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Some Definitions

Definition: A function f : [a, b]→ R is piecewise contin-

uous if [a, b] can be divided into a finite number of subintervals

on the interiors of which f is continuous and has finite left-hand

and right-hand limits at all the endpoints of these subintervals.

Example:

f is piecewise continuous on [0, 3].

Let Cp[a, b] denote the set of all piecewise continuouos func-

tions on [a, b]. Then Cp[a, b] is a vector space under function

addition and scalar multiplication. If x0 is an endpoint of some

subinterval we write lim
x→x+0

f (x) = f (x0+) and lim
x→x−0

f (x) =

f (x0−). If f is continuous at x0, then both of those limits are

the same.

Definition: f : R → R is periodic if there exists some

T 6= 0 such that f (x+ T ) = f (x) for all x ∈ R. The smallest
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positive such T is called the period of f .

Example: (i) f (x) = sin x is periodic with period 2π, so

f (x) = sinnx is periodic with period 2π
n since sinn(x+ 2π

n ) =

sin(nx + 2π) = sinnx.

(ii) f (x) = c, a constant, is periodic but does not have a

period.

(iii) f (x) = x2 is not periodic.

Note: The sum and the product of periodic functions is

usually periodic.

Definition: f : R → R is even if f (−x) = f (x) for all x

and f is odd if f (−x) = −f (x) for all x.

Example: cos is even and sin is odd.

Note that (even)(even) = even, (odd)(odd) = even and (even)(odd)

= odd.

Theorem: If f is even, then
a∫
−a
f (x)dx = 2

a∫
0

f (x)dx and

if f is odd, then
a∫
−a
f (x)dx = 0.

Proof:
a∫
−a
f (x)dx =

0∫
−a
f (x)dx +

a∫
0

f (x)dx. Making the

substitution u = −x in the first integral gives
a∫
0

f (−u)du =
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a∫
0

f (−x)dx. Hence both results.

We will need to consider the vector space nature of Cp[a, b], so

we recall the abstract definition of a vector space.

Definition: A set V along with an operation + : V ×V → V

( addition) and an operation . : R× V → V (scalar multipli-

cation) is called a real vector space if the following properties

hold

(i) u + v = v + u ∀u, v ∈ V (commutivity)

(ii) (u+ v) +w = u+ (v+w) ∀u, v, w ∈ V ( associativity)

(iii) ∃ an element 0 ∈ V such that u + 0 = 0 + u ∀u ∈ V

( zero element)

(iv) Given any v ∈ V ∃ − v ∈ V such that v + (−v) =

(−v) + v = 0 ( inverse element)

(v) α.(u + v) = α.u + α.v ∀α ∈ R, u, v ∈ V

(vi) (α + β).u = α.u + β.u ∀α, β ∈ R, u ∈ V

(vii) α.(β.u) = (αβ).u ∀α, β ∈ R, u ∈ V ( (v), (vi), (vii)

imply distributivity)

(viii) 1.u = u ∀u ∈ V .
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R3

Recall the structure of R3:

R3 = {(a, b, c)|a, b, c ∈ R}, where we write ~v = (a, b, c). If

~i = (1, 0, 0),~j = (0, 1, 0) and ~k = (0, 0, 1), then ~v = (a, b, c) =

a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = a~i+ b~j+ c~k, where addition

and scalar mutiplication is defined componentwise. We say

that R3 is a vector space with a basis {~i,~j,~k}.

Thr scalar (dot) product on R3 is defined by (a, b, c).(d, e, f ) =

ad + be + cf so that ~i.~i = ~j.~j = ~k.~k = 1.

We define ~u ⊥ ~v if and only if ~u.~v = 0, so ~i,~j and ~k are

mutually perpendicular.

The norm or length of ~v is defined by ‖~v‖ =
√
~v.~v =

√
a2 + b2 + c2

and the distance from ~u to ~v is ‖~u− ~v‖.

Note that if ~v = (a, b, c) = a~i+ b~j + c~k, then a = ~v.~i, b = ~v.~j

and c = ~v.~k.

Since every basis of R3 has three elements we say that R3 is

three-dimensional. Other vector spaces are infinite-dimensional

e.g. Cp[a, b].
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The Vector Space Cp[a, b]

We define an inner product onCp[a, b] by (f, g) =
b∫
a

f (x)g(x)dx.

Then f ⊥ g if (f, g) = 0. In this case we say that f is

orthogonal to g. We write ”the norm of f” to be ‖f‖ =√
(f, f ) = (

b∫
a

f 2(x)dx)
1
2 and ”the distance from f to g” as

‖f − g‖ = (
b∫
a

(f (x)− g(x))2dx)
1
2 . We say that f is normal if

‖f‖ = 1 i.e.
b∫
a

f 2(x)dx = 1.

A set of functions {φ0, φ1, ..., φn, ...} is orthonormal if

‖φn‖ = 1 for all n and (φn, φm) = 0 for all n 6= m.

Given a set of orthogonal functions {ψ0, ψ1, ..., ψn, ...} we get

an orthonormal set by taking φn = ψn
‖ψn‖ for all n.

Example: Consider [0, π] and {1, cosx, cos 2x, ..., cosnx, ...}.

(
π∫
0

12dx)
1
2 =
√
π. (

π∫
0

cos2 nxdx)
1
2 = (12

π∫
0

(1+cos 2nx)dx)
1
2 =

(12(x + 1
2n sin 2nx)|π0)

1
2 = (12[(π − 0) − (0 − 0)])

1
2 =

√
π
2 . Also

we get
π∫
0

cosnx cosmxdx = 0 for all n 6= m. Hence

{1, cosx, cos 2x, ..., cosnx, ...} is an orthogonal set and

{ 1√
π
,
√

2
π cosnx|n = 1, 2, 3...} is an orthonormal set inCp[0, π].

Similarly the set {sinx, sin 2x, ..., sinnx, ...} is an orthogonal
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set and {
√

2
π sinnx|n = 1, 2, 3...} is an orthonormal set in

Cp[0, π].
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Generalized Fourier Series

Let {φn} be an orthonormal set in Cp[a, b]. Consider any f ∈

Cp[a, b] and let cn = (f, φn) for all n. Is it possible to write

f as an infinite series f =
∞∑
n=0

cnφn, where convergence is in

the norm ‖ ‖, or better still, f (x) =
∞∑
n=0

cnφn(x), for all

x ∈ [a, b], where convergence is now the usual convergence in

R? This is analagous to any vector ~v ∈ R3 being written as

~v = a~i + b~j + c~k, where a = ~v.~i, b = ~v.~j and c = ~v.~k.

We call the series
∞∑
n=0

cnφn(x), where cn = (f, φn) =
b∫
a

f (x)φn(x)dx

for all n, the generalized Fourier series of f (x). We don’t yet

know whether this series actually converges for any x ∈ [a, b]

or, if it does converge, whether the limit is equal to f (x). We

write f (x) ∼
∞∑
n=0

cnφn(x) to mean that the right-hand side is

the series so obtained from f (x) leaving aside the questions of

convergence for the moment. The theory of Fourier series tells

us that for some subsets of Cp[a, b] and for some orthonormal

sets {φn(x)} we do in fact have convergence and equality.

Consider Cp[−π, π] and the set {cosnx, sinmx}, n,m ∈ N.
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We have
π∫
−π

sinmx cosnxdx = 0 for allm,n;
π∫
−π

sinmx sinnxdx

and
π∫
−π

cosmx cosnxdx both = π, if m = n and 0 if m 6= n.

Also for n = 0 we get
π∫
−π

cos2 0xdx = 2π.

Hence the set { 1√
2π
, 1√

π
cosnx, 1√

π
sinnx}, n = 1, 2, 3, forms

an orthonormal set in Cp[−π, π].

Letting c0 = 1√
2π

π∫
−π
f (x)dx, cn = 1√

π

π∫
−π
f (x) cosnxdx and

dn = 1√
π

π∫
−π
f (x) sinnxdx we have

f (x) ∼ c0√
2π

+
∞∑
n=1

(cn
cosnx√

π
+ dn

sinnx√
π

),

so that f (x) ∼ a0
2 +

∞∑
n=1

(an cosnx + bn sinnx), where

a0
2 = c0√

2π
, so a0 = 1

π

π∫
−π
f (x)dx, an = cn√

π
= 1

π

π∫
−π
f (x) cosnxdx

and bn = dn√
π

= 1
π

π∫
−π
f (x) sinnxdx. This is called the Fourier

series associated with f (x).

