
Columnar packings of soft spheres in rotating fluids

J. Winkelmanna, D.B. Williamsa, A. Mughalb, D. Weairea and S. Hutzlera
aSchool of Physics, Trinity College Dublin, The University of Dublin, Ireland
b Department of Mathematics, Aberystwyth University, Aberystwyth, Wales

We present the simulation of ordered columnar packings of soft spheres based on enthalpy minimisation. Remarkable similari-

ties have been observed with particles in rotating fluids that self-assemble into such packings.

Self-assembly of spherical particles in rotating fluids (credits to T. Lee et al):
Experiment:

• Polymeric beads of mass m suspended in a fluid of
higher density

• Beads and fluid are then rotated with velocity ω inside
a lathe

Simulation:
• Computationally intensive molecular dynamics
simulation to reproduce experiment

• ”partially latching spring model” for bead interaction

• Centripetal force moves beads to the
center

• Rotational energy dependent on radial
position R

Erot =
1

2
mω2R2

• Self-assembled packings
remarkably similar to ordered
uniform structures

• Mixed structures were observed
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Different structures observed by Lee et al.
T. Lee, K. Gizynski, B.A. Grzybowski, Non-equilibrium Self-Assembly of Monocomponent and Multicomponent Tubular Structures in Rotating Fluids. Adv. Mater. 29, 1704274, (2017).

Simulation based on enthalpy minimisation
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Unit cell (blue) with image spheres (red).

• Enthalpy H :

H({~ri}, L) =
1

2

N∑
ij

εδ2ij︸ ︷︷ ︸
soft interaction

+
1

2

N∑
i

ερ2i︸ ︷︷ ︸
wall confinement

+ pV︸︷︷︸
pressure term

• Soft interaction depends on overlap δij
• Soft wall confinement depends on wall overlap ρi
• Pressure term pV = pπ

(
D
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)2
L

• Periodic boundaries at top and bottom of unit cell
The Algorithm: Energy minimisation
• Find energy minimum for given pressure p
• Basin-Hopping algorithm
– Global Monte-Carlo type algorithm
• Conjugate Gradient algorithm
– Local direct minimisation routine

What is a line-slip structure?

Example of a line-slip
packing.

Contact network of
the line slip.
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Rolled-out pattern of the contact network
of the line slip.

• Line slips differ from ordered uniform structures by a loss of contact
• they are intervening structures between uniform structures
• Uniform packings are generated by sliding the red and blue line along the arrows

Ordered uniform packings
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The simulation and observation of a (3,2, 1) line slip

see note in caption∗

2.00 2.05 2.10 2.15 2.20

diameter ratio D/d

0.000

0.005

0.010

0.015

0.020

p
re

ss
u

re
p

(3,2, 1)
line slip

(3, 3, 0)
uniform

(3, 2, 1)
uniform

(4, 2, 2)
uniform

(4, 3, 1)
uniform

(3,3, 0)
line slip

(3,2, 1)
line slip

(2,2, 0)
line slip

Computed phase diagram around the (3,2, 1) line slip.
(*) (3, 2, 1) line slip (expected by hard sphere limit) not
visible because of finite pressure.
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Exp. observation of a
(3,2, 1) in wet foams.

Simulation and contact network of a
(3,2, 1) line slip.
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• Red circle represents position of exp.
observation of the (3,2, 1) line slip

• p = 0 corresponds to hard sphere limit [7]
• Continuous transitions:
– dashed lines in phase diagram
– discontinuity in 2nd derivative of enthalpy

• discontinuous transitions:
– solid lines in phase diagram
– discontinuity in derivative of enthalpy

J. Winkelmann, B. Haffner, D. Weaire, A. Mughal and S. Hutzler, Simulation and observation of line-slip structures in columnar
structures of soft spheres. Phys Rev E 96, 012610, (2017).

Stability maps for a reversible transition

• Packings can be stable outside of
regions given in phase diagram

• Experiments show different
transition sequence from phase
diagram due to local equilibrium

• Stability regions depend on history of
structure ⇒ Hysteresis

• Hysteresis appears at the apex of the
line slip region and above

Forward: (3, 2, 1) ⇒ (4, 2, 2)
Reverse: (4, 2, 2) ⇒ (3, 2, 1)
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Stability regions for the (3, 2, 1), (3,2, 1), and
(4, 2, 2) structures.

Coming soon: Columnar structures in a harmonic potential

Columnar sphere packings in rotating fluids can be simulated by confining the structures in a harmonic potential.

Full Simulation:
• Total energy E:

E({~ri}) =
1

2
k

N∑
ij

δ2ij︸ ︷︷ ︸
soft interaction

+
1

2
mω2

N∑
i

r2i︸ ︷︷ ︸
Erot

• Periodic boundaries at top and bottom
• Minimise energy for given tube length L

• Simulates finite size system
• Use Basin-Hopping algorithm

Semi-analytic approach:
• Calculate energy E(R) for specific structure
and minimise with respect to R
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• Mixed structures lie
on common tangent

• Calculation for
infinite systems

Do line slips appear in the self-assembly of spherical particles in rotating fluids?
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