
Text

1

ToricVarietiesofBrickPolytopes,
Associahedra,andOperadStructures

Adam Keilthy
Supervised by Vladimir Dotsenko

1. Introduction
In a 2014 paper by Laura Escobar [2], she provides a lovely link between the theory of subword
complexes, which were introduced by Knutson and Miller to study the combinatorics of Schubert poly-
nomials, and varieties, which are objects of interest in algebraic geometry. She describes a construction
of a subvariety of the Bott-Samelson variety associated to an element of a Coxeter group, which also
defines a subword complex. She goes on to show that the dual polytope of the subword complex is the
polytope associated to the variety constructed.
She then describes a particular choice of elements such that the polytope found is a realization of a
polytope occurring frequently in combinatorics, the associahedron. The associahedron can be realized
in many different ways; Escobar finds the realization due to Loday [4]. Our goal is to find and examine
the properties of the varieties whose polytope is the realization of the associahedron due to Chapoton-
Fomin-Zelevinsky [1].

3. Subword Complexes in Coxeter Groups
Definition. A Coxeter group is a group with generating set S := {si : i ∈ I}, identity id, and a map
m : S × S → N such that:

1. m(si, si) = 2 ∀i ∈ I.

2. (sisj)
m(si,sj) = id ∀i, j ∈ I.

For our purposes, we shall only consider the symmetric group, which is clearly a Coxeter group. We
now define a subword complex. A word in S is an ordered sequence Q = (q1, q2, . . . , qn) of elements
of S, qi ∈ S. We call J = (r1, r2, . . . , rn) a subword of Q if J can be obtained from Q by replacing
some of the letters by the empty character −. We say a word Q contains w ∈W if the ordered product
of generators in some subword of Q equals w. The subword complex of a word Q and and element w
is the simplicial complex of subwords J of Q, such that the complement Q \ J contains w. To every
subword complex, we can associate a brick polytope, defined at the convex hull of a set of vectors
determined by the faces of our complex. For example, if Q = (s1, s2, s1, s2, s1) and w = s1s2s1, then
the simplicial complex ∆(Q,w), and its brick polytope are:
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5. Realizing the Associahedron
Definition. The n-th Tamari lattice is a partially ordered set, denoted Tn, in which the elements
consist of different ways of grouping a sequence of n + 1 objects into pairs using brackets, with A ≤ B
if B may be obtained only by rightward applications of the associative law (xy)z = x(yz).

The associahedron Kn is an (n − 2)-dimensional convex polytope whose 1-skeleton, its vertex and
edge set, is the Tamari lattice Tn−1. As this definition is fairly loose, we in fact have infinitely many
polytopes we can call Kn, including an infinite family of lattice polytopes due to Hohlweg-Lange, called
realizations of the associahedron. Two realizations with simple descriptions are those due to Loday and
Chapoton-Fomin-Zelevinsky. For example, these realizations of K5 are

To be precise, the Loday associahedron Kn+1 is defined as the convex hull of the vectors

vT = (a1b1, . . . anbn)

where T ranges over all binary trees with n+1 leaves and, letting i be the vertex between the (i−1)-th
and i-th, where ai is the number of leaves in the left subtree of i and bi is the number of leaves in the
right subtree.
The Chapoton-Fomin-Zelevinsky associahedron, however, is defined as dual to a cluster complex, but
has a simple description in terms of it’s normal fan. The facet normals of the CFZ associahedron are

{ei − ej : 1 ≤ i < j ≤ n} ∪ {ei+1 − ei : 1 ≤ i ≤ n− 1}

from which we can construct the polytope.

7. Operads and Associahedra
Perhaps one of the more intrigueing aspects of Escobar’s “Loday” varieties is the existence of an operad
structure, as found by Dotsenko, Shadrin and Vallette [?]. A non-symmetric operad is a collec-
tion {P (n)}∞n=1 of “n-ary operations”, along with a collection binary operations called infinitesimal
composition at slot i:

◦i : P (m)× P (n)→ P (m + n− 1) i = 1, . . . ,m

satisfying certain compatibility axioms.
One might hope that we could obtain a similar structure of the space of CFZ varieties. While we obtain
many similar properties, such as a stratification by planar trees and an operad structure on the space
of 0-dimensional strata, no analoguous structure seems to exist.

