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Matrices

An m× n real matrix A is an array of mn real numbers

arranged in m rows and n columns,

A =



a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

... ... ... ...

ai1 ai2 . . . aij . . . ain

... ... ... ...

am1 am2 . . . amj . . . amn


.

The 1× n matrix ( ai1 ai2 . . . ain ) is called the ith row

and the m× 1 matrix


a1j

a2j

...

amj

 is called the jth column.

A is often written just as A = (aij) for short and aij is called

the ij-entry or component. If m = n, then A is a square ma-

trix. m× n is called the size of the matrix.
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Examples: (i)

(
1 −1

−7 32

)
is a 2× 2 matrix.

(ii)

(
1 0 −5

6 3 8

)
is a 2× 3 matrix.

(iii)


1 5 0 21

2 −7 1 5

6 8 −1 0

−2 3 10 9

 is a 4× 4 matrix.

Definition: Two matrices A = (aij) and B = (bij) of the

same size are equal if all their corresponding entries are equal

i.e. aij = bij for all i and j.

Definition: We define addition of matrices of the same size

componentwise: ifA = (aij) andB = (bij) arem×nmatrices,

then A+B = C, where C = (cij) with cij = aij + bij for all i

and j.

Example: If A =

(
2 3 −5

0 1 4

)
and B =

(
−5 0 2

0 1 3

)
,

then A + B =

(
−3 3 −3

0 2 7

)
.
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Definition: Scalar Multiplication: If A = (aij) is an m× n

matrix and α is a real number, then αA is the m× n matrix

given by αA = (αaij).

Example: IfA =


5 1 3

2 0 −4

1 3 2

, then 2A =


10 2 6

4 0 −8

2 6 4

 .

Definition: A square n × n matrix A = (aij) is diagonal if

aij = 0 for all i 6= j, i.e. all off-diagonal entries are 0.

Example:


1 0 0

0 −5 0

0 0 3

 is diagonal.

Two particular n× n diagonal matrices are the n× n unit

matrix In =


1 0 . . . 0

0 1 . . . 0

0 0 . . . 1

 and the n× n zero matrix

0 =


0 0 . . . 0

0 0 . . . 0

0 0 . . . 0

 .
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Theorem: For matrices A,B,C of the same size we have

(i) A + B = B + A

(ii) (A + B) + C = A + (B + C)

(iii) α(A + B) = αA + αB.

Proof: Exercise (look at components).

Exercise: If A =

(
1 2 3

6 0 −2

)
and B =

(
5 0 2

1 −3 4

)
,

find A + B, 6A− 3B, 21B − 1
2A.

Definition:Multiplication of matrices is defined as follows:

if A = (aij) is m × p and B = (bjk) is p × n, then we define

the product C = AB to be the m × n matrix (cik), where

cik = ai1b1k + ai2b2k + . . . + aipbpk.

Note that the number of columns on the left must equal the

number of rows on the right.

Examples: (i) If A =

(
2 1 5

1 3 2

)
is 2 × 3 and B =

3 4

−1 2

2 1

 is 3×2, thenAB is defined andAB =

(
15 15

4 12

)
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is 2× 2.

(ii) If A =

(
1 2 4

2 6 0

)
is 2×3 and B =


4 1 4 3

0 −1 3 1

2 4 5 2

 is

3× 4, then AB is defined and AB =

(
12 15 30 13

8 −4 26 12

)
is

(2× 4).

(iii) If A =


2 1 5

1 3 2

−1 4 −2

 is 3 × 3 and B =


3

−1

2

 is

3× 1, then AB is defined and AB =


15

4

−11

 is 3× 1.

Note that BA need not be defined even if AB is and if it is

defined, BA 6= AB in general.

Theorem: If A is an m × n matrix and B,C are n × p

matrices and α ∈ R, then

(i) A(B + C) = AB + AC

(ii) A(αB) = α(AB).

Proof: Exercise (again look at components.)
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Exercise: (i) If A =


2 −5 1

−1 3 1

2 −2 1

 and B =


2

−1

3


find AB.

(ii) If A =


1 5 2

−1 0 1

3 2 4

 and B =


6 1 3

−1 1 2

4 1 3


find AB,BA, 3A− 2B.
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Systems of Linear Equations

The system of m equations in n variables (unknowns) is a set

of equations of the form

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...

am1x1 + am2x2 + . . . + amnxn = bm.

