤ i ≤ r.

4. ∀ε > 0, ∃r ∈ N, ∀n ∈ N and for every matrix R ∈ Cn×n with R = R∗ =
R−1 and D(R) = 0, there exists a partition A1, . . . , Ar of {1, 2, . . . , n} such that
‖PAiRPAi‖ ≤ ε‖A‖ for all 1 ≤ i ≤ r.

5. ∀ε > 0, ∃r ∈ N, ∀n ∈ N and for every matrix Q ∈ Cn×n with Q = Q∗ =
Q2 and D(Q) = 1

2I, there exists a partition A1, . . . , Ar of {1, 2, . . . , n} such that
‖PAiQPAi‖ ≤ ε‖A‖ for all 1 ≤ i ≤ r.
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3.2 The Feichtinger Conjecture

Theorem 3.6. Every bounded frame is a finite union of Riesz basic sequences.

Definition 3.7. A family of vectors {vi}i∈I in a Hilbert space H is a Riesz basic
sequence if there exist A,B > 0 such that, for all scalar sequences {ai}i∈I we have:

A
∑
i∈I
|ai|2 ≤ ‖

∑
i∈I

aivi‖2 ≤ B
∑
i∈I
|ai|2

We call
√
A,
√
B, lower and upper Riesz basis bounds for {vi}i∈I . IfA = B, we

call this a B-tight frame . If a Riesz basic sequence {vi}i∈I spans H, we call it a Riesz
basis for H.

Hilbert frames were introduced in [21] to analyse problems in non harmonic Fourier
series. We define a frame as follows.

Definition 3.8. A family {vi}i∈I of vectors in a Hilbert space H is called a frame if
there exist constants 0 < A ≤ B <∞, called the lower and upper frame bounds, so
that for all u ∈ H

A‖u‖2 ≤
∑
i∈I
|〈u, vi〉|2 ≤ B‖u‖2

If we can find such a B, but no such A exists, we call {vi}i∈I a Bessel sequence
with Bessel bound B.

In [12], it is shown that the Feichtinger Conjecture is equivalent to the following.

Claim 3.9. Every bounded Bessel sequence can be written as a finite union of Riesz
basic sequences. Equivalently, for every B > 0, there exists nB ∈ N and AB ≥ 0 so that
every Bessel sequence {vi}ni=1 with Bessel bound B and ‖vi‖ = 1 for all 1 ≤ i ≤ n can
be written as a union of nB Riesz basic sequences with lower Riesz basis bound AB.

Theorem 3.10. The following are equivalent:

1. The Kadison-Singer Problem holds.

2. For every B > 0, there exists nB ∈ N and AB ≥ 0 so that every Bessel sequence
{vi}ni=1 with Bessel bound B and ‖vi‖ = 1 for all 1 ≤ i ≤ n can be written as a
union of nB Riesz basic sequences with lower Riesz basis bound AB.

Proof. See [17][14], in which (2) is shown to be equivalent to the Paving Conjecture. As
the proof is highly involved, we will not provide the details here.
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3.3 The Rε Conjecture

Theorem 3.11. For every ε > 0, every unit norm Riesz basic sequence is a finite
union of ε-Riesz basic sequences.

Definition 3.12. Let {vi}i∈I be a Riesz basic sequence. If ε > 0 is such that

(1− ε)
∑
i∈I
|ai|2 ≤ ‖

∑
i∈I

aivi‖2 ≤ (1 + ε)
∑
i∈I
|ai|2

for any scalar sequence {ai}i∈I , we call {vi}i∈I a ε-Riesz basic sequence . If ‖vi‖ = 1
for all i ∈ I, we call it a unit norm Riesz basic sequence.

The Rε-Conjecture was first stated in [14], but it was shown in [11] that it was
equivalent to the Kadison-Singer Problem. We shall outline the proof here.

Theorem 3.13. The following are equivalent:

1. The Paving Conjecture holds.

2. If T : `2 → `2 is a bounded linear operator with ‖Tei‖ = 1 ∀i ∈ I, then for every
ε > 0, {Tei}i∈I is a finite union of ε-Riesz basic sequences.

3. The Rε-Conjecture holds.

Proof. We shall show (1)⇒ (2)⇒ (3)⇒ (1).