2. What is a Toric Variety
The simplest definition of a variety over Cn or CPn−1 is the set of common zeros of an ideal in
C[x1, . . . , xn]. More abstract varieties can be constructed by “glueing” together simple varieties in an
appropriate fashion. We call a variety irreducible if cannot be written as a union of its subvarieties.
A class of particular interest are toric varieties. These are irreducible varieties satisfying:

1. (C∗)n is a Zariski open subset of X.

2. The action of (C∗)n on itself extends to an action on X.

where the Zariski topology given by V ⊂ X is open if X \ V is a subvariety of X. A method of
constructing toric varieties uses convex polyhedral cones and fans of such cones. Quite a large class
can be constructed in this way, called normal varietes, and it includes all those varieties of interest to
us. For example, the variety CP2 arises from the fan

where heavy lines represent one dimensional cones, and shaded regions represent two dimensional cones.
These fans can be viewed as normal fans of convex polytopes, allowing us to associate to every normal
toric variety a polytope.

4. The Brick Manifold of Escobar
In [2], Escobar describes a very general construction of a toric variety. We shall briefly describe the
case involving the symmetric group. We define the base flag to be

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en−1〉 ⊂ Cn

where e1, . . . , en is the standard basis og Cn. Then, given a word Q = (q1, . . . , qm) in the generators
S = {si = (i i + 1) : 1 ≤ i ≤ n − 1} ⊂ Sn, we define the Bott-Samelson variety BSQ to be the space
of all collections of flags flags (F1, . . . Fm) such that F1 is the base flag, and Fi and Fi+1 differ only at
one vector space, of dimension k where qi = sk. We define the brick manifold B(Q,n + 1) to be the
subvariety of BSQ such that Fm is the reverse flag

〈en〉 ⊂ 〈en−1, en〉 ⊂ · · · ⊂ 〈e2, . . . , en〉 ⊂ Cn

For example B(s1s2s1s2s1, 4) is the variety whose points consist of {V1, V2, V3} such that the following
inclusion diagram holds:

0

〈e1〉

〈e1, e2〉

C2

V1

V2

V3

〈e2, e3〉

〈e3〉

One result regarding this construction is the following theorem:

Theorem. B(Q,n + 1) is the toric variety associated to the brick polytope of ∆(Q,w0), where w0 is
the longest permutation in Sn.

As a consequence of this, the polytope of the above variety is the Loday associahedron and in general,
for Q = (s1, s2, . . . sn−1, s1, . . . , sn−1, . . . , s1, s2, s1), we obtain the Loday associahedron.

6. Realizing Chapoton-Fomin-Zelevinsky
Building on the work of Escobar, we were able to determine a choice of Q such that the cor-
responding polytope is the Chapoton-Fomin-Zelevinsky associahedron, of type An. It is obtained
by grouping odd-indexed and even-indexed generators in Q. For example, K5 is realized by Q =
(s1, s3, s2, s1, s3, s2, s1, s3, s2), with corresponding variety consisting of acceptable fillings of the dia-
gram:

{0}

〈e1〉 A1 A2 〈e4〉

〈e1, e2〉 B1 B2 〈e3, e4〉

〈e1, e2, e3〉C1 C2〈e2, e3, e4〉

C4

We call such varieties CFZ varieties. In this project, we prove that this result holds generally, using
the theory of sorting networks as developed by Pilaud and Pocchiola.

8. A Few Conjectures
We would still like to achieve a few things, such as realizing generalized associahedra as subword
complexes, and investigating the properties of their associated toric varieties. We know this to be
possible, based on the work of [5], but the details remain unclear. We would also like to see if we can
define an operad structure on a space containing the CFZ varieties. Based on correspondence with
Chapoton and Pilaud, we do not believe that the space of CFZ varieties form an operad, but we are
optimistic that an operad containing the CFZ varieties, along with the Loday varieties as a suboperad,
exists.
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