Example:

f (x) =

 x + π, −π ≤ x < 0

0, 0 ≤ x ≤ π
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a0 = 1
π

π∫
−π
f (x)dx = 1

π

0∫
−π

(x + π)dx = 1
π(12x

2 + πx)|0−π =

− 1
π(12π

2 − π2) = π
2 .

an = 1
π

π∫
−π
f (x) cosnxdx = 1

π

0∫
−π

(x + π) cosnxdx =

1
π

0∫
−π
x cosnxdx+

0∫
−π

cosnxdx = 1
π [( 1nx sinnx)|0−π− 1

n

0∫
−π

sinnxdx]

+ ( 1n sinnx)|0−π = − 1
πn

0∫
−π

sinnxdx = − 1
πn(− 1

n cosnx)|0−π =

1
πn2

(1− cosnπ).

bn = 1
π

π∫
−π
f (x) sinnxdx = 1

π

0∫
−π

(x + π) sinnxdx =

1
π

0∫
−π
x sinnxdx+

0∫
−π

sinnxdx = 1
π [(− 1

nx cosnx)|0−π+ 1
n

0∫
−π

cosnxdx]

− ( 1n cosnx)|0−π = 1
π [−π

n cosnπ) + ( 1
n2

sinnx)|0−π]

+ (− 1
n + 1

n cosnπ) = − 1
n.

Therefore f (x) ∼ π
4 +

∞∑
n=1

[ 1
πn2

(1− cosnπ) cosnx− 1
n sinnx].

Note: Recall that if f (x) is an odd function and c is any

real number, then
c∫
−c
f (x)dx = 0. Similarly, if f (x) is an even

function, we get that
c∫
−c
f (x)dx = 2

c∫
0

f (x)dx.

Example: f (x) = |x|, x ∈ [−π, π].
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Since |x| is even we get a0 = 2
π

π∫
0

xdx = π. Also an =

2
π

π∫
0

x cosnxdx = 2
πn2

(cosnπ − 1) and bn = 0 for all n ≥ 1.

Therefore |x| ∼ π
2 + 2

π

∞∑
n=1

1
n2

(cosnπ − 1) cosnx.

In general, if f (x) is even, then bn = 0 for all n ≥ 1 and

an = 2
π

π∫
0

f (x) cosnxdx for all n ≥ 0. Hence f (x) ∼ a0
2 +

∞∑
n=1

an cosnx. If f (x) is odd, then an = 0 for all n ≥ 0 and

bn = 2
π

π∫
0

f (x) sinnxdx for all n ≥ 1. Hence f (x) ∼
∞∑
n=1

bn sinnx.

Example:

f (x) =

 −1, −π ≤ x < 0

1, 0 ≤ x ≤ π

Note that f (x) is an odd function on [−π, π]. Hence an = 0

for all n ≥ 0. Also bn = 2
π

π∫
0

f (x) sinnxdx for all n ≥ 1,

so bn = 2
π

π∫
0

1. sinnxdx = 2
π(− 1

n cosnx)|π0 = 2
πn(1 − cosnπ).

Therefore f (x) ∼
∞∑
n=1

2
πn(1− cosnπ) sinnx.
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Convergence of Fourier Series

We now discuss the convergence of Fourier series. There are

two types of convergence

(i) Convergence in the norm or convergence in the mean and

(ii) Pointwise convergence.

(i) Suppose the f ∈ Cp[−π, π]; Then we write

f (x) ∼ a0
2 +

∞∑
n=1

(an cosnx + bn sinnx), as before.

Let SN(x) = a0
2 +

N∑
n=1

(an cosnx + bn sinnx). Convergence in

the norm (mean) means that SN → f as N →∞ in ‖ ‖ i.e.

‖f − SN‖ → 0 as N → ∞ or
π∫
−π

(f (x) − SN(x))2dx → 0 as

N →∞. We have

Theorem: If f ∈ Cp[−π, π] (in fact f can belong to a

larger space called square-integrable functions), then SN → f

in the norm.

This result is theoretically interesting but not very useful for

our purposes.

(ii) Now suppose that both f and f
′ ∈ Cp[−π, π]. Such a

function is called piecewise smooth. We have

Theorem: If f is piecewise smooth on [−π, π], then
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SN(x)→ 1
2(f (x+) + f (x−)) or 1

2(f (x+) + f (x−)) =

a0
2 +

∞∑
n=1

(an cosnx + bn sinnx) for all x ∈ (−π, π). If f is

continuous at x, then 1
2(f (x+) + f (x−)) = f (x), so that

f (x) = a0
2 +

∞∑
n=1

(an cosnx + bn sinnx).

If f : R → R is piecewise smooth and periodic of period 2π,

then this result applies for all x ∈ R.

Example:

f (x) =

 −1, −π ≤ x < 0

1, 0 ≤ x ≤ π

For all x ∈ (−π, π) we have 1
2(f (x+) + f (x−)) =

∞∑
n=1

2
πn(1−cosnπ) sinnx. So x = 0 gives 1−1

2 = 0 and at x = π
2

we get 1 =
∞∑
n=1

2
πn(1− cosnπ) sinnπ2

= 4
π

∞∑
m=0

1
2m+1 sin(2m + 1)π2 = 4

π

∞∑
m=0

(−1)m
2m+1 , so π

4 =
∞∑
m=0

(−1)m
2m+1 .
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Functions of any Period

Suppose that f : R → R is piecewise smooth and periodic of

period 2L. Let u = π
Lx and set g(u) = f (x) = f (Lπu). We

have g : [−π, π]→ [−L,L]→ R, where g = f ◦ Lπ on R. Then

g(u+ 2π) = f (Lπ (u+ 2π)) = f (Lπu+ 2L) = f (Lπu) = g(u), so

g has period 2π.

Therefore g(u) = a0
2 +

∞∑
n=1

(an cosnu + bn sinnu), with

a0 = 1
π

π∫
−π
g(u)du = 1

π

π∫
−π
f (Lπu)du, an = 1

π

π∫
−π
g(u) cosnudu =

1
π

π∫
−π
f (Lπu) cosnudu and similarly bn = 1

π

π∫
−π
g(u) sinnudu =

1
π

π∫
−π
f (Lπu) sinnudu.

Making the change of variable x = L
πu we get that

a0 = 1
L

L∫
−L
f (x)dx, an = 1

L

L∫
−L
f (x) cos nπL xdx and

bn = 1
L

L∫
−L
f (x) sin nπ

L xdx, so

f (x) = a0
2 +

∞∑
n=1

(an cos nπL x + bn sin nπ
L x).

A piecewise smooth function defined on an interval can be

extended periodically to all of R and then we can apply the

theorem to any interval.
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Example: Find the Fourier series of the periodic extension

of the function

f (x) =


0, −2 ≤ x < −1

k, −1 ≤ x ≤ 1

0, 1 < x ≤ 2

The period is 2L = 4 so L = 2. Then a0 = 1
2

2∫
−2
f (x)dx =

1
2

1∫
−1
kdx = k, an = 1

2

2∫
−2
f (x) cos nπ2 xdx = 1

2

1∫
−1
k cos nπ2 xdx =

2k
nπ sin nπ

2 and bn = 0 for all n since f is an even function.

Therefore f (x) = k
2 + 2k

π

∞∑
n=1

1
n sin nπ

2 cos nπ2 x.

Exercise: Find the Fourier series of the 2L-periodic exten-

sion of the function

f (x) =

 0, −L ≤ x < 0

x, 0 ≤ x ≤ L
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Sine and Cosine Series

If a function f is defined on [0, L] only we can extend the

definition of f to an even (odd) function on all of [−L,L] and

then extend to a 2L-periodic function on all of R. The even

extension of f is given by

fe(x) = f (x) for 0 ≤ x ≤ L and fe(x) = f (−x) for −L ≤

x ≤ 0.

Obviously fe(−x) = fe(x) for all x ∈ [−L,L].

The odd extension of f is given by

fo(x) = f (x) for 0 ≤ x ≤ L and fo(x) = −f (−x) for −L ≤

x ≤ 0.

Then we get fo(−x) = −fo(x) for all x ∈ [−L,L].