(1)⇒ (2) Choose ε > 0. Given T as in (2), define S = T ∗T . Since D(S) = I, the Paving
conjecture implies the existence of r ∈ N and a partition A1, . . . , Ar of I such that,
for every 1 ≤ i ≤ r

‖PAi(I− S)PAi‖ ≤ δ‖I− S‖

where δ = ε
‖S‖+1 . Then we can show, for all u =

∑
i∈I aiei, that

‖
∑
i∈Aj

aiTei‖2 = ‖TPAju‖2

= 〈TPAju, TPAju〉
= 〈T ∗TPAju, PAju〉
= 〈PAju, PAju〉 − 〈PAj (I− S)PAju, PAj 〉
≥ ‖PAju‖2 − δ‖I− S‖‖PAju‖2

≥ (1− ε)‖PAju‖2 = (1− ε)
∑
i∈Aj

|ai|2.

Similarly ‖
∑

i∈Aj
aiTei‖2 ≤ (1 + ε)

∑
i∈Aj
|ai|2.
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(2)⇒ (3) This is reasonably trivial.

(3)⇒ (1) Choose T ∈ B(`2) be such that ‖Tei‖ = 1 for all i ∈ I and let vi = Tei. It is know
that that the Paving Conjecture is true if it holds for Gram operators, [5], [6], [7],
[23]. So we shall show that the Paving Conjecture holds for the Gram operator of
T G. We define G by 〈Gei, ej〉 = 〈vj , vi〉 for all i, j ∈ I.

Fix 0 < δ < 1 and let ε > 0. Define gi =
√

1− δ2vi ⊕ δei ∈ `2 ⊕ `2. Then ‖gi‖ = 1
and for all scalars {ai}i∈I

δ
∑
i∈I
|ai|2 ≤ ‖

∑
i∈I

aigi‖2 = (1− δ2)‖
∑
i∈I

aiTei‖2 + δ2
∑
i∈I
|ai|2

≤ ((1− δ2)‖T‖2 + δ2))
∑
i∈I
|ai|2.

Thus {gi}i∈I is a unit norm Riesz basic sequence and 〈gi, gj〉 = (1− δ2)〈vi, vj〉, for
all i 6= j. Thus, by the Rε-Conjecture, there is a partition, {Ak}rk=1 so that, for all
1 ≤ k ≤ r and all f =

∑
i∈I aiei

(1− ε)
∑
i∈Ak

|a2i ≤ ‖
∑
i∈Ak

ajgi‖2 = 〈
∑
i∈Ak

ajgi〉

=
∑
i∈Ak

|ai|2‖gi‖2 +
∑

i 6=j∈Ak

aiāj〈gi, gj〉

=
∑
i∈Ak

|ai|2 + (1− δ2)
∑

i 6=j∈Ak

aiāj〈fi, fj〉

=
∑
i∈Ak

|ai|2 + (1− δ2)〈PAk
(G−D(G))PAk

f, f〉

≤ (1 + ε)
∑
i∈Ak

|ai|2.

This implies

−ε
∑
i∈Ak

|ai|2 ≤ (1− δ2)〈PAk
(G−D(G))PAk

f, f〉 ≤ ε
∑
i∈Ak

|ai|2.

That is to say
(1− δ2)‖PAk

(G−D(G))PAk
‖ ≤ ε

as PAk
(G−D(G))PAk

is self-adjoint.
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3.4 The Bourgain-Tzafriri Conjecture

Theorem 3.14. There are universal constants A > 0 so that for every B > 1
there exists rB ∈ N such that, whenever T : `2

n → `2
n is a linear operator with

‖Tei‖ = 1 for 1 ≤ i ≤ n, then there exists a partition A1, . . . ArB of {1, 2, . . . , n}
so that, for all j = 1, 2, . . . , n and all choices of scalars {aj}j∈S, we have

‖
∑
i∈Aj

aiTei‖2 ≥ A
∑
i∈Aj

|ai|2.

This conjecture arose from a theorem of Bourgain and Tzafriri in a paper from 1987
[8], called the restricted invertibility principle . It received a great deal of attention,
[9], [11], [14] leading to a proof in [14] that the Bourgain-Tzafriri Conjecture and the
Kadison-Singer Problem were equivalent.

