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Real Number System

N = {1, 2, 3, · · ·} is called the set of natural numbers or

positive integers.

Z = {· · ·−3,−2,−1, 0, 1, 2, 3, · · ·} is called the set of integers.

Z comes from the German word zahl, meaning number.

Q = {ab |a, b ∈ Z, b 6= 0} is called the set of rational numbers

or fractions or quotients.

Any fraction can be written as a
b where a and b have no com-

mon factors except 1 e.g. 6
8 = 3

4.

Consider
√
a where a is a positive rational. Some numbers of

this type are rational e.g.
√

9
16 = 3

4, but some are not.

Theorem:
√

2 is not rational.

Proof: Suppose
√

2 = a
b where a and b have no common

factors except 1. Then 2 = a2

b2
so a2 = 2b2. Now 2b2 is divisible

by 2, so a2 is divisible by 2 and hence a is divisible by 2.

Suppose a = 2c. Then a2 = 4c2, so 2b2 = 4c2 or b2 = 2c2.

Now 2c2 is divisible by 2, so b2 is divisible by 2 and hence b is

divisible by 2. But now we have both a and b are divisible by

2, a contradiction to our assumption. We deduce that
√

2 is
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not rational.

Non-rational numbers of the type
√
a,
√
a +
√
b,
√
a −
√
b,

and quotients of them, are called surds. There are other non-

rational numbers which cannot be written as surds e.g. π, e.

These are called transcendental numbers. All the surd numbers

together with the transcendental numbers constitute the set of

irrational numbers.

Finally R = Q∪{irrationals} is the set of real numbers. We

have N ⊂ Z ⊂ Q ⊂ R.

Real numbers can be represented by the points on a line, the

real number line:
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Recall how we add, subtract and multiply fractions:

a
b + c

d = ad+bc
bd , a

b −
c
d = ad−bc

bd , a
b ×

c
d = ac

bd.

We have a
b ×

1
a
b

= 1 and a
b ×

b
a = 1, so 1

a
b

= b
a and then division

is given by
a
b
c
d

= a
b ×

1
c
d

= a
b ×

d
c = ad

bc .

In practice we usually get the common denominator.

Example: 5
6 + 4

9 = 15+8
18 = 23

18 = 1 5
18, a mixed number.

Exercise: Simplify the following

(i) 3
4 −

1
3 + 2

5

(ii) 2
3 + 3

5 × 1 1
11

(iii) 73
4 ÷ 32

3

(iv) 51
5 × 72

3.
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Rational Indices or Powers

Definition: Let n ∈ N and a ∈ R, a > 0.

an = a× a× a× · · · × a (n times)

a−n = 1
an .

Then am×an = (a×a×a×· · ·×a)×(a×a×a×· · ·×a) = am+n

and for m > n, a
m

an = a×a×a×···×a
a×a×a×···×a = am−n.

Also (am)n = am × am × am × · · · × am = amn.

Now an

an = 1, so if we agree that a0 = 1, then the above formula

holds for m = n also.

If m < n, then am

an = 1
an−m = am−n again.

We define a
1
n to be the positve number whose nth power is a

i.e. a
1
n = x where xn = a. a

1
n is called the nth root of a.

Finally we define a
m
n to be (a

1
n)m or (a

1
m)n.

Examples: (i) (36)−
3
2 = 1

(36)
3
2

= 1

(62)
3
2

= 1
63

= 1
216.

(ii) (21
4)11

2 = (9
4)

3
2 = ((3

2)2)
3
2 = (3

2)3 = 27
8 .

Exercise: Simplify 81
3
4 , ( 27

125)−
2
3 .

Question: What is ax if x is not rational? (a > 0.)
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Logarithms

Definition: Suppose that a, x and y are rational numbers.

We say that loga x = y if and only if ay = x.

Examples: (i) log5 25 = 2 since 52 = 25.

(ii) Evaluate log1
2

8. Let y = log1
2

8. Then (1
2)y = 8,

so 2−y = 23 and hence y = −3.

Properties of logarithms: (i) loga(xy) = loga x + loga y.

Proof: Let c = loga x and d = loga y. Then ac = x and

ad = y, so xy = acad = ac+d. Hence loga(xy) = c + d =

loga x + loga y.

(ii) loga(
x
y ) = loga x− loga y.

Proof: Exercise.

(iii) loga(x
y) = y loga x.

Proof: Let c = loga x, so ac = x and then xy = (ac)y = acy.

Therefore loga(x
y) = loga(a

cy) = cy = yc = y loga x.

(iv) logb x = loga x
loga b

.(Change of base.)

Proof: Let y = logb x, so that by = x and then loga(b
y) =

loga x. This means that y loga b = loga x and so logb x = y =

loga x
loga b

.
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Examples: (i) log4 64 = log4(43) = 3 log4 4 = 3.

(ii) log3(1
3) = log3(3−1) = − log3 3 = −1.

(iii) (log2 5)(log5 8) = (log2 5)( log2 8
log2 5) = log2(23) = 3 log2 2 = 3.

(iv) If log3 b + log9 b = 3
4, find b.

3
4 = log3 b + log9 b = log3 b + log3 b

log3 9 = log3 b + log3 b
2 = 3

2 log3 b.

Therefore log3 b = 1
2, so b = 3

1
2 =
√

3.

(v) Solve for x if log2 x = 2 + log2 3.

log2 x = 2+log2 3, so log2 x−log2 3 = 2 and hence log2(x3) = 2.

Therefore x
3 = 22 = 4 and so x = 12.

(vi) Solve for x if 2 log3 x− log3(x + 6) = 1.

2 log3 x − log3(x + 6) = 1, so log3(x2) − log3(x + 6) = 1 and

hence log3( x2

x+6) = 1. Therefore x2

x+6 = 3, so x2 = 3x + 18 or

x2 − 3x− 18 = 0. We have (x− 6)(x + 3) = 0 and so x = 6.

Exercise: (i) Solve for b if logb 3 + logb 27 = 2.

(ii) Solve for x if log10(6x− 1)− log10 2 = 1.

(iii) Solve for x if 2 log10 x− log10(20− x) = 1.
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Functions of a Real Variable

A real variable x is a representative of the set of real numbers

R. Its value ranges over the whole set R.

Definition: R× R = {(x, y)|x, y ∈ R}, also written as R2.

It is the set of ordered pairs of real numbers.

Definition: Any subset of R×R is called a relation from R

to R. e.g. r = {(1, 2), (3, 3), (3, 5)} is a relation from R to R.

Definition: A function from R to R is a relation from R to

R such that no two pairs have the same first element. r above

is not a function.

We can represent a function diagrammatically by a ”Papy-

gram”:

We write (x, y) ∈ f (the passive viewpoint) or y = f (x) ( the

active viewpoint). We also write a function as

(origin) x −→ f −→ y (image).
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The domain of f is the set of origins and the range of f is

the set of images.

Note: Any rule that gives a unique image for x defines a

function.

Definition: The graph of f is {(x, f (x))|x ∈ domain f}, and

is represented geometrically on a pair of perpendicular axes (x

and y axes.)

Examples: (i) f : R→ R : x 7→ x or f (x) = x or y = x.

The domain is R and the range is R.

(ii) f : R→ R : x 7→ x2 or f (x) = x2 or y = x2.

The domain is R and the range is R+ ∪ {0}.

Sometimes the set on the right is bigger than the range; it is

called the codomain, in general. In (ii) the codomain is R.

9



(iii) f : R→ R : x 7→ 2x2−5 or f (x) = 2x2−5 or y = 2x2−5.

The domain is R and the range is {y|y ≥ −5}.

(iv) f : R− {0} → R : x 7→ 1
x or f (x) = 1

x or y = 1
x.

The domain is R− {0} and the range is R− {0}.

(v) f : R → R : x 7→ c or f (x) = c or y = c, where c is a

constant i.e. a fixed number.