Now fe(x) = a0
2 +

∞∑
n=1

an cos nπL x and fo(x) =
∞∑
n=1

bn sin nπ
L x

for all x ∈ [−L,L], where a0 = 1
L

L∫
−L
fe(x)dx = 2

L

L∫
0

f (x)dx,

an = 1
L

L∫
−L
fe(x) cos nπL xdx = 2

L

L∫
0

f (x) cos nπL xdx and
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bn = 1
L

L∫
−L
fo(x) sin nπ

L xdx = 2
L

L∫
0

f (x) sin nπ
L xdx. In particular

this is true for all x ∈ [0, L], so we have sine and cosine Fourier

series for f (x) on [0, L].

Example: Find the Fourier sine and cosine series for f (x) =

x on [0, L].

a0 = 2
L

L∫
0

xdx = L, an = 2
L

L∫
0

x cos nπL xdx = 2
L[(x L

nπ sin nπ
L x)|L0−

L∫
0

L
nπ sin nπ

L xdx] = 2
L[ L2

n2π2
cos nπL ]|L0 = 2L

n2π2
(cosnπ − 1) and

bn = 2
L

L∫
0

x sin nπ
L xdx = 2

L[(−x L
nπ cos nπL x)|L0 +

L∫
0

L
nπ cos nπL xdx]

= −2L
nπ cosnπ.

Hence the sine series for f (x) is x = −2L
π

∞∑
n=1

cosnπ
n sin nπ

L x and

the cosine series is x = L
2 + 2L

π2

∞∑
n=1

(cosnπ−1)
n2

cos nπL x.
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DIFFERENTIAL EQUATIONS
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Ordinary Differential Equations

We first need to briefly consider second order linear ordinary

differential equations. A second order linear ordinary differen-

tial equations is an equation of the form

y
′′
(x) + p(x)y

′
(x) + q(x)y(x) = r(x)

or simply y
′′
+p(x)y

′
+q(x)y = r(x), where y is a real or com-

plex valued function of a real variable x and p(x), q(x), r(x)

are real-valued functions of x. It is homogeneous if r(x) = 0.

If we insist that y(x0) = k0 and y
′
(x0) = k1 for some x0 ,

where k0 and k1, are real or complex constants, then we get

the

Theorem: If p(x) and q(x) are continuous on some open

interval I and x0 ∈ I, then the initial-value problem

y
′′

+ p(x)y
′
+ q(x)y = 0, y(x0) = k0, y

′
(x0) = k1

has a unique solution y(x) on I .

This is an example of an existence and uniqueness result. We

can use any method we like to find this unique solution.

Defining the differential operator L by

L = d2

dx2
+ p(x) d

dx + q(x)

20



gives the equation in the form L(y) = r(x) with L(y) = 0 in

the homogeneous case. We have the obvious result, called the

principle of superposition:

Theorem: If y1 and y2 satisfy L(y) = 0 , then so does

αy1 + βy2 for any real or complex numbers α, β.

Theorem: The solution space of L(y) = 0 on the open

interval I is two-dimensional.

Proof: Let x0 be some point in I . Let y1(x) be the unique

solution satisfying y1(x0) = 1 and y′1(x0) = 0 and let y2(x) be

the unique solution satisfying y2(x0) = 0 and y′2(x0) = 1. Then

y1 and y2 are linearly independent (consider the Wronskian).

Suppose that y is any other solution. Letting k1 = y(x0) and

k2 = y′(x0) we get that y and k1y1 + k2y2 are solutions with

the same initial conditions and hence, by uniqueness, are the

same. We conclude that y1 and y2 form a basis for the solution

space.

We shall be interested in the case where p(x) = a and q(x) = b

where a and b are real constants i.e.

y′′ + ay′ + by = 0.
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Recalling that a first order linear differential equation y′+ky =

0 has a solution y = e−kx we try a solution y = eλx for the

second order equation. Substituting into the equation gives

(λ2 +aλ+ b)eλx = 0 and hence λ2 +aλ+ b = 0. This is called

the characteristic equation. Its roots are λ1 = −a+
√
a2−4b
2 and

λ2 = −a−
√
a2−4b
2 with corresponding solutions eλ1x and eλ2x.

We have three cases:

(1) a2 − 4b > 0, two real roots

(2) a2 − 4b = 0, one real double root

(3) a2 − 4b < 0, two fully complex roots.

In case (1) y1 = eλ1x and y2 = eλ2x are linearly independent

and so constitute a basis for the solution space on any interval

I and the general solution is y = c1y1 + c2y2 i.e.

y = c1e
λ1x + c2e

λ2x.

In case (2) we only get one root λ1 = λ2 = −a
2 and hence only

one solution y1 = e−
a
2x. To find a second linearly independent

solution we try a solution of the form y2 = uy1, where u(x) is

some function to be determined. Differentiating gives

y′2 = u′y1 + uy′1 and y′′2 = u′′y1 + 2u′y′1 + uy′′1
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and now substituting into the equation we get

(u′′y1 + 2u′y′1 + uy′′1 ) + a(u′y1 + uy′1) + buy1 = 0.

Rearranging gives

u′′y1 + u′(2y′1 + ay1) + u(y′′1 + ay′1 + by1) = 0.

Now the two terms in brackets are 0, so u′′y1 = 0 i.e.

u′′e−
a
2x = 0. Hence u′′ = 0 and so u = d1x + d2 for any

constants d1 and d2. Taking d1 = 1 and d2 = 0 gives u(x) = x.

We conclude that y2(x) = xy1(x) = xe−
a
2x is a second solution.

y1 and y2 are easily seen to be linearly independent on any

interval I and so the general solution is y = c1y1 + c2y2 i.e.

y = (c1 + c2x)e−
a
2x.

In case (3) we have λ1 = −a
2 +

√
a2−4b
2 = −a

2 + i
√
4b−a2
2 =

−a
2 + i

√
b− a2

4 . Writing ω2 = b− a2

4 gives roots λ1 = −a
2 + iω

and λ2 = −a
2 − iω. Then eλ1x and eλ2x are complex solutions.

Now es+it = eseit = es(cos t + i sin t), so

eλ1x = e−
a
2x(cosωx + i sinωx)

and eλ2x = e−
a
2x(cosωx− i sinωx).

Now 1
2(eλ1x + eλ2x) and 1

2i(e
λ1x − eλ2x) are also solutions i.e.

e−
a
2x cosωx and e−

a
2x sinωx are solutions and are obviously
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linearly independent. Hence the general solution is

y = e−
a
2x(A cosωx + B sinωx).

Example: Solve the initial-value problem

y′′ + y′ − 2y = 0, y(0) = 4, y′(0) = −5.

Characteristic equation is λ2 +λ−2 = 0 with roots 1 and −2.

General solution is y = c1e
x + c2e

−2x. The initial conditions

imply that c1 + c2 = 4 and c1 − 2c2 = −5. Hence c1 = 1 and

c2 = 3 and the solution is y = ex + 3e−2x.

Example: Solve the initial-value problem

y′′ − 4y′ + 4y = 0, y(0) = 3, y′(0) = 1.

Characteristic equation is λ2−4λ+4 = 0 with a single real root

2. General solution is y = (c1 + c2x)e2x. The initial conditions

imply that c1 = 3 and 2c1+c2 = 1. Hence c1 = 3 and c2 = −5

and the solution is y = (3− 5x)e2x.

Example: Solve the initial-value problem

y′′ + 2y′ + 5y = 0, y(0) = 1, y′(0) = 5.

Characteristic equation is λ2+2λ+5 = 0 with roots−1+2i and

−1−2i. General solution is y = e−x(A cos 2x+B sin 2x). The

initial conditions imply that A = 1 and −A+ 2B = 5. Hence
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A = 1 andB = 3 and the solution is y = e−x(cos 2x+3 sin 2x).
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General Partial Differential Equations

A partial differential equation (PDE) is an equation involving

partial derivatives. The order of the equation is the highest

partial derivative in the equation.

Example: ∂u
∂t = ∂u

∂x is first order, ∂2u
∂t2
− ∂u

∂x = f (x, t) is

second order etc.

A PDE can have any number of variables ≥ 2.

Example: ut = uxx has 2 variables, namely t and x,

ut = urr + 1
rur + uθθ has 3 variables, namely t, r and θ, etc.

