Toric Varieties of Brick Polytopes, Associahedra, and Operad Structures

1. Introduction

In a 2014 paper by Laura Escobar [2], she provides a lovely link between the theory of subword complexes, which were introduced by Knutson and Miller to study the combinatorics of Schubert polynomials, and varieties, which are objects of interest in algebraic geometry. She describes a construction of a subvariety of the Bott-Samelson variety associated to an element of a Coxeter group, which also defines a subword complex. She goes on to show that the dual polytope of the subword complex is the polytope associated to the variety constructed.
She then describes a particular choice of elements such that the polytope found is a realization of a polytope occurring frequently in combinatorics, the associahedron. The associahedron can be realized in many different ways; Escobar finds the realization due to Loday [4]. Our goal is to find and examine the properties of the varieties whose polytope is the realization of the associahedron due to Chapoton-Fomin-Zelevinsky [1].

3. Subword Complexes in Coxeter Groups

Definition. A Coxeter group is a group with generating set $S:=\left\{s_{i}: i \in I\right\}$, identity id, and a map $m: S \times S \rightarrow \mathbb{N}$ such that

1. $m\left(s_{i}, s_{i}\right)=2 \forall i \in I$
2. $\left(s_{i} s_{j}\right)^{m\left(s_{i}, s_{j}\right)}=\operatorname{id} \forall i, j \in I$

For our purposes, we shall only consider the symmetric group, which is clearly a Coxeter group. We now define a subword complex. A word in S is an ordered sequence $Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ of elements of $S, q_{i} \in S$. We call $J=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ a subword of Q if J can be obtained from Q by replacing some of the letters by the empty character -. We say a word Q contains $w \in W$ if the ordered product of generators in some subword of Q equals w. The subword complex of a word Q and and element w is the simplicial complex of subwords J of Q, such that the complement $Q \backslash J$ contains w. To every subword complex, we can associate a brick polytope, defined at the convex hull of a set of vectors determined by the faces of our complex. For example, if $Q=\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right)$ and $w=s_{1} s_{2} s_{1}$, then the simplicial complex $\Delta(Q, w)$, and its brick polytope are:

5. Realizing the Associahedron

Definition. The n-th Tamari lattice is a partially ordered set, denoted T_{n}, in which the elements consist of different ways of grouping a sequence of $n+1$ objects into pairs using brackets, with $A \leq B$ if B may be obtained only by rightward applications of the associative law $(x y) z=x(y z)$.

The associahedron K_{n} is an $(n-2)$-dimensional convex polytope whose 1 -skeleton, its vertex and edge set, is the Tamari lattice T_{n-1}. As this definition is fairly loose, we in fact have infinitely many polytopes we can call K_{n}, including an infinite family of lattice polytopes due to Hohlweg-Lange, called realizations of the associahedron. Two realizations with simple descriptions are those due to Loday and Chapoton-Fomin-Zelevinsky. For example, these realizations of K_{5} are

To be precise, the Loday associahedron K_{n+1} is defined as the convex hull of the vectors

$$
v_{T}=\left(a_{1} b_{1}, \ldots a_{n} b_{n}\right)
$$

where T ranges over all binary trees with $n+1$ leaves and, letting i be the vertex between the $(i-1)$-th and i-th, where a_{i} is the number of leaves in the left subtree of i and b_{i} is the number of leaves in the right subtree.
The Chapoton-Fomin-Zelevinsky associahedron, however, is defined as dual to a cluster complex, but has a simple description in terms of it's normal fan. The facet normals of the CFZ associahedron are

$$
\left\{e_{i}-e_{j}: 1 \leq i<j \leq n\right\} \cup\left\{e_{i+1}-e_{i}: 1 \leq i \leq n-1\right\}
$$

from which we can construct the polytope

7. Operads and Associahedra

Perhaps one of the more intrigueing aspects of Escobar's "Loday" varieties is the existence of an operad structure, as found by Dotsenko, Shadrin and Vallette [?]. A non-symmetric operad is a collection $\{P(n)\}_{n=1}^{\infty}$ of " n-ary operations", along with a collection binary operations called infinitesimal composition at slot i :

$$
\circ_{i}: P(m) \times P(n) \rightarrow P(m+n-1) i=1, \ldots, m
$$

satisfying certain compatibility axioms.
One might hope that we could obtain a similar structure of the space of CFZ varieties. While we obtain many similar properties, such as a stratification by planar trees and an operad structure on the space of 0-dimensional strata, no analoguous structure seems to exist.

