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Simulations of 2D foams above the jamming point suggest a different form for the variation of the average

contact number with packing fraction from that in soft disk systems.

The soft disk simulation
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Fig. 1: A soft disk with corresponding overlaps. Fig. 2: Soft disk packing at
φ = 0.90.Interaction and minimisation:

• Random initial configuration at packing
fraction φ

• Interaction dependents on overlap δij :

Usoft =
1

2

N∑
i<j

δ2ij

• Energy minimisation: Conjugate
Gradient

Deformation:
• Disks do not deform
• No cell area conservation

The Plat simulation for 2D foam
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Fig. 3: A deformed bubble in Plat [1, 2].
Fig. 4: Plat foam at φ = 0.90.

Variables:
• Vertex coordinates (xn, yn)
• Cell and Plateau border pressures
Constraints for equilibrium:
• Const. cell area
• Circular arcs meet tangentially at a ver-

tex (xn, yn)

• Laplace–Young law is fulfilled for cells
and Plateau borders

Deformation:

• Bubbles change shape upon contact

The Morse–Witten theory for 2D bubbles
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Fig. 5: Deformation of a 2D bubble
with point force.

r(θ) = R0(1 + δr(θ))

What is the shape δr(θ) of a single, incompressible
2D bubble, subject to a single contact force f?

Linear differential equation for the δr(θ):

−
(

d2

dθ2

)
δr(θ) = A +

f

π
cos θ

Solution for δr(θ):

δr(θ) =
f

2π
g(θ) , g(θ) = (π− θ) sin θ− cos θ

2
− 1

• δr linear in f ⇒ superposition for multiple f
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The Morse–Witten (MW) simulation model
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Fig. 6: Bubble deformation with multiple forces.

Fig. 7: MW foam at φ = 0.90.Shape for multiple forces:

δr(θ) =
1

2π

∑
c

fcg(θc − θ)

Equilibration procedure
1. Identify contacts, update δr
2. Calc. forces from δr, inverting Eq.
3. Balance forces at contacts

4. Move bubble centers in force direction
5. Recalculate δr with Eq.
Constraints for equilibrium
• δr(θ) consistent with fi
• force balance at films
• force balance on each bubble

The average contact number with increasing packing fraction Z(φ)

Soft disk simulation:
• Z − Zc ∝

√
φ− φc

• Well known behaviour in soft disk systems [11, 9,
13]

• Square-root scaling also observed in experimental
data for photo-elastic disks [7]

• Power law relationship Z(φ) for a confined bubble
raft experiment [6], however :
• Identification of contacting bubbles?
• Definition of liquid fraction?
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Plat simulation:
• Z − Zc ∝ φ− φc

• Periodic system: Zc = 4(1− 1/N)

• data averaged over 10,000 simulations of N = 60 bubble systems
• hints of this in earlier simulations (Plat [1] and
lattice gas model [12])

Morse–Witten (MW) model:
• Results are preliminary
• Z − Zc ≈ φ− φc

• data averaged over 5 simulations of N = 100 bubble systems

The separation between bubbles at the critical packing fraction

wi

Fig. 8: Separations wi between different
disks/bubbles.

Is Z(φ) determined by the distribution separation between bubbles?

Crude argument [10]: For affine compressions at φc, Z(φ) − Zc is given by the
radial integral over the distribution of separation f (w) in the limit ε ≈ w/D → 0

Z(φ)− Zc = 2π

∫ εD

0

dwf (w)(w +D) , compression: ε =
φ− φc

2φc
φc: critical packing fraction. D: average diameter.

Soft disks:

f (w) ∝
(w
D

)−1
2 ⇒ Z − Zc ∝

√
φ− φc

2D foams:
f (w) = const. ⇒ Z − Zc ∝ φ− φc
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Fig. 9: Distribution of separation.
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