The domain is R and the range is c.

Suppose that a, b, c, d are constants.

Any function of the form f (x) = ax + b is called linear.

Any function of the form f (x) = ax2 + bx + c is called

10



quadratic.

Any function of the form f (x) = ax3 + bx2 + cx + d is called

cubic.

Similarly we have quadric, quintic etc. functions. In general,

a function of the form

f (x) = anx
n + an−1x

n−1 + · · · + a1x
1 + a0,

where an, an−1, · · · , a1, a0 are constants, is called a polynomial

function.
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New Functions from Old

Let f, g : R→ R be two functions.

We define f + g : R→ R by (f + g)(x) = f (x) + g(x) (sum),

f − g : R→ R by (f − g)(x) = f (x)− g(x) (difference),

fg : R→ R by (fg)(x) = f (x)g(x) (product),

f
g : R→ R by (fg )(x) = f(x)

g(x) , where g(x) 6= 0 (quotient).

Example: f (x) = 1 +
√
x− 2, g(x) = x− 3.

Then (f + g)(x) = 1 +
√
x− 2 + x− 3 =

√
x− 2 + x− 2,

(f − g)(x) = 1 +
√
x− 2− (x− 3) =

√
x− 2− x + 4,

(fg)(x) = (1 +
√
x− 2)(x− 3), and (fg )(x) = 1+

√
x−2

x−3 .

A quotient function of the form f
g is called a rational function.

There is another way of defining a new function from two given

functions, namely by composition:

for f, g : R→ R define fog : R→ R by (fog)(x) = f (g(x)).

Example: f (x) = x2, g(x) = x + 1.

Then (fog)(x) = f (g(x)) = f (x + 1) = (x + 1)2.
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Note that (gof )(x) = g(x2) = x2 + 1 6= (fog)(x).

Exercise: If f (x) = x2 + 3 and g(x) =
√
x, find (fog)(x)

and (gof )(x).

A simple but important function is the modulus function | |:

Definition: | |: R→ R+ ∪ {0} is defined by

| x |=

 x, x ≥ 0

−x, x < 0

e.g. | 3 |= 3, | −3 |= −(−3) = 3.

Modulus is often called the absolute value. Consider | x |< 3.

If x ≥ 0, then x < 3, whereas if x < 0, then −x < 3, so

x > −3.

Hence {x| | x |< 3} = {x| − 3 < x < 3}. This is called the

open interval about 0 of length 3, written as (−3, 3).

Similarly {x| | x |≤ 3} = {x| − 3 ≤ x ≤ 3}. This is called
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the closed interval about 0 of length 3, written as [−3, 3].

Consider | x− 2 |< 3.

If x− 2 ≥ 0, then x− 2 < 3, so x < 5, whereas if x− 2 < 0,

then −(x− 2) < 3, so x− 2 > −3 or x > −1.

Hence {x| | x− 2 |< 3} = {x|− 1 < x < 5}. This is the open

interval about 2 of length 3, written as (−1, 5).

Similarly we get the closed interval about 2 of length 3, written

as [−1, 5].

In general | x − a |< b will give the open interval about a of

length b, written as (a− b, a + b).
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Inverse Functions

Suppose that A,B ⊆ R.

Definition: If f : A −→ B is a function then f−1 : B −→ A

is defined as the relation {(y, x)|(x, y) ∈ f}.

Example: A = {1, 2, 3}, B = {10, 11}

f = {(1, 10), (2, 10), (3, 11)}, f−1 = {(10, 1), (10, 2), (11, 3)}.

f−1 is not a function since 10 −→ 1 and 10 −→ 2.

Definition: f : A −→ B is injective or one to one (1-1) if

x1 6= x2 ⇒ f (x1) 6= f (x2), i.e. at most one arrow arriving at

each element in the range of f . The example above is not 1-1.

Example: A = {1, 2, 3}, B = {10, 11, 12, 13}

g = {(1, 10), (2, 12), (3, 11)}, g−1 = {(10, 1), (12, 2), (11, 3)}.

g is 1-1, but g−1 is still not a function on the given codomain

15



of g since 13 is not mapped onto anything by g−1.

Definition: f : A −→ B is surjective or onto if given any

y ∈ B there exists some x ∈ A such that y = f (x), i.e. at

least one arrow arriving at each element in B or the range of

f equals the codomain of f . The example above is not onto.

Definition: f : A −→ B is bijective if it is both injective

and surjective i.e. one arrow leaving everything in the domain

and one arrow arriving at everything in the codomain. In this

case f−1 is a function.

Note: y = f (x) and f−1(y) = x

then f−1(f (x)) = x or (f−1of )(x) = x

and f (f−1(y)) = y or (fof−1)(y) = y.

We see that f−1 is the inverse of f under composition.

If f is given by some algebraic rule we can use algebra to get

the rule for f−1.

Example: If f : R −→ R is given by x 7→ 3x − 2, find the
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rule for f−1.

Let y = 3x − 2; then y + 2 = 3x so x = y+2
3 and therefore

x = f−1(y) = y+2
3 .

If there is no confusion we usually write f−1(x) = x+2
3 .

Note that the range of f is all of R and so is equal to the

codomain of f

Example: If f : R+∪{0} −→ R+∪{0} is given by x 7→ x2,

find the rule for f−1.

Again note that the range of f is equal to the codomain of f ,

so f−1 exists and is given by f−1(x) =
√
x.
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Limits and Continuous Functions

Suppose that f : R −→ R

Informal Definition: If the value of f (x) can be made ”as

close as we like” to L by taking x sufficiently close to a, but not

equal to a, then we say that the limit of f (x), as x approaches

a is L, written as lim
x→a

f (x) = L.

Examples: (i) f (x) = x

lim
x→2

f (x) = lim
x→2

x = 2.

(ii) f (x) = x2

lim
x→3

f (x) = lim
x→3

x2 = 32 = 9.

(iii) f (x) = x3 + 2x + 5

lim
x→5

f (x) = lim
x→5

(x3 + 2x + 5)

= 53 + 2(5) + 5 = 140.

(iv) f (x) = c, a constant

lim
x→a

f (x) = lim
x→a

c = c.
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Theorems on Limits

(1) lim
x→a

(f (x) + g(x)) = lim
x→a

f (x) + lim
x→a

g(x) and

lim
x→a

(f (x)− g(x)) = lim
x→a

f (x)− lim
x→a

g(x).

(2) lim
x→a

(f (x)g(x)) = (lim
x→a

f (x))(lim
x→a

g(x)).

(3) lim
x→a

f(x)
g(x) =

lim
x→a

f(x)

lim
x→a

g(x) , if lim
x→a

g(x) 6= 0.

(4) lim
x→a

(f (x)
m
n ) = (lim

x→a
f (x))

m
n .

Examples: (i) lim
x→5

(x3 + 2x + 5) = lim
x→5

(x3) + lim
x→5

(2x) +

lim
x→5

(5) = 53 + 2(5) + 5 = 140.

(ii) lim
x→4

3x−2
x+3 =

lim
x→4

(3x−2)

lim
x→4

(x+3) = 3(4)−2
4+3 = 10

7 .

(iii) lim
x→2

5x3−40
x−3 =

lim
x→2

(5x3−40)

lim
x→2

(x−3) = 5(2)3−40
2−3 = 0

−1 = 0.

(iv) lim
x→−2

(3x2 − 5x + 9) = 3(−2)2 − 5(−2) + 9 = 31.

(v) lim
x→3

√
x2+3
x+4 =

√
lim
x→3

x2+3
x+4 =

√
32+3
3+4 =

√
12
7 .

(vi) lim
x→−4

2x+8
x2+x−12

= 2(−4)+8
(−4)2+(−4)−12

= 0
0 =?.

We will discuss this type of problem later.