A second order equation in 2 variables is linear if it is of the

form Auxx + Buxy + Cuyy + Dux + Euy + Fu = G, where

A,B,C,D,E, F and G are functions of x and y i.e. there

exists a linear operator L such that Lu = G, where

L = A ∂2

∂x2
+ B ∂2

∂x∂y + C ∂2

∂y2
+ D ∂

∂x + E ∂
∂y + F .

Example: utt = e−xuxx + sin t (linear)

uuxx + ut = 0 (non-linear)

uxx + yuyy = 0 (linear)

xux + yuy + u2 = 0 (non-linear).

We shall be interested in the linear case only. The general
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linear equation above is homogeneous if G = 0. Otherwise it

is inhomogeneous.

A solution of a PDE in some region R of the space of the

variables involved is a function of the variables that has all

the partial derivatives appearing in the equation in some do-

main containing R and satisfies the equation everywhere in R.

Usually there are many such solutions. However if we impose

conditions that the solutions must satisfy on the boundary of

R (boundary conditions) or, if one of the variables is time t, at

t = 0 (initial conditions), then hopefully we can get a unique

solution. This is our objective. The boundary and initial con-

ditions arise from physical considerations in each particular

case.

Important PDEs from physics:

∂u
∂t = c∂

2u
∂x2

(one-dimensional heat equation)

∂2u
∂t2

= c2∂
2u
∂x2

(one-dimensional wave equation)

∂2u
∂x2

+ ∂2u
∂y2

= 0 (two-dimensional Laplace equation)

∇2u = 0 (three-dimensional Laplace equation).

These equations arise in many areas of physics. Our task is
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to solve these equations given various boundary and initial

conditions.

Note: Some PDEs can be solved by integrating.

Example: Solve uxx − u = 0, where u = u(x, y).

For each y we consider u as a function of x and use ODE

techniques to solve:

d2u
dx2
− u = 0 has characteristic equation λ2 − 1 = 0, so any

solution has the form A(y)ex + B(y)e−x.

Example: Solve uxy = −ux, where u = u(x, y).

∂2u
∂x∂y = −∂u

∂x; letting ux = p gives ∂p
∂y = −p, so

∫
dp
p = −

∫
dy;

hence ln p = −y+c, so p = De−y for each x i.e. ∂u
∂x = D(x)e−y.

We conclude that u = e−y
∫
D(x)dx + g(y).
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The Heat Equation

The temperature u(x, t) of a slender metal bar of length L sat-

isfies the diffusion equation

∂u
∂t = c∂

2u
∂x2

,

where c is a positive constant. The bar is embedded in a per-

fect insulator so that the boundary conditions are given by

u(0, t) = 0 and u(L, t) = 0. Initially the temperature of the

bar is given by u(x, 0) = f (x), for some function f (x). Find

the temperature at a distance x from one end of the bar at any

time t.

This situation also applies to an infinite vertical slab (see dia-

gram below).

We have

∂u
∂t = c∂

2u
∂x2

, 0 < x < L, t > 0

with u(0, t) = 0, u(L, t) = 0 for all t and u(x, 0) = f (x) for

all x.

To solve we use the method of ”Separation of Variables”.
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Try a solution of the form u(x, t) = F (x)G(t).

Then

∂u
∂t = F (x)dGdt and ∂2u

∂x2
= d2F

dx2
G(t),

so that F (x)dGdt = cd
2F
dx2
G(t) or G′

cG = F ′′

F ,

where ′ means differentiation with respect to the relevant vari-

able. Now the left-hand of this equation is a function of t only

while the right-hand side is a function of x only, so both sides

must be constant i.e. G′

cG = F ′′

F = k, for some constant k. We

get two ODEs

dG
dt = ckG and d2F

dx2
= kF

or dG
dt − ckG = 0 and d2F

dx2
− kF = 0.

Now u(0, t) = 0 implies that F (0)G(t) = 0 for all t, so F (0) =

0 or G(t) = 0 for all t. If G(t) = 0 for all t, then u = 0, the

trivial solution (with f (x) = 0 also). Hence F (0) = 0. In the

same way we get F (L) = 0.

We now have the second order ODE

d2F
dx2
− kF = 0 with F (0) = 0 and F (L) = 0.

For k = 0 the general solution of this initial-value problem is

F (x) = ax+ b. The boundary conditions imply that a = b =
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0, again the trivial solution. Next consider k = p2 > 0. We

have d2F
dx2
− p2F = 0 with general solution

F (x) = Aepx + Be−px .

The boundary conditions now give A + B = 0 and

AepL + Be−pL = 0, so that B = −A and AepL − Ae−pL = 0.

Therefore A(epL− 1
epL

) = 0, so A(e
2pL−1
epL

) = 0 and hence A = 0

since 2pL 6= 0. Again we get the trivial solution. The final

possibility is k = −p2 < 0. We have d2F
dx2

+ p2F = 0 with

general solution

F (x) = A cos px + B sin px.

Applying the boundary conditions gives A = 0 and

B sin pL = 0, so A = 0 and B = 0 or sin pL = 0. If

B = 0 we again get the trivial solution. Hence B 6= 0 and

sin pL = 0, so p = nπ
L for n ∈ Z. Taking B = 1 gives solutions

Fn(x) = sin nπ
L x for n = 1, 2, 3...(For n < 0 we get − sin nπ

L x.)

Next consider the other ODE dG
dt − ckG = 0, where now

k = −p2 = −n2π2

L2
. For convenience write λn = nπ

L , so that

dG
dt + cλ2nG = 0.

Try G = eµt to get (µ + cλ2n)eµt = 0 or µ = −cλ2n. We have
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solutions Gn = Bne
−cλ2nt, n = 1, 2, 3...

Now for each n = 1, 2, 3... we have a solution un(x, t) =

Fn(x)Gn(t) = Bne
−cλ2nt sin nπ

L x for our PDE. However the so-

lution must also satisfy the initial condition u(x, 0) = f (x).

In general none of the un(x, t), or any finite sum of them, will

satisfy this condition. Let’s try an infinite sum, called a formal

sum, leaving aside questions of convergence for the moment,

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

Bne
−cλ2nt sin nπ

L x.

If u(x, 0) = f (x), then f (x) =
∞∑
n=1

Bn sin nπ
L x i.e. the Bn must

be the coefficients of f (x) in its Fourier sine series expansion

on the interval [0, L]; in other words

Bn = 2
L

L∫
0

f (x) sin nπ
L xdx.

With the Bn so chosen then u(x, t) above will be a solution

of the heat equation satisfying all the boundary and initial

conditions.

Example:

f (x) =

 0, 0 ≤ x ≤ L1, L2 ≤ x ≤ L

1, L1 < x < L2
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Bn = 2
L

L∫
0

f (x) sin nπ
L xdx = 2

L

L2∫
L1

1 sin nπ
L xdx

= 2
L[− L

nπ cos nπL x]L2L1 = 2
nπ(cos nπL1L − cos nπL2L )

and so

u(x, t) = 2
π

∞∑
n=1

1
n(cos nπL1L − cos nπL2L ) sin nπx

L e
−cλ2nt.

Note that if L1 = L
2 and L2 = L, then

u(x, t) = 2
π

∞∑
n=1

1
n(cos nπ2 − cosnπ) sin nπx

L e
−cλ2nt.
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Different boundary conditions for heat equation:

Consider ∂u
∂t = c∂

2u
∂x2

, −L < x < L, t > 0

with u(−L, t) = u(L, t) , ∂u
∂x(−L, t) = ∂u

∂x(L, t) and

u(x, 0) = f (x).

As before we write u(x, t) = F (x)G(t) to get

dG
dt − ckG = 0 and d2F

dx2
− kF = 0,

where k is a constant. The boundary conditions become

F (−L) = F (L) and dF
dx (−L) = dF

dx (L). Again, k = 0 gives

F (x) = ax + b and F (−L) = F (L) implies that

a(−L) + b = a(L) + b, so a = 0 and F (x) = b, a constant.

For k = p2 > 0 we have d2F
dx2
− p2F = 0 with general solution

F (x) = Aepx + Be−px.

F (−L) = F (L) now gives Ae−pL + BepL = AepL + Be−pL,

so that A + Be2pL = Ae2pL + B or (A − B)(1 − e2pL) = 0.