Theorem 3.15 (Restricted Invertibility). There exist universal constants A, c > 0, so
that, whenever T : `2

n → `2
n is a a linear operator with ‖Tei‖ = 1 for 1 ≤ i ≤ n, then

there exists a subset S ⊂ {1, 2, . . . , n} of cardinality |S| ≥ cn
‖T‖2 so that, for all 1 ≤ j ≤ n

and all choice of scalars {aj}j∈S

‖
∑
j∈S

ajTej‖2 ≥ A
∑
j∈S
|aj |2,

The above conjecture was often called the strong form of the conjecture, as there
exists a weakening of it, in which the constant A is a function of ‖T‖. Significant effort
was made to show that the strong and weak forms of the conjecture were equivalent,
[5][14]. In [11], success was found, by showing that both forms were equivalent to the
following.

Conjecture 3.16. There exists a constant A > 0 and r ∈ N such that, for all n ∈ N, if
T : `2

n → `2
n has ‖Tei‖ = 1 for all 1 ≤ i ≤ n and ‖T‖ ≤ 2, then there exists a partition

A1, . . . , Ar of {1, 2, . . . , n} so that, for all 1 ≤ j ≤ r and all scalars {ai}i∈Aj we have

‖
∑
i∈Aj

aiTei‖2 ≥ A
∑
i∈Aj

|ai|2.

From this result, we can prove the following.

Theorem 3.17. The following are equivalent:

1. The Kadison-Singer Problem.

2. The strong Bourgain-Tzafriri Conjecture.

3. The weak Bourgain-Tzafriri Conjecture.

4. Conjecture 3.16.
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Proof. We shall show (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1).

(1)⇒ (2) The truth of the Kadison-Singer Problem implies the truth of the Rε Conjecture,
which immediately implies the strong Bourgain-Tzafriri Conjecture.

(2)⇒ (3) If there exists a universal constant A, then choosing A(‖T‖) = A gives the neces-
sary function for the weak conjecture.

(3)⇒ (4) If there exists a function A(‖T‖) > 0, we choose A = inf‖T‖{A(‖T‖)}, which will
be non-zero as [0, 2] is compact.

(4)⇒ (1) It here suffices to show (4) implies the following conjecture, due to a result by
Akemann and Anderson in [1], in which they show that this conjecture implies the
truth of the Kadison-Singer Problem.

Conjecture 3.18. There exist universal constants 0 < δ, ε < 1 and r ∈ N such
that, for all n ∈ N and all orthogonal projections P on `2

n with max1≤i≤n |pii| ≤ δ,
there is a partition A1, A2, . . . , Ar of {1, . . . , n} so that ‖PAjPPAj‖ ≤ 1− ε, for all
1 ≤ j ≤ r.

So let A, r satisfy Conjecture 3.16 and fix 0 < δ ≤ 3
4 . Let P be an orthogonal

projection as in Conjecture 3.18. Now, 〈Pei, ei〉 = ‖Pei‖2 ≤ δ, and so ‖(I −
P )ei‖2 ≥ 1− δ ≥ 1

4 . Now define T : `2
n → `2

n by

Tei =
(I− P )ei
‖(I− P )ei‖

/

For any scalars {ai}ni=1, we have

‖
n∑
i=1

aiTei‖2 = ‖
n∑
i=1

ai
‖(I− P )ei‖

(I− P )ei‖2

≤
n∑
i=1

∣∣∣∣ ai
‖(I− P )ei‖

∣∣∣∣2
≤ 4

n∑
i=1

|ai|2.

Then note ‖Tei‖ = 1 and ‖T‖ ≤ 2, and, thus, there is a partition A1, . . . , Ar of
{1, . . . , n} such that, for all 1 ≤ j ≤ r and all scalars {ai}i∈Aj , we have

‖
∑
i∈Aj

aiTei‖2 ≥ A
∑
i∈Aj

|ai|2.
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Hence

‖
∑
i∈Aj

ai(I− P )ei‖2 = ‖
∑
i∈Aj

ai‖(I− P )ei‖Tei‖2

≥ A
∑
i∈Aj

|ai|2‖(I− P )ei‖2

≥ A

4

∑
i∈Aj

|ai|2.