Exercise: Evaluate the following limits:

(i) lim
x→3

(x2 − 4x + 1)

(ii) lim
x→5

2x−3
x+4

(iii) lim
x→2

√
x2−1
x+2 .
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What does ”as close as we like” mean?

Rigorous Definition: Let f (x) be defined for all x in some

open interval containing a, except perhaps at a itself. We say

that lim
x→a

f (x) = L if given any interval of length ε about L, no

matter how small ε is, we can find a corresponding interval of

some length δ about a such that whenever a− δ < x < a+ δ,

except perhaps x = a itself, then L − ε < f (x) < L + ε or,

more succinctly, 0 <| x− a |< δ implies that | f (x)−L |< ε.

In this course the informal approach is taken.

Definition: A function f : R→ R is continuous at a if

(i) lim
x→a

f (x) exists and

(ii) lim
x→a

f (x) = f (a).
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This means that the graph of f does not ”break” off at a. If f

is not continuous at a we say that it is discontinuous at a. f

is a continuous function if it is continuous at all points in its

domain.

Example: f (x) = x2

lim
x→2

f (x) = lim
x→2

x2 = 22 = 4 = f (2).

All the functions that we have met so far in this section except

the ”0
0” example are continuous.

Some functions are continuous everywhere except at a finite

number of points and at those points have left-hand and right-

hand limits. Such functions are called piecewise continuous.

Example:

f (x) =

 −1, x < 0

1, x ≥ 0

lim
x→0−

f (x) = −1

lim
x→0+

f (x) = 1

and f is continuous everywhere else.

Limits of this type are called one-sided limits, We say that

there is a jump-discontinuity at 0.

21



We now consider some quotient functions.

Example: (i) f (x) = 5x3+4
x−3

lim
x→2

5x3+4
x−3 =

lim
x→2

(5x3+4)

lim
x→2

(x−3) = 5(2)3+4
2−3 = 44

−1 = −44. f is continuous

at 2. However, if we consider lim
x→3

5x3+4
x−3 , we see that the func-

tion gets bigger and bigger (with a + or −sign) as x gets closer

to 3. We write lim
x→3−

5x3+4
x−3 = −∞ and lim

x→3+

5x3+4
x−3 = +∞. f (x)

is not defined at x = 3 and does not have a limit as x → 3,

so can’t be continuous at x = 3. The graph of f (x) = 5x3+4
x−3 is

said to have an asymptote at x = 3.

(ii) f (x) = x2−4
x−2

lim
x→2

x2−4
x−2 =? Again f (x) is not defined at x = 2 so it can’t be

continuous at x = 2. However it does have a limit as x → 2:

lim
x→2

x2−4
x−2 = lim

x→2

(x−2)(x+2)
x−2 = lim

x→2
(x + 2) = 2 + 2 = 4. We can

divide above and below by x− 2 since in the definition of the

limit we are interested in every point about 2 except the point
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2 itself and so x−2 6= 0 for all the values of x considered. The

limit is defined like this so that functions of this type do have

limits.

If we define f at 2 to be 4, i.e.

f (x) =


x2−4
x−2 , x 6= 2

4, x = 2

then f is continuous at 2.

(iii) f (x) = x2−6x+9
x−3

lim
x→3

x2−6x+9
x−3 = lim

x→3

(x−3)(x−3)
x−3 = lim

x→3
(x− 3) = 3− 3 = 0.

(iv) f (x) = x2−9
x2−5x+6

lim
x→3

x2−9
x2−5x+6

= lim
x→3

(x−3)(x+3)
(x−3)(x−2) = lim

x→3

x+3
x−2 = 3+3

3−2 = 6.
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Differentiation

Recall the formula for the slope of a line:

Slope = m = tanα

= y2−y1
x2−x1

, where

(x1, y1), (x2, y2) are

any two points on the line.

We wish to define the slope of any continuous curve at any

point p(x, y) on the curve. Let the curve be the graph of the

continuous function y = f (x).

Slope of the chord PQ is f(x+h)−f(x)
h = ∆y

∆x. Intuitively, as

h → 0, Q → P and the chord PQ → the tangent to the

curve at P (x, y). We define the slope of the curve at P (x, y)

to be lim
h→0

f(x+h)−f(x)
h = lim

∆x→0

∆y
∆x and the line through P (x, y)
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with this slope is called the tangent to the curve at P (x, y).

This limit is called the derivative of f (x) at P (x, y) and is

denoted by f ′(x) or dy
dx. The process pf finding derivatives is

called differentiation.
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Differentiation from first principles

Example: (i) f (x) = c, a constant

f ′(x) = lim
h→0

f(x+h)−f(x)
h = lim

h→0

c−c
h = lim

h→0
0 = 0.

(ii) f (x) = x

f ′(x) = lim
h→0

f(x+h)−f(x)
h = lim

h→0

(x+h−x)
h

= lim
h→0

h
h = lim

h→0
1 = 1.

(iii) f (x) = x2

f ′(x) = lim
h→0

f(x+h)−f(x)
h = lim

h→0

(x+h)2−x2
h

= lim
h→0

(x2+2xh+h2−x2)
h = lim

h→0

(2xh+h2)
h

= lim
h→0

(2x + h) = 2x.

In general it can be shown, using the binomial theorem, that

if f (x) = xn, n ∈ N, then f ′(x) = nxn−1.

(iv) f (x) =
√
x

f ′(x) = lim
h→0

f(x+h)−f(x)
h = lim

h→0

√
x+h−

√
x

h = lim
h→0

(
√
x+h−

√
x)(
√
x+h+

√
x)

h(
√
x+h+

√
x)

=

lim
h→0

x+h−x
h(
√
x+h+

√
x)

= lim
h→0

h
h(
√
x+h+

√
x)

= lim
h→0

1
(
√
x+h+

√
x)

= 1
2
√
x

=

1
2x
−1

2 .

(v) f (x) = 2x2 − 3x + 5

f ′(x) = lim
h→0

f(x+h)−f(x)
h = lim

h→0

(2(x+h)2−3(x+h)+5)−(2x2−3x+5)
h

= lim
h→0

(4xh+h2−3h)
h == lim

h→0
(4x + h− 3) = 4x− 3.
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Theorems (Rules) for Derivatives

(1) Sum and difference rule

(f + g)′(x) = f ′(x) + g′(x) and (f − g)′(x) = f ′(x)− g′(x).

(2) Product rule

(fg)′(x) = f (x)g′(x) + g(x)f ′(x).

(3) Quotient rule

(fg )′(x) = g(x)f ′(x)−f(x)g′(x)
g(x)2

.

(4) Chain rule

(fog)′(x) = f ′(g(x))g′(x).

In the other notation these rules are expressed as

d
dx(u + v) = du

dx + dv
dx,

d
dx(u− v) = du

dx −
dv
dx,

d
dx(uv) = udvdx + vdudx,

d
dx(uv ) =

v dudx−u
dv
dx

v2
,

d
dx(u(v(x)) = du

dv
dv
dx, where u = f (x) and v = g(x).

Examples: (i) y = 3x2 − 7x + 4, dy
dx = 6x− 7.

(ii) y = (4x2 − 1)(7x3 + x), dy
dx = (4x2 − 1)(21x2 + 1)

+ (7x3 + x)(8x).

(iii) y = x2−1
x4+1

, dy
dx = (x4+1)(2x)−(x2−1)(4x3)

(x4+1)2
.

(iv) y = (x2 − x + 1)23, dy
dx = 23(x2 − x + 1)22(2x− 1).
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Implicit Differentiation

If the function y is not given explicitly by a formula we say

that y is an implicit function of x.

Example: Find dy
dx if xy = 1.

To find dy
dx we differentiate across with respect to x, remember-

ing that y is an implicit function of x. We get xdydx + 1.y = 0,

so xdydx = −y giving dy
dx = −y

x. Of course, in this case, we can

write y as an explicit function of x as y = 1
x and differentiate

accordingly, but usually this is not possible.