Hence A = B since p 6= 0 and F (x) = A(epx + e−px). Also

dF
dx (−L) = dF

dx (L) gives Ap(e−pL − epL) = Ap(epL − e−pL), so

that 2Ap(e−pL − epL) = 0 and hence A = 0, the trivial solu-

tion. The final possibility is k = −p2 < 0 to give, as before,

F (x) = A cos px + B sin px.
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F (−L) = F (L) implies that A cos(−pL) + B sin(−pL) =

A cos pL + B sin pL, so 2B sin pL = 0. Hence B = 0 or

sin pL = 0. Also dF
dx (−L) = dF

dx (L) givesAp sin pL+Bp cos pL =

−Ap sin pL + Bp cos pL, so 2Ap sin pL = 0. Hence A = 0 or

sin pL = 0. If sin pL 6= 0 then both A and B are 0 and we

get again the trivial solution. We conclude that sin pL = 0 so

that p = nπ
L , n = 1, 2, 3... We have solutions

Fn(x) = An cos nπL x + Bn sin nπ
L x, n = 1, 2, 3...

and F0(x) = A0 as the constant solution.

Now for dG
dt −ckG = 0. k = 0 gives dG

dt = 0, so G = a constant.

k = −p2 gives solutions Gn(t) = B∗ne
−cλ2nt, where λn = nπ

L .

Putting it all together we get solutions

un(x, t) = (An cos nπL x + Bn sin nπ
L x)e−cλ

2
nt for n = 0, 1, 2, 3...;

n = 0 giving the constant solution.

Again to satisfy u(x, 0) = f (x) consider

u(x, t) =
∞∑
n=0

(An cos nπL x + Bn sin nπ
L x)e−cλ

2
nt

and so f (x) = A0 +
∞∑
n=1

(An cos nπL x + Bn sin nπ
L x).

Hence A0, An and Bn must be the Fourier coefficients of f (x)

on [−L,L] i.e.
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A0 = 1
2L

L∫
−L
f (x)dx, An = 1

L

L∫
−L
f (x) cos nπL xdx

and Bn = 1
L

L∫
−L
f (x) sin nπ

L xdx. With these A0, An and Bn

we get that u(x, t) is a solution of the equation satisfying the

boundary and initial conditions.
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The Wave Equation

The deflection of an elastic string of length L fixed at the end-

points is governed by the wave equation

∂2u
∂t2

= c2∂
2u
∂x2

,

where c is a positive constant. Suppose that the initial deflec-

tion is given by f (x) and the initial velocity is given by g(x).

We have

∂2u
∂t2

= c2∂
2u
∂x2

, 0 < x < L, t > 0

with u(0, t) = 0, u(L, t) = 0 for all t and u(x, 0) = f (x),

∂u
∂t (x, 0) = g(x) for all x. As before try a solution of the form

u(x, t) = F (x)G(t).

We get

FG′′ = c2F ′′G or G′′

c2G
= F ′′

F .

Again the only possibility is both sides must be a constant k,

G′′

c2G
= F ′′

F = k.

We have two ODEs, namely
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G′′ − c2kG = 0 and F ′′ − kF = 0.

The boundary conditions become F (0) = 0 and F (L) = 0.

Consider

d2F
dx2
− kF = 0, with F (0) = 0 and F (L) = 0.

This is identical to the heat equation with the only non-trivial

solution given by k = −p2 < 0. We have d2F
dx2

+ p2F = 0, with

general solution

F (x) = A cos px + B sin px.

Again the boundary conditions give A = 0 and B sin pL = 0

so that p = nπ
L , n = 1, 2, 3, ... Taking B = 1 gives

Fn(x) = sin nπ
L x is a solution for n = 1, 2, 3, ...

Now consider

d2G
dt2

+ c2p2G = 0, where p = nπ
L .

Writing λn = cnπ
L > 0 gives d2G

dt2
+ λ2nG = 0 with general solu-

tion

Gn(t) = Bn cosλnt + B∗n sinλnt,

where Bn and B∗n are constants for each n. We now have

un(x, t) = Fn(x)Gn(t) = (Bn cosλnt + B∗n sinλnt) sin nπ
L x,

n = 1, 2, 3... are solutions of the wave equation satisfying the
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boundary conditions, called normal modes. To get a solution

satisfying the initial conditions also we consider the formal sum

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

(Bn cosλnt + B∗n sinλnt) sin nπ
L x.

Then f (x) = u(x, 0) =
∞∑
n=1

Bn sin nπ
L x, which is true if the

Bn are the coefficients of the Fourier sine series expansion

of f (x) on the interval [0, L]. Similarly g(x) = ∂u
∂t (x, 0) =

∞∑
n=1

B∗nλn sin nπ
L x, true if the B∗nλn are the coefficients of the

Fourier sine series expansion of g(x) on [0, L]. In other words,

if Bn = 2
L

L∫
0

f (x) sin nπ
L xdx and B∗nλn = 2

L

L∫
0

g(x) sin nπ
L xdx,

then u(x, t) is a solution satisfying the initial conditions also.

Note: u(x, t) =
∞∑
n=1

Bn cosλnt sin nπ
L x+

∞∑
n=1

B∗n sinλnt sin nπ
L x

=
∞∑
n=1

Bn cosλnt sin nπ
L x, if g(x) = 0. In this case

u(x, t) = 1
2

∞∑
n=1

Bn sin nπ
L (x − ct) + 1

2

∞∑
n=1

Bn sin nπ
L (x + ct) =

1
2((f (x− ct) + f (x + ct)).

Example: Suppose that f (x) = sin 3x − 4 sin 10x and

g(x) = 2 sin 4x + sin 6x with L = π, c = 2

Then sin 3x− 4 sin 10x =
∞∑
n=1

Bn sinnx, so B3 = 1, B10 = −4

and all other Bn = 0.
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Also 2 sin 4x+ sin 6x =
∞∑
n=1

λnB
∗
n sinnx =

∞∑
n=1

2nB∗n sinnx, so

8B∗4 = 2, 12B∗6 = 1 and all other B∗n = 0. Hence the solution is

u(x, t) = cos 6t sin 3x+1
4 sin 8t sin 4x+ 1

12 sin 12t sin 6x−4 cos 20t sin 10x.

Example: Suppose that the midpoint of the string is pulled

up a distance h and then released from rest giving

f (x) =


2h
L x, 0 ≤ x ≤ L

2

2h
L (L− x), L

2 ≤ x ≤ L

g(x) = 0.

f (x) =
∞∑
n=1

Bn sin nπ
L x, where Bn = 2

L

L∫
0

f (x) sin nπ
L xdx =

2
L.

2h
L

L
2∫
0

x sin nπ
L xdx + 2

L.
2h
L

L∫
L
2

(L− x) sin nπ
L xdx = ... 8h

π2n2
sin nπ

2 .

g(x) = 0 means that all B∗n = 0.

We have u(x, t) = 8h
π2

∞∑
n=1

1
n2

sin nπ
2 sin nπ

L x cos nπcL t.

40



d’Alembert’s solution of the wave equation:

∂2u
∂t2

= c2∂
2u
∂x2

, with t > 0, −∞ < x <∞

and u(x, 0) = f (x), ∂u
∂t (x, 0) = g(x).

Note that if φ : R→ R is any twice differentiable function and

u(x, t) = φ(x+ct), then ∂u
∂x = φ

′
(x+ct), ∂

2u
∂x2

= φ
′′
(x+ct) and

∂u
∂t = cφ

′
(x+ct), ∂

2u
∂t2

= c2φ
′′
(x+ct), so that u(x, t) is a solution

of the equation. Similarly, if ψ : R → R is any other twice

differentiable function and u(x, t) = ψ(x− ct), then u(x, t) is

also a solution. We have that u(x, t) = φ(x+ ct) + ψ(x− ct)

is a solution. We wish to show that every solution is of this

type.

Introduce the variables y, z, where y = x+ ct and z = x− ct.