So for any scalars {ai}i∈Aj , we have

∑
i∈Aj

|ai|2 = ‖
∑
i∈Aj

aiPei‖2 + ‖
∑
i∈Aj

ai(I− P )ei‖2

≥ ‖
∑
i∈Aj

aiPei‖2 +
A

4

∑
i∈Aj

|ai|2.

Thus, for any u =
∑n

i=1 aiei, we have

‖PPAju‖2 = ‖
∑
i∈Aj

aiPei‖2 ≤ (1− A

4
)
∑
i∈Aj

|ai|2

and thus

‖PAjPPAj‖ = ‖PPAj‖2 ≤ 1− A

4
.

So Conjecture 3.18 holds.

Note that combining the proof of Theorem 3.13 and the above theorem implies
that the Kadison-Singer Problem is in fact equivalent to a weaker version of the Rε-
Conjecture. We do not require the upper inequality, nor that the lower constant be close
to one.
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3.5 Weaver’s KSr

Theorem 3.19. There exist universal constants N ≥ 2 and ε > 0 such that the
following holds. Let v1, v2, . . . , vn ∈ Ck satisfy ‖vi‖ ≤ 1 for all 1 ≤ i ≤ n and
suppose

n∑
i=1

|〈u, vi〉|2 ≤ N

for every unit vector u ∈ Ck. Then there exists a partition A1, A2, . . . Ar of
{1, 2, . . . , n} such that ∑

i∈Aj

|〈u, vi〉|2 ≤ N − ε

for every unit vector u ∈ Ck and all 1 ≤ j ≤ r.

Note that N and ε must be independent of both n and k. Weaver proves that KSr
implies the Kadison-Singer Problem much like our proof of Theorem 3.17, by showing
that KSr implies Conjecture 3.18. As the proof of the reverse implication is quite
involved, we will simply refer the reader to Weaver’s proof in [34].

Theorem 3.20. The following are equivalent:

1. KSr holds for some r ∈ N.

2. The Kadison-Singer Problem holds.

(1)⇒ (2). Suppose KSr holds for some r,N, ε. Let P be an orthogonal projection with
max1≤i≤n |pii| ≤ 1

N . If P has rank k, then its range is a subspace V ⊂ Cn of dimension

k. Define vi =
√
NPei ∈ V for 1 ≤ i ≤ n and note that

‖vi‖2 = N‖Pei‖2 = N〈Pei, ei〉 ≤ N ·
1

N
= 1

for all 1 ≤ i ≤ n. Note also that, for any unit vector u ∈ V ,we have

n∑
i=1

|〈u, vi〉2 =
n∑
i=1

|〈u,
√
NPei〉|2 = N

n∑
i=1

|〈u, ei〉|2 = N.

Thus KSr gives the existence of a partition A1, . . . , Ar of {1, . . . , n} such that∑
i∈Aj

|〈u, vi〉|2 ≤ N − ε

for every unit vector u ∈ V and every 1 ≤ j ≤ r. We then have, for any unit vector
u ∈ V that
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‖PAjPu‖2 =
n∑
i=1

|〈PAjPu, ei〉|2 =
n∑
i=1

|〈u, PPAjei〉|2

=
1

N

∑
i∈Aj

|〈u, vi〉|2 ≤ 1− ε

N

and thus ‖PAjPPAj‖ = ‖PAjP‖2 ≤ 1− ε
N , as required.

Weaver also provides many many modifications of the KSr conjecture that remain
equivalent to the Kadison-Singer Problem.

Theorem 3.21. KSr remains equivalent to the Kadison-Singer Problem under either
or both of the following modifications:

1. Require ε = 1.

2. Assume
∑n

i=1 |〈u, vi〉|2 = N for every unit vector u instead of
∑n

i=1 |〈u, vi〉|2 ≤ N .

Another equivalent formulation of KSr has that vi have unit length, but the freedom
of choice of ε is massively reduced. This conjecture is referred to as KS′r.