(ii) Find dy
dx if x2 + y2 = 1.

Differentiating across with respect to x gives 2x + 2y dydx = 0,

so dy
dx = −x

y .

(iii) Find dy
dx if x3 + y3 = 3xy.

Differentiating across with respect to x gives 3x2 + 3y2 dy
dx =

3y + 3xdydx, so dy
dx(3y2 − 3x) = 3y − 3x2 and hence dy

dx = y−x2
y2−x.

Note that we can differentiate powers xn and x−n = 1
xn by

rule. What about y = x
m
n ? y = x

m
n ⇒ yn = xm, so

nyn−1 dy
dx = mxm−1, giving dy

dx = m
n
xm−1

yn−1 = m
nx

m−1y−n+1 =

m
nx

m−1(x
m
n )−n+1 = m

nx
m−1x−m+m

n = m
nx

m
n−1.
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Trigonometrc Functions

Geometrically an angle A is defined to be a rotation in the

anti-clockwise direction. The full rotation is divided into 360

equal rotations, called degrees and written 3600.

Consider the acute angle A ( < 900) in a right-angled triangle:

Definition: cosA = a
c , sinA = b

c, tanA = b
a.

This definition is independent of the right-angled triangle con-

taining A since, by similar triangles, we have

a
c = d

f

b
c = e

f

b
a = e

d.

We wish to define the trigonometric functions as functions of

a real variable. To do this we introduce the idea of radian

measure. Consider the angle A in the unit circle:
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There is a 1 − 1 correspondence between the rotation A and

the arc-length s that it defines:

3600 ←→ 2π, 1800 ←→ π, 900 ←→ π
2 etc.

The arc-length coresponding to an angle is a real number and

is called the radian measure of the angle. When we write an

angle in radians we usually denote it by a Greek letter θ etc.

We have only defined the trigonometrc functions of acute an-

gles. Using the unit circle we can define them for any angle:

cos θ = x

sin θ = y

tan θ = y
x, x 6= 0.

We also have the reciprocal functions:

sec θ = 1
cos θ , cos θ 6= 0

csc θ = 1
sin θ , sin θ 6= 0

cot θ = 1
tan θ , tan θ 6= 0
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We now consider the values of the trigonometrc functions in

the four quadrants:

First quadrant

x > 0, y > 0, so

cos θ > 0

sin θ > 0

tan θ > 0

Second quadrant

x < 0, y > 0, so

cos θ < 0

sin θ > 0

tan θ < 0

Third quadrant

x < 0, y < 0, so

cos θ < 0

sin θ < 0

tan θ > 0

31



Fourth quadrant

x > 0, y < 0, so

cos θ > 0

sin θ < 0

tan θ < 0

We sin > 0 all > 0

get tan > 0 cos > 0

Using the above definitions we have the idea of related an-

gles, where we relate the trigonometrc functions of angles in

the higher quadrants to an angle in the first quadrant i.e. an

acute angle:

Second quadrant

cos θ = −x = − cos(π − θ)

sin θ = y = sin(π − θ)

tan θ = y
−x = −y

x = − tan(π − θ)

Third quadrant

cos θ = −x = − cos(θ − π)

sin θ = −y = − sin(θ − π)

tan θ = −y
−x = y

x = tan(θ − π)
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Fourth quadrant

cos θ = x = cos(2π − θ)

sin θ = −y = − sin(2π − θ)

tan θ = −y
x = −y

x = − tan(2π − θ)

Examples: sin 2π
3 = sin π

3 =
√

3
2 ,

cos 7π
6 = − cos π6 = −

√
3

2 ,

tan 7π
4 = − tan π

4 = −1.

There are some well-known trigonometric identities: Since

x2 +y2 = 1 we get cos2 θ+sin2 θ = 1. Dividing across by cos2 θ

we get 1 + tan2 θ = sec2 θ and dividing across by sin2 θ we get

1 + cot2 θ = csc2 θ.

All of the following are found in the tables and can easily be

proven:

cos(A + B) = cosA cosB − sinA sinB

cos(A−B) = cosA cosB + sinA sinB

sin(A + B) = sinA cosB + cosA sinB

sin(A−B) = sinA cosB − cosA sinB

tan(A + B) = tanA+tanB
1−tanA tanB

tan(A−B) = tanA−tanB
1+tanA tanB
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Taking B = A gives the ”double angle” formulas:

cos 2A = cos2A− sin2A = 2 cos2A− 1 = 1− 2 sin2A,

sin 2A = 2 sinA cosA and tan 2A = 2 tanA
1−tan2A

.

Finally we have sums (differences)←→ products:

sinA + sinB = 2 sin(A+B
2 ) cos(A−B2 )

sinA− sinB = 2 cos(A+B
2 ) sin(A−B2 )

cosA + cosB = 2 cos(A+B
2 ) cos(A−B2 )

cosA− cosB = −2 sin(A+B
2 ) sin(A−B2 ).
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Limits of Trigonometric Functions

We see from the graphs of the trigonometrc functions that

f (x) = cosx, f (x) = sin x are continuous everywhere and

that f (x) = tanx is continuous everywhere except at values

x = nπ2 , n odd, where it is not defined.

Important Limit: lim
x→0

sinx
x = 1.

Proof:

Area triangle AOB < area sector AOB < area triangle COB,

so 1
2.1.1. sinx <

1
2.1

2.x < 1
2.1. tanx and hence

sinx < x < tanx or cosx < sinx
x < 1. Therefore

lim
x→0

cosx ≤ lim
x→0

sinx
x ≤ lim

x→0
1 which gives 1 ≤ lim

x→0

sinx
x ≤ 1 and

so lim
x→0

sinx
x = 1.
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Note: lim
x→0

x
sinx = 1

lim
x→0

sinx
x

= 1
1 = 1

and lim
x→0

tanx
x = lim

x→0
(sinx

x
1

cosx) = 1(1
1) = 1.

Examples: (i) lim
x→0

sin 3x
x = lim

x→0
(sin 3x

3x .3) = 1.3 = 3.

(ii) lim
x→0

sin 7x
sin 4x = lim

x→0
(sin 7x

7x . 4x
sin 4x.

7
4) = 1.1.74.

(iii) lim
x→0

1−cosx
x = lim

x→0
(1−cosx

x .1+cosx
1+cosx) = lim

x→0

1−cos2 x
x(1+cosx)

= lim
x→0

sin2 x
x(1+cosx) = lim

x→0
(sinx

x . sinx
1+cosx) = 1.02 = 0.

Exercise: Evaluate the following limits:

(i) lim
x→0

sin 6x
sin 8x

(ii) lim
x→0

sin2 x
3x2

(iii) lim
x→0

tan 7x
sin 3x

(iv) lim
x→0

x
cos(π2−x)).
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Derivatives of Trigonometric Functions

f (x) = sinx

f ′(x) = lim
h→0

f(x+h)−f(x)
h = lim

h→0

sin(x+h)−sinx
h = lim

h→0

2 cos(x+h
2 ) sin h

2
h

= lim
h→0

(2
2. cos(x + h

2)
sin h

2
h
2

) = 1. cosx.1 = cosx.

Similarly the derivative of cos x is − sinx and the derivative

of tanx is sec2 x.

Now if y = secx = 1
cosx, then dy

dx = cosx.0−1(− sinx)
cos2 x

= 1
cosx.

sinx
cosx =

secx. tanx.

Similarly the derivative of cscx is− cscx. cotx and the deriva-

tive of cotx is − csc2 x.

Examples: (i) y = x2 tanx; dy
dx = x2(sec2 x) + tanx(2x)

(ii) y = sinx
1+cosx; dy

dx = (1+cosx)(cosx)−(sinx)(− sinx)
(1+cosx)2

= 2
(1+cosx)2

(iii) y = sin2 x = (sinx)2; dy
dx = 2 sin x. cosx

(iv) y = (1 + x2 cosx)5;

dy
dx = 5(1 + x2 cosx)4(x2(− sinx) + cosx(2x)).