Then u = u(y, z) giving ∂u
∂t = ∂u

∂y
∂y
∂t + ∂u

∂z
∂z
∂t = c∂u∂y − c

∂u
∂z

and ∂2u
∂t2

= ∂
∂t(

∂u
∂t ) = c ∂∂y(∂u∂t )− c

∂
∂z(

∂u
∂t )

= c ∂∂y(c∂u∂y−c
∂u
∂z )−c ∂∂z(c

∂u
∂y−c

∂u
∂z ) = c2(∂

2u
∂y2
− ∂2u

∂y∂z−
∂2u
∂z∂y + ∂2u

∂z2
)

= c2(∂
2u
∂y2
− 2 ∂2u

∂y∂z + ∂2u
∂z2

). Similarly ∂2u
∂x2

= ∂2u
∂y2

+ 2 ∂2u
∂y∂z + ∂2u

∂z2
.

Hence 4 ∂2u
∂y∂z = 0 or ∂2u

∂y∂z = 0. Now ∂
∂y(∂u∂z ) = 0 implies that

∂u
∂z is a function of z only, h(z) say.

Therefore u =
∫
h(z)dz + k(y), for some function k(y). We
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write u(x, t) = φ(y) +ψ(z) = φ(x+ ct) +ψ(x− ct), so every

solution is of this form.

Now consider the initial conditions.

u(x, 0) = f (x) gives f (x) = φ(x) + ψ(x) and ∂u
∂t (x, 0) = g(x)

gives g(x) = c(φ
′
(x)− ψ′(x)). Integrating the second identity

we get φ(x) − ψ(x) = 1
c

x∫
x0

g(s)ds, where x0 is an arbitrary

constant and now solving gives φ(x) = 1
2f (x) + 1

2c

x∫
x0

g(s)ds

and ψ(x) = 1
2f (x)− 1

2c

x∫
x0

g(s)ds.

Hence u(x, t) = φ(x + ct) + ψ(x− ct)

= 1
2f (x + ct) + 1

2c

x+ct∫
x0

g(s)ds + 1
2f (x− ct)− 1

2c

x−ct∫
x0

g(s)ds

= 1
2(f (x + ct) + f (x− ct)) + 1

2c

x+ct∫
x−ct

g(s)ds.

In particular, if g(x) = 0, then we get

u(x, t) = 1
2(f (x + ct) + f (x − ct)), a superposition of two

travelling waves in opposite directions with velocity c.

For a physical interpretation of d’Alembert’s solution consider

φ(x, t) = f (x−ct). Suppose that t1 < t2. φ will have the same

value at x1 at time t1 as at x2 at time t2 if x1− ct1 = x2− ct2

i.e. x2−x1
t2−t1

= c.
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If x1 is the space coordinate of any point on the curve φ(x, t) =

f (x− ct) at time t1, then the same point at time t2 has coor-

dinate x2, where x2−x1
t2−t1

= c.

Since x1 is any point on the curve and t2− t1 is any time inter-

val φ(x, t) = f (x− ct) represents a displacement of arbitrary

form travelling at constant speed c in the positive x-direction

without change of shape. Similarly φ(x, t) = f (x + ct) rep-

resents a displacement of arbitrary form travelling at constant

speed c in the negative x-direction without change of shape.
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Two Dimensional Laplace’s Equation

Let u(x, y) be the steady-state temperature in a rectangular

metal sheet 0 ≤ x ≤ L, 0 ≤ y ≤ H.

It is known that u(x, y) satisfies the equation

∂2u
∂x2

+ ∂2u
∂y2

= 0.

Suppose the sheet is insulated along the sides y = 0, y = H

and x = L and the temperature of the side x = 0 is given by

f (y). Hence the boundary conditions are

u(0, y) = f (y), u(L, y) = 0, u(x, 0) = 0 and u(x,H) = 0.

Let u(x, y) = F (x)G(y), giving F
′′
(x)G(y) +F (x)G

′′
(y) = 0,

so F
′′

F = −G
′′

G = k, a constant. Again we get two ODEs

F
′′
(x)− kF (x) = 0, F (L) = 0

and G
′′
(y) + kG(y) = 0, G(0) = 0 G(H) = 0.

Consider G
′′
(y) + kG(y) = 0. If k = 0, then G(y) = ay + b.

Now G(0) = 0 implies b = 0 and then G(H) = 0 gives

a = 0, the trivial solution. Next consider k = −p2 < 0. Then
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G
′′
(y)− p2G(y) = 0 with general solution

G(y) = Aepy + Be−py.

G(0) = 0 gives B = −A, so G(y) = A(epy − e−py). Now

G(H) = 0 implies that A(e2pH − 1) = 0, so A = 0 also

and again we get the trivial solution. The final situation is

k = p2 > 0. We have G
′′

+ p2G(y) = 0 with general solution

G(y) = A cos py + B sin py.

G(0) = 0 gives A = 0 and G(y) = B sin py; now G(H) = 0

implies that B = 0 or sin pH = 0. B = 0 again gives the

trivial solution, so sin pH = 0 or p = nπ
H , n = 1, 2, 3... Hence,

for each n = 1, 2, 3... we have a solution Gn(y) = sin nπ
H y.

Now consider F
′′
(x)− kF (x) = 0, where k = p2 = (nπH )2. Let

λn = nπ
H . Then we have F

′′
(x) − λ2nF (x) = 0 with general

solution

F (x) = Aeλnx + Be−λnx.

F (L) = 0 gives B = −Ae2λnL and we get a solution

Fn(x) = An(eλnx − e−λnxe2λnL)

for each n = 1, 2, 3...

Rearranging, we get Fn(x) = Ane
λnL(eλnxe−λnL−e−λnxeλnL) =

45



Ane
λnL(eλn(x−L) − e−λn(x−L)) = A

′
n sinhλn(x− L), where

A
′
n = 2Ane

λnL.

Now for each n = 1, 2, 3... we have a solution

un(x, y) = A
′
n sinhλn(x− L) sinλny.

None of the un(x, y) will, in general, satisfy the boundary con-

dition u(0, y) = f (y), so we consider

u(x, y) =
∞∑
n=1

un(x, y) =
∞∑
n=1

A
′
n sinhλn(x− L) sinλny. If this

satisfies u(0, y) = f (y), thenf (y) =
∞∑
n=1

A
′
n sinh(−λnL) sinλny,

which is true if the A
′
n sinh(−λnL) are the Fourier sine series

coefficients of f (y) on [0, H ] i.e.

A
′
n sinh(−λnL) = 2

H

H∫
0

f (y) sin nπ
H ydy.

Example: Suppose f (y) = y(H − y).
H∫
0

y(H − y) sin nπ
H ydy = H

H∫
0

y sin nπ
H ydy −

H∫
0

y2 sin nπ
H ydy.

Let I = H
H∫
0

y sin nπ
H ydy and J =

H∫
0

y2 sin nπ
H ydy.

Integration by parts gives I = H [− H
nπy cos nπH y]H0 + H

nπ

H∫
0

cos nπH ydy

= −H3

nπ cosnπ.

Also J = [− H
nπy

2 cos nπH y]H0 + H
nπ

H∫
0

2y cos nπH ydy
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= −H3

nπ cosnπ + 2H2

n2π2
[y sin nπ

H y]H0 − 2H2

n2π2

H∫
0

sin nπ
H ydy =

− H3

nπ cosnπ+ 2H3

n3π3
[cos nπH y]H0 = −H3

nπ cosnπ+ 2H3

n3π3
(cosnπ−1).

HenceA
′
n sinh(−λnL) = 4H2

n3π3
(1−cosnπ), soA

′
n = 4H2

n3π3
(1−cosnπ)
sinh(−λnL)

and u(x, y) = 4H2

π3

∞∑
n=1

(cosnπ−1)
n3 sinh(λnL)

sinhλn(x− L) sinλny.

Note: Consider

∂2u
∂x2

+ ∂2u
∂y2

= 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H,

where u(x, 0) = f1(x), u(x,H) = f2(x), u(0, y) = g1(y)

and u(L, y) = g2(y).

Separation of variables depends on some bounday conditions

being homogeneous i.e. = 0. To solve the above we consider

solutions of

∂2u
∂x2

+ ∂2u
∂y2

= 0,

with u(x, 0) = f1(x) and the others = 0 etc. If the solutions

are u1, u2, u3, u4, respectively, then u = u1 + u2 + u3 + u4 will

be a solution satisfying all the boundary conditions above.

Example: The voltage V (x, y) at any point in a square

metal plate of side length π satisfies Laplace’e equation

∂2V
∂x2

+ ∂2V
∂y2

= 0.