This system can be written in matrix form as


a11 a12 . . . a1n

a21 a22 . . . a2n

... ... ...

am1 am2 . . . amn




x1

x2

...

xn

 =


b1

b2

...

bm

 or simplyAx = b.

A is called the coefficient matrix and

[A|b] =


a11 a12 . . . a1n | b1

a21 a22 . . . a2n | b2

... ... ... | ...

am1 am2 . . . amn | bm

 is called the augmented

matrix.
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The augmented matrix is essentially the system of equations

omitting the variables and the = signs.

Recall the case of two variables:

Examples: (i)

2x + 3y = −3

x− 2y = 2

Geometrically we have two non-parallel lines and hence have

a unique solution.

(ii)

2x + 3y = −3

2x + 3y = 1

Geometrically we have two different parallel lines and hence

have no solution.

(iii)

2x + 3y = −3

4x + 6y = −6

Geometrically we have two parallel lines which are the same

line and hence infinitely many solutions.
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The solution set of the system is the set of all


x1

x2

...

xn

 that

satisfies all the equations. We can perform the following three

operations on the equations without altering the solution set:

(i) Interchange any two equations;

(ii) multiply any equation by a constant;

(iii) add or subtract any multiple of one equation to or from

another equation.

We solve the system by replacing it with a new system which

has the same solution set but which is easier to solve. We do

this by using the above operations.

When these operations are applied to the augmented matrix

they are called elementary row operations. There are three

types of elementary row operations:

(i) Rij; interchange the ith and jth rows

(ii) αRi; multiply the ith row by α

(iii) Ri + αRj; add α times ith row to jth row.

Note that none of these elementary row operations will change
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the solution set of the system.

Example: Solve the system of linear equations

x1 + x2 + 2x3 = 9

2x1 + 4x2 − 3x3 = 1

3x1 + 6x2 − 5x3 = 0

We perform suitable operations on the augmented matrix.


1 1 2 ... 9

2 4 −3 ... 1

3 6 −5 ... 0

 R2−2R1−→


1 1 2 ... 9

0 2 −7 ... −17

3 6 −5 ... 0

 R3−3R1−→


1 1 2 ... 9

0 2 −7 ... −17

0 3 −11 ... −27

 R2−R3−→


1 1 2 ... 9

0 −1 4 ... 10

0 3 −11 ... −27

 (−1)R2−→


1 1 2 ... 9

0 1 −4 ... −10

0 3 −11 ... −27

 R3−3R2−→


1 1 2 ... 9

0 1 −4 ... −10

0 0 1 ... 3

 R1−R2−→
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
1 0 6 ... 19

0 1 −4 ... −10

0 0 1 ... 3

 R1−6R3−→


1 0 0 ... 1

0 1 −4 ... −10

0 0 1 ... 3

 R2+4R3−→


1 0 0 ... 1

0 1 0 ... 2

0 0 1 ... 3

 . The system has been reduced to

x1 = 1

x2 = 2

x3 = 3.

This is an example of a general method, called row reduction

or Gaussian elimination, to solve such systems.

Definition: A matrix is in row-echelon form if

(i) every non-zero row begins with 1, called a leading 1;

(ii) any zero rows are at the bottom;

(iii) in any two successive non-zero rows the leading 1 in the

lower row occurs further to the right than the leading 1 in the

higher row.

The variables associated with the leading 1s are called leading

variables.

12



The matrix is in reduced row-echelon form if, in addition, each

column that contains a leading 1 has 0 everywhere else.

Examples:


1 4 6 7

0 1 −4 2

0 0 1 5

 is in row-echelon form.

(
0 1

0 0

)
,


1 0 0 1

0 1 0 2

0 0 1 3

 ,


0 1 −2 0 1

0 0 0 1 2

0 0 0 0 0

 , are all in

reduced row-echelon form.

Example: Write the matrix


0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 1

 in reduced row-echelon form.


0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 1

 R12−→


2 4 −10 6 12 28

0 0 −2 0 7 12

2 4 −5 6 −5 1

 1
2R1−→
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
1 2 −5 3 6 14

0 0 −2 0 7 12

2 4 −5 6 −5 1

 R3−2R1−→


1 2 −5 3 6 14

0 0 −2 0 7 12

0 0 5 0 −17 −27

 −1
2R2−→


1 2 −5 3 6 14

0 0 1 0 −7
2 −6

0 0 5 0 −17 −27

 R3−5R2−→


1 2 −5 3 6 14

0 0 1 0 −7
2 −6

0 0 0 0 1
2 3

 2R3−→


1 2 −5 3 6 14

0 0 1 0 −7
2 −6

0 0 0 0 1 6

 . This is row-echelon form.


