

The University of Dublin

Theory of rotational columnar structures of soft spheres

J. Winkelmann, A. Mughal^(*), D.B. Williams, D. Weaire and S. Hutzler School of Physics, Trinity College Dublin, The University of Dublin, Ireland (*) Department of Mathematics, Aberystwyth University, Aberystwyth, Wales

Experiments & simulations by Lee et al.: Columnar structures in a rotating fluid

A novel self-assembly method

Simulation:

• *Intensive* molecular dynamics simulation

• Bead interaction: hard sphere model

to reproduce experiment

Experiment:

- Polymeric beads of mass M and diameter d suspended in a fluid of higher density
- System rotates with velocity ω inside lathe
 - Centripetal force $\vec{F_c}$ moves beads to the centre • Rot. energy depends on radial displacement R

$$E_{\rm rot}(R) = \frac{1}{2}M\omega^2 R^2$$

• Homogeneous structures and binary mixtures

Homogeneous columnar packings and binary

observed for varying ω and number density ρ

mixtures [Lee et al.].

T. Lee, K. Gizynski, B.A. Grzybowski, Non-equilibrium Self-Assembly of Monocomponent and Multicomponent Tubular Structures in Rotating Fluids. Adv. Mater. 29, 1704274, (2017).

We present comprehensive analytic energy calculations for self-assembled columnar packings, based on a generic soft sphere model, from which we obtain a phase diagram with peritectoid transition points.

Ordered homogeneous packings

Analytic soft sphere energy calculations

The phase diagram

Which structures occur under what conditions?

• Binary mixtures: Energies given by **common tangent** within white regions (Maxwell construction)

Minimal energies of homogeneous (coloured) and mixed (black) structures.

- Chiral structure can store energy by twisting, but achiral structure cannot
- \Rightarrow Achiral (3, 3, 0) and (4, 4, 0) structures vanish in peritectoid points
 - ***** Peritectoid point:
 - Homogeneous structure vanish together with adjacent binary mixtures
 - New binary mixture of adjacent homogeneous structure occurs above
- (5, 5, 0) last structure without inner spheres \Rightarrow no left hand boundary

J. Winkelmann, A. Mughal, D.B. Williams, D. Weaire, S. Hutzler Theory of rotational columnar structures of soft spheres. Phys Rev Letters submitted, (2018).

Soft sphere simulations for finite sample size

The "full" soft sphere energy model:

$$\frac{E(\{\vec{r_i}\},\alpha)}{M\omega^2 d^2} = \frac{1}{2} \sum_{i}^{N} \left(\frac{R_i^2}{d^2}\right)^2 + \frac{1}{2} \frac{k}{M\omega^2} \sum_{ij}^{N} \frac{|\vec{r_i} - \vec{r_j}|^2}{d^2}$$

• Simulation cell length L containing N spheres $\Rightarrow \rho = N/L$

- periodic boundaries with translated and twisted image spheres
- Energy minimisation w.r.t. to *all* sphere positions $\vec{r_i}$ and twist angle α

Energy and phase diagram comparison: • Energy deviations for binary mixtures due to **interface energies** • New structure occurs due to finite-size effect: homogeneous (2, 2, 0) line slip

To-do list for the future:

1. Finit-size simulations: Extend phase diagram Energies of finite-size simulation (red dots) and analytic calculations (blue/purple curves). **2.** Lathe experiments with soft spheres: Compare with theory

(2, 2, 0)Phase diagram of the finite-size simulations. line slip

[1] L. Fu et al. Hard sphere packings within cylinders. In: Soft Matter 12.9 Rev E 89.4 (2014), p. 042307. [5] A. Mughal et al. Dense packings of spheres in structures of soft spheres. In: Phys Rev Letters, submitted (2018). [9] D. Wood, (2016), pp. 2505–2514. [2] L. Fu et al. Assembly of hard spheres in a cylinder: a cylinder: a cylinder: a model system computational and experimental study. In: Soft Matter 13.18 (2017), pp. 3296- et al. Columnar structures of soft spheres: metastability and hysteresis. In: Phys for understanding the constraint of commensurability. In: Soft Matter 9.42 3306. [3] A. Meagher et al. An experimental study of columnar crystals using Rev E, accepted (2018). [7] J. Winkelmann et al. Simulation and observation (2013), pp. 10016–10024. [10] G. Wu et al. Confined assemblies of colloidal monodisperse microbubbles. In: Colloids Surf. A 473 (2015), pp. 55–59. [4] A. of line-slip structures in columnar structures of soft spheres. In: Phys Rev E particles with soft repulsive interactions. In: J. Am. Chem. Soc. 139.14 (2017), Mughal and D. Weaire. Theory of cylindrical dense packings of disks. In: Phys 96 (2017), p. 012610. [8] J. Winkelmann et al. Theory of rotational columnar pp. 5095–5101.

References