(v) Find dy
dx if sin(x2y2) = x;

sin(x2y2) = x so cos(x2y2)[2x.y2 + x2.2y.dydx] = 1, and hence

dy
dx =

1
cos(x2y2)

−2xy2

2x2y
.
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Integration

Definition: A function F (x) is said to be an antiderivative

of f (x) if F ′(x) = f (x).

Example: f (x) = x2, F (x) = 1
3x

3; F ′(x) = f (x).

Also G(x) = 1
3x

3 + c (c any constant) satisfies G′(x) = f (x).

So if an antiderivative exists, then we have infinitely many of

them by adding constants.

The process of finding antiderivatives is called (indefinite) in-

tegration. If F ′(x) = f (x) we write
∫
f (x)dx = F (x) + c.

c is called the constant of integration.

Example: (i)
∫
x2dx = 1

3x
3 + c since d

dx(1
3x

3 + c) = x2.

In general d
dx(

∫
f (x)dx) = f (x).

(ii)
∫
xndx = 1

n+1x
n+1 + c since d

dx( 1
n+1x

n+1 + c) = xn.

(iii)
∫

1√
x
dx =

∫
x−

1
2dx = x

1
2
1
2

+ c = 2
√
x + c.

(iv)
∫

1
x5
dx =

∫
x−5dx = x−4

−4 + c = − 1
4x4

+ c.

(v)
∫

cosxdx = sinx + c, since d
dx(sinx) = cosx.

(vi)
∫

sec2 xdx = tanx + c.

(vii)
∫

secx tanxdx = secx + c.

(viii)
∫
tan2xdx =

∫
(sec2 x− 1) = tanx− x + c.
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Rules for Integration

(1)
∫
cf (x)dx = c

∫
f (x)dx.

Proof: Let
∫
f (x)dx = F (x).Then F ′(x) = f (x), so cF ′(x) =

cf (x) or (cF )′(x) = cf (x), so
∫
cf (x)dx = cF (x) = c

∫
f (x)dx.

(2)
∫

(f (x) + g(x))dx =
∫
f (x)dx +

∫
g(x)dx.

Proof: Let
∫
f (x)dx = F (x) and

∫
g(x)dx = G(x). Then

F ′(x) = f (x) and G′(x) = g(x). Hence (F+G)′(x) = F ′(x)+

G′(x) = f (x)+g(x) and so
∫

(f (x)+g(x))dx = (F +G)(x) =

F (x) + G(x) =
∫
f (x)dx +

∫
g(x)dx.

Similarly
∫

(f (x)− g(x))dx =
∫
f (x)dx−

∫
g(x)dx.

(3) To integrate products
∫
f (x)g(x)dx or quotients

∫ f(x)
g(x)dx

we often use ”integration by parts”, which we will not consider

here.

(4) To integrate compositions of the kind
∫

(fog)(x)g′(x)dx

we use ”substitution” which we consider later.

Examples: (i)
∫

4 cosxdx = 4
∫

cosxdx = 4 sinx + c.

(ii)
∫

(x + x2)dx =
∫
xdx +

∫
x2dx = 1

2x
2 + 1

3x
3 + c.

(iii)
∫

(14x6 − 3x2 + 8x + 1)dx = 2x7 − x3 + 4x2 + x + c.

(iv)
∫

x2−2x4

x4
dx =

∫
(x−2 − 2)dx = −1

x − 2x + c.
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(v)
∫

cosx
sin2 x

dx =
∫

1
sinx

cosx
sinxdx =

∫
cscx cotxdx = − cscx + c.

(vi)
∫

sin2 xdx = 1
2

∫
(1− cos 2x)dx = 1

2(x− 1
2 sin 2x) + c.

Suppose that F ′(x) = f (x). For any other function g(x) we

have d
dx(F (g(x)) = F ′(g(x)).g′(x) = f (g(x)).g′(x) (chain

rule). This means that
∫
f (g(x))g′(x)dx = F (g(x)) + c.

Letting u = g(x) this takes the form
∫
f (u)dudxdx = F (u)+c =∫

f (u)du + c.

In practice, given an integral of the form I =
∫
f (g(x))g′(x)dx,

we let u = g(x) and write du = g′(x)dx = du
dxdx to get I =∫

f (u)du+ c = F (u) + c = F (g(x)) + c, where F ′(x) = f (x).

Examples: (i) I =
∫

(x2 + 1)502xdx; let u = x2 + 1 so

that du
dx = 2x or du = 2xdx and I =

∫
u50du = 1

51u
51 + c =

1
51(x2 + 1)51 + c.

(ii) I =
∫

sin(2x+9)dx =
∫

sin(2x+9).1dx; let u = 2x+9 so

that du
dx = 2 or du = 2dx or 1

2du = 1.dx and I = 1
2

∫
sinudu =

−1
2 cosu + c = −1

2 cos(2x + 9) + c.

(iii) I =
∫

cos 7xdx; let u = 7x so that du
dx = 7 or du = 7dx

or 1
7du = dx and I = 1

7

∫
cosudu = 1

7 sinu+ c = 1
7 sin 7x+ c.

(iv) I =
∫

(x − 8)23dx =
∫

(x − 8)23.1dx; let u = x − 8 so
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that du = dx and I =
∫
u23du = 1

24u
24 + c = 1

24(x− 8)24 + c.

In general, if we have a power (including a root) of a linear

function we let u = the linear function.

(v) I =
∫

dx
(x−6)5

=
∫

(x − 6)−5dx; let u = x − 6 so that

du = dx and I =
∫
u−5du = −1

4u
−4 + c = −1

4(x− 6)−4 + c.

(vi) I =
∫
x4
√

3− 5x5dx; let u = 3 − 5x5 so that du =

−25x4dx and I = − 1
25

∫ √
udu = − 2

75u
3
2 + c

= − 2
75(3− 5x5)

3
2 + c.

(vii) I =
∫
x2
√
x− 1dx; let u = x− 1 so that du = dx and

I =
∫

(u + 1)2
√
udu =

∫
(u2 + 2u + 1)

√
udu

=
∫

(u
5
2 + 2u

3
2 + u

1
2)du = 2

7u
7
2 + 4

5u
5
2 + 2

3u
3
2 + c

=
√
u(2

7u
3 + 4

5u
2 + 2

3u) + c

=
√
x− 1(2

7(x− 1)3 + 4
5(x− 1)2 + 2

3(x− 1)) + c.

(viii) I =
∫ cos

√
x√

x
dx; let u =

√
x so that du = 1

2x
−1

2dx =

dx
2
√
x

and I = 2
∫

cosudu = 2 sinu + c = 2 sin
√
x + c.

(ix) I =
∫

sin2 x cosxdx; let u = sinx so that du = cosxdx

and I =
∫
u2du = 1

3u
3 + c = 1

3 sin3 x + c.

(x) I =
∫

sin3 xdx =
∫

sin2 x sinxdx =
∫

(1− cos2 x) sinxdx;

let u = cosx so that du = − sinxdx and I = −
∫

(1−u2)du =

41



−(u− 1
3u

3) + c = 1
3 cos3 x− cosx + c.

As long as we have at least one odd power of sin or cos we can

let u = the function such that du
dx is the function with the odd

power. If both powers are even we must use a double angle

formula

cos 2x = 2 cos2 x− 1 = 1− 2 sin2 x or sin 2x = 2 sinx cosx :

(xi) I =
∫

sin2 x cos2 xdx = 1
4

∫
(1 − cos 2x)(1 + cos 2x)dx =

1
4

∫
(1− cos2 2x)dx = 1

4

∫
(1− 1

2(1 + cos 4x))dx

= 1
4

∫
(1

2−
1
2 cos 4x)dx = 1

8

∫
(1−cos 4x)dx = 1

8(x−1
4 sin 4x)+c.