The plate is earthed at x = 0, x = π and y = 0, so that
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V (0, y) = 0, V (π, y) = 0 and V (x, 0) = 0. A voltage f (x) is

applied along the fourth side y = π so that V (x, π) = f (x),

where

f (x) =

 x, 0 ≤ x ≤ π
2

π − x, π
2 ≤ x ≤ π

Solve for V (x, y).

V (x, y) = F (x)G(y) so that F
′′
(x)− kF (x) = 0 and

G
′′
(y) + kG(y) = 0, with F (0) = 0, F (π) = 0 and G(0) = 0.

Consider F
′′
(x)−kF (x) = 0, with F (0) = 0, F (π) = 0. k = 0

implies F = 0. k = p2 also gives F = 0 as before. Therefore

k = −p2 and so F
′′
(x) + p2F (x) = 0, with general solution

F (x) = A cos px + B sin px.

The boundary conditions now give A = 0 and sin pπ = 0 so

that p = n, n = 1, 2, 3, ... and sinnx is a solution for each

n = 1, 2, 3...

Now consider G
′′
(y)− p2G(y) = 0, with G(0) = 0, p = n.

For each n we have a general solution

Gn(y) = Ane
ny + Bne

−ny.

G(0) = 0 implies that Bn = −An so Gn(y) = An(eny− e−ny).

We have solutions Vn(x, y) = An sinnx(eny−e−ny) = A
′
n sinnx sinhny.
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Consider V (x, y) =
∞∑
n=1

A
′
n sinnx sinhny. Then

V (x, π) = f (x) implies that f (x) =
∞∑
n=1

A
′
n sinnx sinhnπ, so

that A
′
n sinhnπ is the Fourier coefficient of the sine series ex-

pansion of f (x) on the iterval [0, π] i.e. A
′
n sinhnπ =

2
π

π∫
0

f (x) sinnxdx = 2
π [

π
2∫
0

x sinnxdx+π
π∫
π
2

sinnxdx−
π∫
π
2

x sinnxdx]

= 4
πn2

sin nπ
2 , on integrating.

Finally we have V (x, y) = 4
π

∞∑
n=1

sin nπ
2

n2 sinhnπ
sinnx sinhny.

Example: The voltage V (x, y) at any point in a square

metal plate of side length 2π satisfies Laplace’e equation

∂2V
∂x2

+ ∂2V
∂y2

= 0.

The plate is earthed at x = 0, x = 2π and y = 2π, so that

V (0, y) = 0, V (2π, y) = 0 and V (x, 2π) = 0. A voltage sin 2x

is applied along the fourth side y = 0 so that V (x, 0) = sin 2x.

Solve for V (x, y).

V (x, y) = F (x)G(y) so that F
′′
(x)− kF (x) = 0 and

G
′′
(y)+kG(y) = 0, with F (0) = 0, F (2π) = 0 andG(2π) = 0.

Consider F
′′
(x) − kF (x) = 0, with F (0) = 0, F (2π) = 0.

k = 0 implies F = 0. k = p2 also gives F = 0 as before.
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Therefore k = −p2 and so F
′′
(x) + p2F (x) = 0, with general

solution

F (x) = A cos px + B sin px.

The boundary conditions now give A = 0 and sin 2pπ = 0

so that p = n
2 , n = 1, 2, 3, ... and sin n

2x is a solution for each

n = 1, 2, 3...

Now consider G
′′
(y)− p2G(y) = 0, with G(2π) = 0, p = n

2 .

For each n we have a general solution

Gn(y) = Ane
n
2y + Bne

−n2y.

G(2π) = 0 now gives Ane
nπ +Bne

−nπ = 0, so Bn = −Ane
2nπ.

Therefore Gn(y) = An(e
n
2y − e2nπe−n2y)

= Ane
nπ(e(

n
2y−nπ) − e−(n2y−nπ)) = 2Ane

nπ sinhn(y2 − π).

Write Gn(y) = A
′
n sinhn(y2 − π) and then

Vn(x, y) = A
′
n sinhn(y2 − π) sin n

2x is a solution for each n =

1, 2, 3... Now consider V (x, y) =
∞∑
n=1

A
′
n sinhn(y2 − π) sin n

2x.

If this is a solution, then V (x, 0) = sin 2x implies that

sin 2x =
∞∑
n=1

A
′
n sinhn(−π) sin n

2x. We conclude that

A
′
4 sinh(−4π) = 1 and all other A

′
n = 0. We get our solution

V (x, y) = 1
sinh(−4π) sinh 4(y2 − π) sin 2x = sinh(4π−2y)

sinh 4π sin 2x.
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FOURIER TRANSFORM
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Definition of Fourier Transform

Consider f : [−L,L]→ R or f : R→ R periodic with period

2L. Then

f (x) = a0
2 +

∞∑
n=1

(an cos nπL x+bn sin nπ
L x), where a0 = 1

L

L∫
−L
f (x)dx,

an = 1
L

L∫
−L
f (x) cos nπL xdx and bn = 1

L

L∫
−L
f (x) sin nπ

L xdx. Now

ei
nπ
L x = cos nπL x + i sin nπ

L x and e−i
nπ
L x = cos nπL x − i sin nπ

L x,

so that cos nπL x = 1
2(ei

nπ
L x + e−i

nπ
L x) and

sin nπ
L x = 1

2i(e
inπL x − e−inπL x). Hence

f (x) = a0
2 +

∞∑
n=1

((an−ibn)2 ei
nπ
L x + (an+ibn)

2 e−i
nπ
L x) =

c0 +
∞∑
n=1

(cne
inπL x + c−ne

−inπL x), where c0 = a0
2 , cn = an−ibn

2 and

c−n = an+ibn
2 . Therefore f (x) =

∞∑
n=−∞

cne
inπL x, where for each

n, cn = 1
2L

L∫
−L
f (x)e−i

nπ
L xdx.

Now set nπ
L = ωn, so that f (x) =

∞∑
n=−∞

cne
iωnx =

1
2L

∞∑
n=−∞

[
L∫
−L
f (t)e−iωntdt]eiωnx = 1

2L

∞∑
n=−∞

eiωnx
L∫
−L
f (t)e−iωntdt.

Let ∆ω = ωn+1−ωn = (n+1)π
L − nπ

L = π
L and consider L→∞.

Then f (x) = 1
2π

∞∑
n=−∞

eiωnx(
L∫
−L
f (t)e−iωntdt)∆ω. Letting

L→∞, so that ∆ω → 0 and ωn → a continuous variable ω,
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to give f (x) = 1√
2π

∞∫
−∞

eiωx( 1√
2π

∞∫
−∞

f (t)e−iωtdt)dω =

1√
2π

∞∫
−∞

f̂ (ω)eiωxdω,where f̂ (ω) = 1√
2π

∞∫
−∞

f (t)e−iωtdt is called

the Fourier transform of f and f (x) = 1√
2π

∞∫
−∞

f̂ (ω)eiωxdω is

called the inverse Fourier transform of f̂ . We have

f̂ (ω) = 1√
2π

∞∫
−∞

f (x)e−iωxdx and f (x) = 1√
2π

∞∫
−∞

f̂ (ω)eiωxdω.

All of the above is formalised in the following theorem.

Theorem: If f (x), −∞ < x < ∞, is piecewise con-

tinuous on each finite interval and if
∞∫
−∞
|f (x)|dx < ∞, then

the Fourier transform f̂ (ω) exists. Furthermore

1
2(f (x+) + f (x−) = 1√

2π

∞∫
−∞

f̂ (ω)eiωxdω.
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Properties of Fourier Transform

(i) f̂ + g(ω) = f̂ (ω) + ĝ(ω) and âf (ω) = af̂ (ω).

Proof: Obvious from the definition.

(ii) If f (x) is continuous on R and f (x) → 0 as |x| → ∞

and
∞∫
−∞
|f ′(x)|dx <∞, then f̂ ′(ω) = iωf̂ (ω).

Proof: f̂ ′(ω) = 1√
2π

∞∫
−∞

f
′
(x)e−iωxdx = 1√

2π
[f (x)e−iωx]∞−∞−

1√
2π

(−iω)
∞∫
−∞

f (x)e−iωxdx = 0+ (iω)√
2π

∞∫
−∞

f (x)e−iωxdx = iωf̂ (ω).