Conjecture 3.22. There exist universal constants N ≥ 4 and ε >
√
N such that the

following holds. Let v1, . . . , vn ∈ Ck satisfy ‖vi‖ = 1 and suppose

n∑
i=1

|〈u, vi〉|2 ≤ N

for every unit vector u ∈ Ck. Then there exists a partition A1, . . . , Ar of {1, . . . , n} such
that ∑

i∈Aj

|〈u, vi〉|2 ≤ N − ε

for every unit vector u ∈ Ck and all 1 ≤ j ≤ r.

Weaver also proved some partial results regarding KS2, which is the case proven by
Marcus, Spielman and Srivastava in 2014 [28]. KS2 can be restated as follows.

Theorem 3.23. There exist universal constants N ≥ 2 and ε > 0 such that the following
holds. Let v1, v2, . . . , vn ∈ Ck satisfy ‖vi‖ ≤ 1 for all 1 ≤ i ≤ n and suppose

n∑
i=1

|〈u, vi〉|2 ≤ N

for every unit vector u ∈ Ck. Then there some choice of signs such that

n∑
i=1

±|〈u, vi〉|2 ≤ N − ε

for every unit vector u ∈ Ck.
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4 Proving KSr

KS2 was shown in 2014 by Adam Marcus, Daniel Spielman and Nikhil Srivastava [28],
using techniques from linear algebra and random matrix theory. In particular, they intro-
duced new techniques involving the following, notoriously troublesome, representation
of the operator norm

‖A‖op = maxroot(pA)

where pA is the characteristic polynomial of A and maxroot(p) is the largest real root of
a non-zero polynomial p. Using these techniques to analyse certain families of random
matrices and interlacing families of their characteristic polynomials to prove the following
theorem.

Theorem 4.1. If ε > 0 and v1, v2, . . . , vn are independent random vectors in Ck with
finite support such that

n∑
i=1

Eviv∗i = I

and
E‖vi‖2 ≤ ε for all 1 ≤ i ≤ n

then

P

[∥∥∥∥∥
n∑
i=1

viv
∗
i

∥∥∥∥∥ ≤ (1 +
√
ε)2

]
> 0.

We use the following definitions.

Definition 4.2. Let X be a random variable taking values in X , with probability density
function fX and let S ⊂ X be a subset. We denote the probability of x taking a value
in S by

P [X ∈ S] :=

∫
S
fXdµ

where µ is the probability measure on X .

We define the mean , or first moment , similarly

EX :=

∫
S
XfXdµ.

Theorem 4.1 has the following generalization of KS2 as a corollary

Corollary 4.3. Let r ∈ N and let u1, . . . , un ∈ Ck be vectors such that

n∑
i=1

uiui∗ = I

23



and ‖ui‖2 ≤ δ for all 1 ≤ i ≤ n. Then there exists a partition A1, . . . , Ar of {1, . . . , n}
such that ∥∥∥∥∥∥

∑
i∈Aj

uiu
∗
i

∥∥∥∥∥∥ ≤ (
1√
r

+
√
δ)2

for 1 ≤ j ≤ r.

Proof. For each i ∈ {1, . . . , n} and j ∈ {1, . . . , r}, define wi,j ∈ Crk to be the direct sum
of r vectors from Ck, all of which are the zero vector expect the jth, which we take to
be ui.
Now let v1, v2, . . . , vn to be independent random vectors such that vi takes the values
{
√
rwi,j}rj=1 each with equal probability 1

r . These vectors then satisfy ‖vi‖2 = r‖ui‖2 ≤
rδ for each 1 ≤ i ≤ n. We also have

Evivi∗ =


uiu
∗
i 0 · · · 0

0 uiui∗ · · · 0
...

...
. . .

...
0 0 · · · uiu

∗
i


And so

n∑
i=1

Eviv∗i = I.

We can now apply Theorem 4.1 with ε = rδ to show that there exists a choice of
each vi such that

(1 +
√
rδ)2 ≥

∥∥∥∥∥
n∑
i=1

viv
∗
i

∥∥∥∥∥ =

∥∥∥∥∥∥
r∑
j=1

∑
i : vi=wi,j

(
√
rwi,j)(

√
rwi,j)

∗

∥∥∥∥∥∥ .
Letting Aj := {i : vi = wi,j} for each 1 ≤ j ≤ r, we get

∥∥∥∥∥∥
∑
i∈Aj

uiu
∗
i

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i∈Aj

wi,jw
∗
i,j

∥∥∥∥∥∥ ≤ 1

r

∥∥∥∥∥∥
r∑
j=1

∑
i : vi=wi,j

(
√
rwi,j)(

√
rwi,j)

∗

∥∥∥∥∥∥ ≤ (
1√
r

+
√
δ)2

for all 1 ≤ j ≤ r.