We could also consider I =
∫

(sinx cosx)2dx =
∫

(1
2 sin 2x)2dx =

1
4

∫
sin2 2xdx = 1

8

∫
(1− cos 4x)dx = 1

8(x− 1
4 sin 4x) + c.
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Definite Integrals

Consider the function f : R −→ R. Let a be any fixed point

in the domain of f .

Let A(x) be the area under the curve y = f (t) between a and

any point x > a. We write A(x) =
x∫
a

f (t)dt and call it the

definite integral of f from a to x.

A(x + h) − A(x) ≈ f (x)h, so A(x+h)−A(x)
h ≈ f (x) and in-

tuitively lim
h→0

A(x+h)−A(x)
h = f (x) i.e. A(x) is differentiable

and A′(x) = f (x) or d
dx

x∫
a

f (t)dt = f (x). This fact is called

the Fundamental Theorem of Calculus and can be proven rig-

orously. Now suppose that g is any antiderivative of f i.e.
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g′(x) = f (x). Then A′(x) = g′(x) = f (x), so (A− g)′(x) = 0

and (A− g)(x) = c, a constant. We have A(x) = g(x) + c for

all x. Taking x = a gives A(a) = g(a) + c or 0 = g(a) + c,

so c = −g(a). Therefore A(x) = g(x) − g(a). Now tak-

ing x = b, for any fixed b gives A(b) = g(b) − g(a) i.e.
b∫
a

f (t)dt = g(b) − g(a) i.e. the area under the curve from

a to b is g(b)− g(a). So to evaluate the area under the curve

y = f (t) or y = f (x) (the name of the variable is now irreve-

lant) we find any antiderivative g(x) and the area is g(b)−g(a)

i.e.
b∫
a

f (t)dt =
b∫
a

f (x)dx = g(b)− g(a). a and b are called the

limits of integration.

Note: (i)
a∫
b

f (x)dx = g(a) − g(b) = −(g(b) − g(a)) =

−
b∫
a

f (x)dx.

(ii) If a < c < b, then
c∫
a

f (x)dx +
b∫
c

f (x)dx = g(c)− g(a) +

g(b)− g(c) = g(b)− g(a) =
b∫
a

f (x)dx.

(iii) If f (x) < 0 on [a, b], then
b∫
a

f (x)dx < 0 and we define

the area as −
b∫
a

f (x)dx.
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(iv) There are functions that have definite integrals but do not

have antiderivatives (see the log function later) so we cannot

use the above to calculate areas.

Examples: (i)
2∫

1

xdx = (1
2x

2)|21 = {(1
2(2)2)− (1

2(1)2)} = 11
4.

(ii)
π∫
0

cosxdx = (sinx)|π0 = sin π − sin 0 = 0. The two halves

of the integral cancel out. In such a case the area is defined as
π
2∫

0

cosxdx−
π∫
π
2

cosxdx = 2.

(iii)
9∫

4

x
√
xdx =

9∫
4

x
3
2dx = (2

5x
5
2)|94 = 2

5{(9)
5
2 − (5)

5
2}.

(iv)

π
3∫

0

sec2 xdx = tanx|
π
3
0 = tan π

3 − tan 0 =
√

3.

(v)

π
2∫

0

sinxdx = − cosx|
π
2
0 = − cos π2 + cos 0 = 1.

(vi)
π∫
π
2

cos2 3xdx = 1
2

π∫
π
2

(1 + cos 6x)dx = 1
2(x + 1

6 sin 6x)|ππ
2

= 1
2{(π + 0)− (π2 + 0)} = π

4 .
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Definite Integrals and Substitution

If I =
b∫
a

f (g(x))g′(x)dx and if F ′(x) = f (x), then

d
dx(F (g(x)) = F ′(g(x))g′(x) = f (g(x))g′(x), so I = F (g(x))|ba =

F (g(b)) − F (g(a)) =
g(b)∫
g(a)

f (u)du, since d
duF (u) = f (u). In

practice, let u = g(x), so du
dx = g′(x) or du = g′(x)dx and

then change the limits into u limits.

Examples: (i) I =
2∫

0

x(x2 + 1)3dx; let u = x2 + 1; then

du
dx = 2x or du = 2xdx.

x = 0⇒ u = 1 and x = 2⇒ u = 5.

Hence I = 1
2

5∫
1

u3du = 1
8(u4)|51 = 1

8(54 − 14) = 78.

(ii) I =

π
8∫

0

sin5 2x cos 2xdx; let u = sin 2x; then du
dx = 2 cos 2x

or du = 2 cos 2xdx.

x = 0⇒ u = sin 0 = 0 and x = π
8 ⇒ u = sin π

4 = 1√
2
.

Hence I = 1
2

1√
2∫

0

u5du = 1
12(u6)|

1√
2

0 = 1
96.

(iii) I =
4∫

3

2x−6
(x2−6x+10)2

; let u = x2−6x+10; then du
dx = 2x−6

or du = (2x − 6)dx. x = 3 ⇒ u = 1 and x = 4 ⇒ u = 2.

Hence I =
2∫

1

du
u2

=
2∫

1

u−2du = −1
u |

2
1 = −1

2 + 1 = 1
2.
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Natural Logarithm Function

Consider the function y = 1
t for t > 0.

We define the natural log (ln) as the function ln : R+ −→ R,

where lnx =
x∫
1

1
tdt.

Note:(i) ln is 1-1 and onto.

(ii) x > 1⇒ lnx > 0, 0 < x < 1⇒ lnx < 0, ln 1 = 0.

(iii) x→∞⇒ lnx→∞, x→ 0⇒ lnx→ −∞.

(iv) d
dx lnx = 1

x > 0 for all x > 0 (by the fundamental theorem

of calculus) so ln is always increasing.
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(v) ln(ab) = ln a + ln b.

Proof: d
dx ln(ax) = 1

ax × a = 1
x = d

dx lnx⇒
d
dx(ln(ax)− lnx) = 0 so ln(ax)− lnx = c (constant);

letting x = 1 gives ln a− ln 1 = c i.e. c = ln a. Now ln(ax) =

lnx + ln a, so letting x = b gives ln(ab) = ln a + ln b.

(vi) ln(ab) = ln a− ln b.

Proof: ln a = ln(ab × b) = ln(ab) + ln b, so ln(ab) = ln a− ln b.

(vii) ln(a
m
n ) = m

n ln a.

Proof: If m ∈ N, then ln(am) = ln a + ln a + · · · + ln a

(m times) = m ln a.

Now ln(a−m) = ln( 1
am) = ln 1− ln(am) = −m ln a.

What about ln(a
1
n)? Let b = a

1
n ; then bn = a, so ln(bn) = ln a

and so n ln b = ln a or ln b = 1
n ln a i.e. ln(a

1
n) = 1

n ln a.

Finally, ln(a
m
n ) = ln((a

1
n)m) = m ln(a

1
n) = m

n ln a.
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Differentiation of Logarithm Functions

If y = ln(f (x)), then dy
dx = 1

f(x).f
′(x).

Examples: (i) y = ln(sinx));

dy
dx = 1

sinx. cosx = cotx.

(ii) y = ln(x2. tanx);

y = ln(x2) + ln(tanx) = 2 ln x + ln(tan x) so

dy
dx = 2

x + 1
tanx. sec2 x = 2

x + 1
sinx cosx.

(iii) y = ln( x2

x2+1
);

y = ln(x2)− ln(x2 + 1) = 2 lnx− ln(x2 + 1) so

dy
dx = 2

x −
1

x2+1
.2x = 2

x −
2x
x2+1

.

(iv) y = ln(x
2. sinx√
x+1

);

y = ln(x2) + ln(sinx) − ln(
√
x + 1) = 2 lnx + ln(sinx) −

1
2 ln(x + 1) so dy

dx = 2
x + 1

sinx. cosx− 1
2.