Note that from this we can deduce that f̂ ′′(ω) = (iω)(iω)f̂ (ω) =

−ω2f̂ (ω).

(iii)
b∫
a

f (x)dx = 1√
2π

∞∫
−∞

f̂ (ω)(e
iωb−eiωa
iω )dω.

Proof:
b∫
a

f (x)dx = 1√
2π

b∫
a

[
∞∫
−∞

f̂ (ω)eiωxdω]dx

= 1√
2π

∞∫
−∞

[
b∫
a

f̂ (ω)eiωxdx]dω = 1√
2π

∞∫
−∞

[f̂ (ω)
b∫
a

eiωxdx]dω

= 1√
2π

∞∫
−∞

f̂ (ω)(e
iωb−eiωa
iω )dω.
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Examples

(i)

f (x) =

 k, 0 ≤ x ≤ a

0, x < 0 or x > a

f̂ (ω) = 1√
2π

a∫
0

ke−iωxdx; ω = 0 gives f̂ (ω) = ka√
2π
.

ω 6= 0 gives f̂ (ω) = 1√
2π

a∫
0

ke−iωxdx = k√
2π

[e
−iωx

−iω ]a0 = k√
2π

[1−e
−iωa

iω ].

(ii)

f (x) =

 1, a ≤ x ≤ b

0, x < a or x > b

f̂ (ω) = 1√
2π

b∫
a

e−iωxdx; ω = 0 gives f̂ (ω) = b−a√
2π
.

ω 6= 0 gives f̂ (ω) = 1√
2π

b∫
a

e−iωxdx = 1√
2π

[e
−iωx

−iω ]ba = 1√
2π

[e
−iωa−e−iωb

iω ].

(iii)

f (x) =

 ex, x ≤ 0

0, x > 0

f̂ (ω) = 1√
2π

0∫
−∞

exe−iωxdx = 1√
2π

0∫
−∞

e(1−iω)xdx = 1√
2π

[e
(1−iω)x

1−iω ]0−∞ =

1√
2π(1−iω).
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(iv)

f (x) =

 xe−x, x ≥ 0

0, x < 0

f̂ (ω) = 1√
2π

∞∫
0

xe−xe−iωxdx = 1√
2π

∞∫
0

xe−(1+iω)xdx =

1√
2π

[xe
−(1+iω)x

−(1+iω) ]∞0 − 1√
2π

∞∫
0

e−(1+iω)x

−(1+iω) dx = 1√
2π

[e
−(1+iω)x

−(1+iω)2 ]∞0 = 1√
2π(1+iω)2

.

(v)

f (x) =

 k, −π ≤ x ≤ π

0, x < −π, π < x

f̂ (ω) = 1√
2π

∞∫
−∞

f (x)e−iωxdx = 1√
2π

π∫
−π
f (x)e−iωxdx

= 1√
2π

π∫
−π
f (x)(cosωx− i sinωx)dx = 2√

2π

π∫
0

f (x) cosωxdx

( since f (x) is even) = 2k√
2π

π∫
0

cosωxdx = 2k√
2π

sin πω
ω .

(vi) The truncated cos function

f (x) =

 cos 3x, −π ≤ x ≤ π

0, x < −π, π < x

f̂ (ω) = 1√
2π

∞∫
−∞

f (x)e−iωxdx = 2√
2π

π∫
0

cos 3x cosωxdx

( as in (v)) = 2ω sinπω√
2π(9−ω2).
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The Heat Equation

∂u
∂t = c2∂

2u
∂x2
, −∞ < x <∞, t > 0, c > 0.

Assume that u and ∂u
∂x are finite as |x| → ∞ and

u(x, 0) = f (x), −∞ < x < ∞, where f (x) is piecewise

smooth on every finite subinterval and
∞∫
−∞
|f (x)|dx is finite.

Define the spatial Fourier transform of u(x, t) to be

û(ω, t) = 1√
2π

∞∫
−∞

u(x, t)e−iωxdx.

Applying the spatial transform to the differential equation

we get 1√
2π

∞∫
−∞

∂u
∂t (x, t)e

−iωxdx = 1√
2π

∞∫
−∞

c2∂
2u
∂x2

(x, t)e−iωxdx,

so that ∂
∂t[

1√
2π

∞∫
−∞

u(x, t)e−iωxdx] = c2 1√
2π

∞∫
−∞

∂2u
∂x2

(x, t)e−iωxdx

giving ∂û
∂t (ω, t) = −c2ω2û(ω, t) and hence û(ω, t) = A(ω)e−c

2ω2t,

where A(ω) is some function of ω.

Now u(x, 0) = f (x) implies that û(ω, 0) = 1√
2π

∞∫
−∞

u(x, 0)e−iωxdx =

1√
2π

∞∫
−∞

f (x)e−iωxdx = f̂ (ω), so

A(ω) = f̂ (ω) and û(ω, t) = f̂ (ω)e−c
2ω2t. Taking the inverse

Fourier transform we get u(x, t) = 1√
2π

∞∫
−∞

f̂ (ω)e−c
2ω2teiωxdω =

1√
2π

∞∫
−∞

f̂ (ω)eω(ix−c
2ωt)dω.
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The Wave Equation

∂2u
∂t2

= c2∂
2u
∂x2
, −∞ < x <∞, t > 0, c > 0.

Assume that u and ∂u
∂x are finite as |x| → ∞ and

u(x, 0) = f (x), ∂u
∂t (x, 0) = g(x), −∞ < x < ∞, where

f (x) and g(x) are piecewise smooth on every finite subinterval

and
∞∫
−∞
|f (x)|dx,

∞∫
−∞
|g(x)|dx are both finite.

Applying the spatial transform to the differential equation we

get 1√
2π

∞∫
−∞

∂2u
∂t2

(x, t)e−iωxdx = 1√
2π

∞∫
−∞

c2∂
2u
∂x2

(x, t)e−iωxdx, so

that ∂2

∂t2
[ 1√

2π

∞∫
−∞

u(x, t)e−iωxdx] = c2 1√
2π

∞∫
−∞

∂2u
∂x2

(x, t)e−iωxdx

giving ∂2û
∂t2

(ω, t) = −c2ω2û(ω, t) and hence

∂2û
∂t2

(ω, t) + c2ω2û(ω, t) = 0. The general solution is

û(ω, t) = A(ω)eicωt + B(ω)e−icωt.

Now u(x, 0) = f (x) and ∂u
∂t (x, 0) = g(x) imply that

û(ω, 0) = f̂ (ω) and ∂û
∂t (ω, 0) = ĝ(ω), so that

A(ω) + B(ω) = f̂ (ω) and icω(A(ω)−B(ω)) = ĝ(ω). Hence

A(ω) = 1
2(f̂ (ω) + ĝ(ω)

icω ) and B(ω) = 1
2(f̂ (ω)− ĝ(ω)

icω ) and so

u(x, t) = 1
2
√
2π

∞∫
−∞

[(f̂ (ω)+ ĝ(ω)
icω )eicωteiωx+(f̂ (ω)− ĝ(ω)

icω )e−icωteiωx]dω

= 1
2
√
2π

∞∫
−∞

f̂ (ω)eiω(x+ct)dω + 1
2
√
2π

∞∫
−∞

f̂ (ω)eiω(x−ct)dω +
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1
2
√
2πc

∞∫
−∞

ĝ(ω)(e
iω(x+ct)−eiω(x−ct)

iω )dω = 1
2[f (x+ ct) +f (x− ct)] +

1
2c

x+ct∫
x−ct

g(v)dv, which is d’Alembert’s solution.

( Recall property (iii) of the Fourier transform.)

Considering the simpler case of g(x) = 0, we get

A(ω) + B(ω) = f̂ (ω) and icω(A(ω)−B(ω)) = 0. Hence

A(ω) = 1
2f̂ (ω) and B(ω) = 1

2f̂ (ω) and so

u(x, t) = 1
2
√
2π

∞∫
−∞

[f̂ (ω)eicωteiωx + f̂ (ω)e−icωteiωx]dω

= 1
2
√
2π

∞∫
−∞

f̂ (ω)eiω(x+ct)dω + 1
2
√
2π

∞∫
−∞

f̂ (ω)eiω(x−ct)dω

= 1
2[f (x+ct)+f (x−ct)] which again is d’Alembert’s solution.
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