1 2 −5 3 6 14

0 0 1 0 −7
2 −6

0 0 0 0 1 6

 R1+5R2−→


1 2 0 3 −23

2 −16

0 0 1 0 −7
2 −6

0 0 0 0 1 6

 R1+
23
2 R3−→


1 2 0 3 0 53

0 0 1 0 −7
2 −6

0 0 0 0 1 6

 R2+
7
2R3−→


1 2 0 3 0 53

0 0 1 0 0 15

0 0 0 0 1 6

 .

This is reduced row-echelon form.

There are many ways in which a given matrix can be reduced
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to reduced row-echelon form but it can be shown that the

result is always the same i.e. the reduced row-echelon form is

unique. We solve a system of linear equations by reducing the

augmented matrix to reduced row-echelon form. This process

is called row reduction or Gaussian elimination.

A system of linear equations is homogeneous if all the numbers

on the right-hand side are 0 i.e.


b1

b2

...

bn

 =


0

0

...

0

 .

A homogeneous system always has at least one solution, namely

x1 = 0, x2 = 0, · · · , xn = 0. If it has more variables than equa-

tions i.e.m < n, then not all variables can be leading variables

and so we have infinitely many solutions.

If


b1

b2

...

bn

 6=


0

0

...

0

 , we say the system is inhomogeneous.
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Then we can have no solution if a row in the reduced row-

echelon form looks like ( 0 0 · · · 0 | 6= 0 ) , a unique so-

lution if all variables are leading variables or infinitely many

solutions if not all variables are leading variables.

Example: Using row reduction solve the system of linear

equations

x1 + x2 + 2x3 + 3x4 = 13

x1 − 2x2 + x3 + x4 = 8

3x1 + x2 + x3 − x4 = 1.


1 1 2 3 ... 13

1 −2 1 1 ... 8

3 1 1 −1 ... 1

 R2−R1−→


1 1 2 3 ... 13

0 −3 −1 −2 ... −5

3 1 1 −1 ... 1

 R3−3R1−→


1 1 2 3 ... 13

0 3 1 2 ... 5

0 −2 −5 −10 ... −38

 (−1)R3−→


1 1 2 3 ... 13

0 3 1 2 ... 5

0 2 5 10 ... 38

 R2−R3−→


1 1 2 3 ... 13

0 1 −4 −8 ... −33

0 2 5 10 ... 38

 R3−2R2−→


1 1 2 3 ... 13

0 1 −4 −8 ... −33

0 0 13 26 ... 104

 1
13R3−→
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
1 1 2 3 ... 13

0 1 −4 −8 ... −33

0 0 1 2 ... 8

 R1−R2−→


1 0 6 11 ... 46

0 1 −4 −8 ... −33

0 0 1 2 ... 8

 R2+4R3−→


1 0 6 11 ... 46

0 1 0 0 ... −1

0 0 1 2 ... 8

 R1−6R3−→


1 0 0 −1 ... −2

0 1 0 0 ... −1

0 0 1 2 ... 8

 .

We have reduced the system to the form

x1 − x4 = −2

x2 = −1

x3 + 2x4 = 8

x1, x2 and x3 are called leading variables. x4 is called a free

variable, it can have any value r, say. Then x1 = −2 + r, x2 =

−1, x3 = 8 − 2r, x4 = r is the solution set of the system. In

vector form the solution set is given by


x1

x2

x3

x4

 =


−2

−1

8

0

 + r


1

0

−2

1

 .
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Example: Using row reduction solve the system of linear

equations

x1 + 6x2 + 4x3 = 1

2x1 + 4x2 − x3 = 0

−x1 + 2x2 + 5x3 = 3.


1 6 4 ... 1

2 4 −1 ... 0

−1 2 5 ... 3

 R3+R1−→


1 6 4 ... 1

2 4 −1 ... 0

0 8 9 ... 4

 R2−2R1−→


1 6 4 ... 1

0 −8 −9 ... −2

0 8 9 ... 4

 R3+R2−→


1 6 4 ... 1

0 −8 −9 ... −2

0 0 0 ... 2

 .

The bottom line is not true for any values of the variables, so

the system has no solution.
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