1
x+1

= 2
x + cot x− 1

2(x+1).

(v) y = x lnx;

dy
dx = x.1x + 1. lnx = 1 + ln x.
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Integration of Logarithm Functions

d
dx lnx = 1

x for x > 0, so
∫

1
xdx = lnx + c.

If x < 0 what is
∫

1
xdx?

Let I =
∫

1
xdx, x < 0 and let u = −x. Then du

dx = −1 or

du = −dx and I =
∫ −du
−u =

∫
1
udu, u > 0,

so I = lnu + c = ln(−x) + c.

In general,
∫

1
xdx = ln | x | +c, but usually the domain

of integration is assumed to be positive and we omit the mod

signs. Any integral of the form I =
∫ f ′(x)

f(x) dx is done by letting

u = f (x) etc.

Examples: (i) I =
∫

1
3x+2dx; let u = 3x + 2; then du

dx = 3

or du = 3dx. Hence I = 1
3

∫
du
u = 1

3 lnu+ c = 1
3 ln(3x+ 2) + c.

(ii) I =
∫

3x2

x3+1
dx; let u = x3 + 1; then du

dx = 3x2

or du = 3x2dx. Hence I =
∫

du
u = lnu + c = ln(x3 + 1) + c.

(iii) I =
2∫

1

2x
x2+1

dx; let u = x2 + 1; then du
dx = 2x

or du = 2xdx.

x = 1⇒ u = 2 and x = 2⇒ u = 5.

Hence I =
5∫

2

du
u = (lnu)|52 = ln 5− ln 2 = ln(5

2).
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(iv) I =
7∫

5

x
x+5dx; let u = x + 5; then du

dx = 1 or du = dx.

Also x = u− 5.

x = 5⇒ u = 10 and x = 7⇒ u = 12.

Hence I =
12∫

10

u−5
u du =

12∫
10

du −
12∫

10

5
udu = (u)|12

10 − 5(lnu)|12
10 =

2− ln(6
5).

(v) I =

π
3∫
π
6

tanxdx =

π
3∫
π
6

sinx
cosxdx; let u = cosx;

then du
dx = − sinx or du = − sinxdx.

x = π
6 ⇒ u = cos π6 =

√
3

2 and x = π
3 ⇒ u = cos π3 = 1

2.

Hence I = −
1
2∫
√
3
2

du
u =

√
3
2∫
1
2

du
u = (lnu)|

√
3
2
1
2

= ln(
√

3
2 )− ln(1

2)

= ln(
(
√
3
2
1
2

) = ln(
√

3) = 1
2 ln 3.

51



Exponential and Power Functions

ln : R+ −→ R : x 7→
x∫
1

1
tdt is 1-1 and onto, so its inverse

exists. Call it exponential, exp, i.e. exp : R −→ R+ is ln−1 .

We have y = expx⇔ ln y = x.

Recall the chain rule for derivatives: (fog)′(x) = f ′(g(x)).g′(x).

Since (f−1of )(x) = x, we get (f−1of )′(x) = 1,

so (f−1)′(f (x)).f ′(x) = 1 or (f−1)′(f (x)) = 1
f ′(x).

If y = f (x) then x = f−1(y) and, in the other notation, we

have dx
dy = 1

dy
dx

.

Now y = exp x ⇔ ln y = x so dy
dx = 1

dx
dy

= 1
1
y

= y = exp x

i.e. d
dx expx = expx. We can also see this by using implicit

differentiation since ln y = x ⇒ 1
y
dy
dx = 1 and so dy

dx = y =

expx.

Note: (i) exp is 1-1 and onto.

(ii) exp 0 = 1 since ln 1 = 0.

(iii) x→∞⇒ expx→∞, x→ −∞⇒ expx→ 0.
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(iv) exp(a + b) = exp a. exp b.

Proof: Let x = exp a and let y = exp b. Then ln x = a

and ln y = b, so that ln(xy) = ln x + ln y = a + b and then

xy = exp(a + b) i.e. exp(a + b) = exp a. exp b.

(v) exp(a− b) = exp a
exp b .

Proof: Let x = exp a and let y = exp b. Then ln x = a

and ln y = b, so that ln(xy ) = ln x − ln y = a − b and then

x
y = exp(a− b) i.e. exp(a− b) = exp a

exp b .

It seems that exp is behaving like a ”power function”, at least

if a and b above are rational numbers. We now define what we

mean by any real number power, not just rational.

Let a > 0 and p, q ∈ Z. We know what a
p
q means, namely

a
p
q = (ap)

1
q . Also, of course, a

p
q = exp(ln(a

p
q )) = exp(pq ln a).

This motivates the following

Definition: For any x ∈ R, ax = exp(x ln a).

Note that ln a is defined since a > 0 and then exp(x ln a) is

defined for all x ∈ R, so this is a valid definition. Also it agrees

with the definition of ax when x is rational. We have extended

the definition of powers from Q to all of R.
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Now for any x ∈ R we have ln(ax) = ln(exp(x ln a)) = x ln a.

Definition: e = exp 1.

Now ex = exp(x ln e) = exp(x.1) = expx, so exp itself is a

power function, namely expx = ex. Also ax = ex ln a.

Definition: We define loga, log to the base a, as the inverse

of ax i.e. y = loga x⇔ ay = x.

Since ln is the inverse of exp x = ex, we see that ln is, in fact,

loge, called log to the natural base, i.e. lnx = loge x.

We can easily change from ony base a to the natural base:

y = loga x⇒ ay = x⇒ ln(ay) = lnx⇒ y ln a = lnx

⇒ y = lnx
ln a i.e. loga x = lnx

ln a .

We have the following diagram for powers and logs:
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Differentiation of Exponential Functions

y = ef(x) ⇒ dy
dx = ef(x).f ′(x).

Examples: (i) y = e4x2; dy
dx = e4x2.8x.

(ii) y = x2.ecosx; dy
dx = x2.ecosx.(− sinx) + 2x.ecosx

= x.ecosx(2− x sinx).

(iii) y = ln( ex

1+ex) = ln(ex)− ln(1 + ex) = x− ln(1 + ex);

dy
dx = 1− 1

1+ex .e
x = 1

1+ex .

(iv) y = ln(ex. sinx) = ln(ex) + ln(sinx) = x + ln(sin x);

dy
dx = 1 + 1

sinx. cosx = 1 + cot x.

(v) y = ax = ex ln a; dy
dx = ex ln a. ln a = ln a.ax.

We could also use implicit differentiation: y = ax ⇒ ln y =

ln(ax) = x ln a, so 1
y .
dy
dx = ln a and hence dy

dx = ln a.y = ln a.ax.

(vi) y = loga x = lnx
ln a ; dy

dx = 1
ln a.

1
x.
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Integration of Exponential Functions

d
dxe

x = ex ⇒
∫
exdx = ex + c.

Any integral of the form I =
∫
ef(x).f ′(x)dx is done by letting

u = f (x) etc.

Examples: (i) I =
∫
e3x−2dx; let u = 3x− 2; then du

dx = 3

or du = 3dx. Hence I = 1
3

∫
eudu = 1

3e
u + c = 1

3e
3x−2 + c.

(ii) I =
1∫

0

4xex
2
dx; let u = x2; then du

dx = 2x or du = 2xdx.

x = 0⇒ u = 0 and x = 1⇒ u = 1.

Hence I = 2
1∫

0

eudu = 2(eu)|10 = 2(e− 1).

(iii) I =

π
2∫

0

esinx cosxdx; let u = sinx; then du
dx = cosx or

du = cosxdx.

x = 0⇒ u = 0 and x = π
2 ⇒ u = 1.

Hence I =
1∫

0

eudu = (eu)|10 = (e− 1).

(iv) I =
1∫

0

e2x+4
ex dx =

1∫
0

(ex + 4e−x)dx = (ex − 4e−x)|10 =

{(e− 4
e)− (1− 4)} = e− 4

e + 3.