References

2. What is a Toric Variety

The simplest definition of a variety over \mathbb{C}^{n} or $\mathbb{C P}^{p-1}$ is the set of common zeros of an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. More abstract varieties can be constructed by "glueing" together simple varieties in an appropriate fashion. We call a variety irreducible if cannot be written as a union of its subvarieties. A class of particular interest are toric varieties. These are irreducible varieties satisfying:

1. $\left(\mathbb{C}^{*}\right)^{n}$ is a Zariski open subset of X.
2. The action of $\left(\mathbb{C}^{*}\right)^{n}$ on itself extends to an action on X
where the Zariski topology given by $V \subset X$ is open if $X \backslash V$ is a subvariety of X. A method of constructing toric varieties uses convex polyhedral cones and fans of such cones. Quite a large class can be constructed in this way, called normal varietes, and it includes all those varieties of interest to us. For example, the variety $\mathbb{C P}^{2}$ arises from the fan

where heavy lines represent one dimensional cones, and shaded regions represent two dimensional cones. These fans can be viewed as normal fans of convex polytopes, allowing us to associate to every normal toric variety a polytope.

4. The Brick Manifold of Escobar

In [2], Escobar describes a very general construction of a toric variety. We shall briefly describe the case involving the symmetric group. We define the base flag to be

$\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \cdots \subset\left\langle e_{1}, \ldots, e_{n-1}\right\rangle \subset \mathbb{C}^{n}$

where e_{1}, \ldots, e_{n} is the standard basis og \mathbb{C}^{n}. Then, given a word $Q=\left(q_{1}, \ldots, q_{m}\right)$ in the generators $S=\left\{s_{i}=(i i+1): 1 \leq i \leq n-1\right\} \subset S_{n}$, we define the Bott-Samelson variety $B S^{Q}$ to be the space of all collections of flags flags $\left(F_{1}, \ldots F_{m}\right)$ such that F_{1} is the base flag, and F_{i} and F_{i+1} differ only at one vector space, of dimension k where $q_{i}=s_{k}$. We define the brick manifold $B(Q, n+1)$ to be the subvariety of $B S^{Q}$ such that F_{m} is the reverse flag

$$
\left\langle e_{n}\right\rangle \subset\left\langle e_{n-1}, e_{n}\right\rangle \subset \cdots \subset\left\langle e_{2}, \ldots, e_{n}\right\rangle \subset \mathbb{C}^{n}
$$

For example $B\left(s_{1} s_{2} s_{1} s_{2} s_{1}, 4\right)$ is the variety whose points consist of $\left\{V_{1}, V_{2}, V_{3}\right\}$ such that the following inclusion diagram holds:

One result regarding this construction is the following theorem:
Theorem. $B(Q, n+1)$ is the toric variety associated to the brick polytope of $\Delta\left(Q, w_{0}\right)$, where w_{0} is the longest permutation in S_{n}
As a consequence of this, the polytope of the above variety is the Loday associahedron and in general, for $Q=\left(s_{1}, s_{2}, \ldots s_{n-1}, s_{1}, \ldots, s_{n-1}, \ldots, s_{1}, s_{2}, s_{1}\right)$, we obtain the Loday associahedron.

6. Realizing Chapoton-Fomin-Zelevinsky

Building on the work of Escobar, we were able to determine a choice of Q such that the corresponding polytope is the Chapoton-Fomin-Zelevinsky associahedron, of type A_{n}. It is obtained by grouping odd-indexed and even-indexed generators in Q. For example, K_{5} is realized by $Q=$ $\left(s_{1}, s_{3}, s_{2}, s_{1}, s_{3}, s_{2}, s_{1}, s_{3}, s_{2}\right)$, with corresponding variety consisting of acceptable fillings of the diagram:

We call such varieties CFZ varieties. In this project, we prove that this result holds generally, using the theory of sorting networks as developed by Pilaud and Pocchiola

8. A Few Conjectures

We would still like to achieve a few things, such as realizing generalized associahedra as subword complexes, and investigating the properties of their associated toric varieties. We know this to be possible, based on the work of [5], but the details remain unclear. We would also like to see if we can define an operad structure on a space containing the CFZ varieties. Based on correspondence with Chapoton and Pilaud, we do not believe that the space of CFZ varieties form an operad, but we are optimistic that an operad containing the CFZ varieties, along with the Loday varieties as a suboperad, exists.