Then, choosing r = 2, δ = 1
18 , implies KS2 with N = 18 and ε = 2. Thus the

Kadison-Singer Problem, and its many equivalent formulations, are true.

24



5 Further Research and Applications

The proof of the Kadison-Singer Problem led to the resolution of many other conjectures,
some of which we mention here.

Theorem 5.1 (Casazza-Tremain [16]). Every unit norm 18-tight frame can be parti-
tioned into two subsets, each of which has frame bounds 2,16.

Theorem 5.2 (Sundberg Problem [15]). Every bounded Bessel sequence can be written
as the finite union of non-spanning sets.

We also have applications in harmonic and Fourier analysis. For example,a result
due to Lawton [27], for which we now introduce the necessary terminology.

Definition 5.3. A set S ⊂ N is called syndetic if, for some finite subset F ⊂ N we
have

∪n∈F (S − n) = N
where

S − n = {m ∈ N : m+ n ∈ S}.

Syndetic sets have bounded gaps. There is an integer p, called the gap length ,
such that {a, a+ 1, . . . , a+ p} ∩ S 6= Ø for every a ∈ N.

Theorem 5.4. The Fourier frame {e2πintχE}n∈Z for L2(E) can be partitioned into r
syndetic sets A1, . . . , Ar with gap length p ≤ r so that {e2πintχE}n∈Aj is an ε-Riesz
sequence for all 1 ≤ j ≤ r.

A few other new theorems arose from the proof of the Kadison-Singer problem. The
following ideas regarding large Hilbert spaces were introduced in [10], leading to a result
by Casazza and Tremain in [13].

Definition 5.5. A subspace H ⊂ `2 is can A-large if, for A > 0, it is closed and for
each i ∈ N, there is a vector vi ∈ H so that ‖vi‖ = 1 and |vi(i)| ≥ A, where v(i) is the
ith component of v.

Definition 5.6. A closed subspace H ⊂ `2 is r-decomposable if for some r ∈ N, there
exists a partition A1, . . . , Ar of N so that PAj (H) = {(a1, a2, . . .) ∈ `2 : ai = 0 if i /∈ Aj}
for all 1 ≤ j ≤ r.

Theorem 5.7. For every 0 < A < 1 and 0 < ε < 1, there exists r ∈ N such that every
A-large subspace of `2 is r-decomposable.

Another consequence of Marcus, Spielman and Srivastava’s proof of the Kadison-
Singer Problem is that, in every theorem we have discussed, there is a construction to
find the mentioned constants. For example, in Theorem 5.7, we have that

r =

(
6(A2 + 1)

εA2

)m
where m = 4 when working over R and m = 8 when working over C.
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5.1 Open Problems

A number of open problems remain, despite the work of Marcus, Spielman and Srivas-
tava. We take these primarily from the questions raised in [13].

Problem 5.8. Can N and ε in KSr be improved?

Problem 5.9. Can the values of r in the various results be improved?

Problem 5.10 ([16][17]). Can every unit norm 2-tight frame be partitioned into three
subsets, each of which are Riesz basic sequences, with Riesz bounds independent of the
dimension of the ambient space?

Problem 5.11. Is there an implementable algorithm for proving the Paving Conjecture?

Problem 5.12 ([10], [11]). Does the Paving Conjecture for Toeplitz operators hold?

Problem 5.13 ([10]). Does there exist ε > 0 so that, for large K, for all n and all equal
norm 1-tight frames {fi}Kni=1 for `2

n, there is a J ⊂ {1, 2, . . . ,Kn} so that both {fi}i∈J
and {fi}i∈Jc have lower frame bounds which are greater than ε?

Clearly, there remains a significant amount of work in the wake of the Kadison-Singer
Problem’s solution.
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