(v) I =
1∫

0

ex

ex+1dx; let u = ex+1; then du
dx = ex or du = exdx.

x = 0⇒ u = 2 and x = 1⇒ u = e + 1.

Hence I =
e+1∫
2

1
udu = (lnu)|e+1

2 = ln(e+1
2 ).
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Differential Equations

A linear first order differential equation is an equation of the

form

f (x)dydx + g(x)y = h(x)

where f (x) 6= 0 on some interval I . A solution of the equation

is any function y(x) that satisfies it. The equation is homo-

geneous if h(x) = 0. We shall consider only homogeneous

equations here. The equation is called linear since if y1(x) and

y2(x) are solutions of the homogeneous equation, then so is

y1(x) + y2(x) and y1(x)− y2(x) and αy1(x) for all α ∈ R. We

solve the equation

f (x)dydx + g(x)y = 0

by ”separating the variables”:

f (x)dydx = −g(x)y

⇒ 1
y
dy
dx = − g(x)

f(x), assuming y 6= 0 on I ,

⇒
∫

1
y
dy
dxdx = −

∫ g(x)
f(x)dx

⇒
∫

1
ydy = −

∫ g(x)
f(x)dx, by the substitution formula,

⇒ ln y = −
∫ g(x)

f(x)dx = −j(x) + c, say, assuming y > 0 on I ,

⇒ y = e−j(x)+c = e−j(x)ec = De−j(x), letting D = ec.
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Examples: (i) xdydx + y = 0, I = (0,∞).

xdydx + y = 0⇒ 1
y
dy
dx = −1

x

⇒
∫

1
y
dy
dxdx =

∫
1
ydy = −

∫
1
xdx⇒ ln y = − lnx + c

⇒ y = e−lnx+c = De−lnx = Deln 1
x = D.1x, D a constant.

(ii) (3x2 + 1)dydx − 2xy = 0, I = (−∞,∞).

(3x2 + 1)dydx − 2xy = 0⇒ 1
y
dy
dx = 2x

3x2+1

⇒
∫

1
y
dy
dxdx =

∫
1
ydy =

∫
2x

3x2+1
dx⇒ ln y = 1

3 ln(3x2 + 1) + c

⇒ y = De
1
3 ln(3x2+1) = Deln(3x2+1)

1
3 = D(3x2 + 1)

1
3 .

Exercise: (i) xdydx + 2y = 0, I = (0,∞)

(ii) dy
dx − (tanx)y = 0, I = (−∞,∞).

Every linear first order differential equation has infinitely many

solutions (take different values for the constant D). However,

if we specify that y must be a particular value for some given

value of x, y(x0) = y0 say, then we get a unique solution since

we can solve for D. The equation f (x)dydx + g(x)y = 0 with

the condition y(x0) = y0 is called an initial-value problem.

Examples: (i) 2dydx+3y = 0, y(−3) = −3, I = (−∞,∞).

2dydx + 3y = 0⇒
∫

1
ydy = −

∫
3
2dx

⇒ ln y = −3
2x + c⇒ y = De−

3
2x;
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Now y(−3) = −3 ⇒ −3 = De
3
2 .3 = De

9
2 , so D = −3e−

9
2 ,

and hence y = −3e−
9
2e−

3
2x = −3e−

3
2(x+3).

(ii) dy
dx + (cot x)y = 0, y(π2) = 1, I = (0, π).

dy
dx + (cot x)y = 0⇒

∫
1
ydy = −

∫
cotxdx

⇒ ln y = − ln(sinx) + c ⇒ y = De− ln(sinx) = Deln( 1
sinx) =

D. 1
sinx;

Now y(π2) = 1⇒ 1 = D(1
1), so D = 1 and y = 1

sinx.

Definition: A quantity is said to have an exponential growth

(decay) model if it increases (decreases) at a rate that is pro-

portional to the amount of the quantity present at any given

time. Mathematically we have

dy
dt = ky, k > 0 (growth) and dy

dt = −ky, k > 0 (decay).

k is called the growth (decay) constant.

dy
dt = ky ⇒

∫
dy
y = k

∫
dt⇒ ln y = kt + c

⇒ y = ektec = Dekt, for some constant D. Taking t = 0 gives

y(0) = De0, so D = y(0), the initial value of the quantity.

Similarly, if dy
dt = −ky, k > 0, we get y = De−kt.

k is often called the relative growth rate,
dy
dt
y , i.e. the growth

rate as a fraction of the quantity, which is constant over time.
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It is usually given as a percentage e.g. a relative growth rate

of 5 percent per unit of time means that k = .05.

The time required for the initial quantity to double is called

the doubling time : Suppose y = y0e
kt, where y0 = y(0) is the

initial size. Then 2y0 = y0e
kt ⇒ 2 = ekt, so that kt = ln 2

and t = ln 2
k is the doubling time. This is usually denoted by

T i.e. T = ln 2
k .

For decaying the time taken for half the quantity to decay is

called the half-life: we get 1
2y0 = y0e

−kt ⇒ 1
2 = e−kt, so that

−kt = − ln 2 and t = ln 2
k again.

Examples: (i) Suppose that an initial population of a colony

of bacteria is 10,000 and that the colony grows exponentially

at the rate of 1 per cent per hour and that y = y(t) is the

number of bacteria present t hours later.

(a) Find an initial-value problem whose solution is y(t).

(b) Solve for y(t).

(c) How long does it take the population to double?

(d) How long does it take the population to reach45,000?
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(a) dy
dt = ky, k > 0, y(0) = 10, 000.

(b) dy
dt = ky ⇒

∫
dy
y = k

∫
dt⇒ ln y = kt + c

⇒ y = ektec = Dekt, for some constant D.

Now k = .01 = 1
100, so y = De

1
100t; to find D we have

y(0) = 10, 000 ⇒ 10, 000 = De0 = D. The full solution is

y(t) = 10, 000e
1

100t.

(c) 20, 000 = 10, 000e
1

100t ⇒ e
1
100t = 2, so T = 100 ln 2 hours.

We could just use the formula T = ln 2
k .

(d) 45, 000 = 10, 000e
1

100t ⇒ e
1
100t = 4.5, so t = 100 ln 4.5

hours.

(ii) A cell of e.coli divides into two cells every 20 minutes when

placed in a nutrient culture. Let y = y(t) be the number

of cells present t minutes after a single cell is placed in the

culture and assume that the growth rate is approximated by a

continuous exponential growth model.

(a) Find an initial-value problem whose solution is y(t).

(b) Solve for y(t).

(c) How many cells are present after 2 hours?

(d) How long does it take for the number of cells to reach
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1,000,000?

(a) dy
dt = ky, k > 0, y(0) = 1.

(b) dy
dt = ky ⇒

∫
dy
y = k

∫
dt⇒ ln y = kt + c

⇒ y = ektec = Dekt, for some constant D. Also y(0) = 1 ⇒

D = 1, so y(t) = ekt.

Now T = 20, so 20 = ln 2
k or k = ln 2

20 and so y(t) = e
ln 2
20 t.

(c) y(120) = e
ln 2
20 .120 = e6 ln 2 cells.

(d) 1, 000, 000 = e
ln 2
20 t ⇒ ln 2

20 t = ln(106) = 6 ln 10,

so t = 120 ln 10
ln 2 minutes.

(iii) In a certain culture of bacteria the number of bacteria

increased sixfold in 10 hours. How long did it take for the

population to double, assuming that the growth rate is ap-

proximated by a continuous exponential growth model?

y = y0e
kt ⇒ 6y0 = y0e

10k, so k = ln 6
10 . Doubling time is T =

ln 2
k = 10 ln 2

ln 6 hours. Alternatively, 2y0 = y0e
kT ⇒ ekT = 2, so

T = ln 2
k = 10 ln 2

ln 6 hours.
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