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FOURIER SERIES



Some Definitions

Definition: A function f : [a,b] — R is piecewise contin-
uous if [a, b] can be divided into a finite number of subintervals
on the interiors of which f is continuous and has finite left-hand
and right-hand limits at all the endpoints of these subintervals.

Example:

f is piecewise continuous on [0, 3].

Let Cyla,b] denote the set of all piecewise continuouos func-
tions on |a, b]. Then C,la, b] is a vector space under function
addition and scalar multiplication. If x( is an endpoint of some
subinterval we write lim f(x) = f(zo+) and lim f(z) =

T—=a =Ty

f(zo—). If f is continuous at xg, then both of those limits are
the same.

Definition: f : R — R is periodic if there exists some

T # 0 such that f(z+T) = f(z) for all x € R. The smallest



positive such 7' is called the period of f.

Example: (i) f(x) = sinz is periodic with period 27, so
f(z) = sinnz is periodic with period 2 since sinn(z + %) =
sin(nz + 27) = sinnx.

(ii)  f(z) = ¢, a constant, is periodic but does not have a
period.

(iii)  f(z) = x* is not periodic.

Note: The sum and the product of periodic functions is
usually periodic.

Definition: f:R — Risevenif f(—x) = f(x) for all x
and f is odd if f(—x) = —f(z) for all z.

Example: cos is even and sin is odd.

Note that (even)(even) = even, (odd)(odd) = even and (even)(odd)
= odd.

a

Theorem: If f is even, then [ f(z)dx =2 [ f(x)dz and
—a 0

if fis odd, then [ f(z)dx =0.

Proof: faf(:v)da: = fof(:r:)da: + ff(:v)d:c. Making the
—a 0

—a

a
substitution © = —z in the first integral gives [ f(—u)du =
0



f f(—=x)dz. Hence both results.
We will need to consider the vector space nature of C)[a, b], so
we recall the abstract definition of a vector space.
Definition: A set V along with an operation + : VxV — V
(addition) and an operation . : R x V' — V (scalar multipli-
cation) is called a real vector space if the following properties
hold

) u+v=v+4+uVu,v €V (commutivity)

i) (u+v)+w=u+(v+w)Vu,v,w €V (associativity)
iii) dan element 0 € V such that u+0=0+uVYu €V

zero element)

(i
(
(
(
(iv) Given any v € V 3 — v € V such that v 4+ (—v) =
(—v) +v =0 ( inverse element)

(v) a(u+v)=au+avVaeRuveV

(vi) (a+p)u=au+BuVa,8 eRueV

(vil)) a.(Bu) = (af)uVa,B € Ryju € V ( (v), (vi), (vii)
imply distributivity)

(viii) lu=uVu€eV,



R3

Recall the structure of R?:

R3 = {(a,b,c)|a,b,c € R}, where we write 7 = (a,b,c). If
i=(1,0,0),7 = (0,1,0) and k = (0,0, 1), then ¥ = (a, b, ¢) =
a(1,0,0)+b(0,1,0)+¢(0,0,1) = ai + bj + ck, where addition
and scalar mutiplication is defined componentwise. We say

that R? is a vector space with a basis {i, 7, k}.

Thr scalar (dot) product on R? is defined by (a, b, c).(d, e, f) =
ad + be + ¢f so that i.i = j.j = k=1
We define @ L @ if and only if @.¢ = 0, so 7,7 and k are

mutually perpendicular.

The norm or length of 7 is defined by ||7]| = V7.9 = Va2 + b2 + 2
and the distance from @ to U'is ||u — 9|

Note that if ¥ = (a,b,c) = ai +bj + CE, then a = ¥.i,b = 0]
and ¢ = 7.k.

Since every basis of R? has three elements we say that R? is

three-dimensional. Other vector spaces are infinite-dimensional

e.g. Cyla,b|.



The Vector Space C)[a, b]

We define an inner product on C,|a, b] by (£, g) f flx dx.
Then f L g if (f,g) = 0. In this case we say that f is

orthogonal to g. We write "the norm of f” to be ||f| =
b
VL) =() fz(az)dx)% and "the distance from f to ¢’ as

b
1f—gll=(J(f(z)— gz ))de) We say that f is normal if

a

11 —uefo i = 1.
A set of functlons {d0, 41, .-+, On, ... } is orthonormal if

[¢n]] = 1 for all n and (¢, pm) = 0 for all n # m.
Given a set of orthogonal functions {1, 11, ..., ¥y, ...} we get
an orthonormal set by taking ¢,, = Hi—ZH

Example: Consider [0, 7] and {1, cos x, cos 2z, ..., cosnx, ... }.

for all n.

<Ofw Zda) = /7. ([ costnada)t = (3 Of(1+cos onz)dr)t =
(3w + sin2n2) )2 = (3(m = 0) — (0= 0))} = /3. Also

we get [ cosnx cosmadr = 0 for all n # m. Hence
0
{1, cos x, cos 2z, ...,cosnz, ...} is an orthogonal set and

{\/_ fcosnx\n = 1,2, 3...} is an orthonormal set in C})[0, 7].

Similarly the set {sinz,sin 2z, ...,sinnx, ...} is an orthogonal



set and {\/%sin nx|n = 1,2,3...} is an orthonormal set in
C,[0, 7).



Generalized Fourier Series

Let {¢,} be an orthonormal set in C)[a, b]. Consider any f €

Cyla,b] and let ¢, = (f, ¢,) for all n. Is it possible to write

©.¢]

f as an infinite series f = ) ¢,¢,, where convergence is in
n=0
(0.¢}
the norm || ||, or better still, f(z) = > con(x), for all
n=0

x € |a,b], where convergence is now the usual convergence in

R? This is analagous to any vector ¢ € R? being written as

7 =ai+bj+ CE, where a = 7.4,b = ¢.] and ¢ = 7.

We call the series i}cnqbn(x), where ¢, = (f, ¢n) = [ f(x)dn(x)dx
-

for all n, the generalized Fourier series of f(x). We dont yet

know whether this series actually converges for any = € |a, b]
or, if it does converge, whether the limit is equal to f(z). We

©. 9]

write f(x) ~ > cpon(x) to mean that the right-hand side is
the series so ogtzsmed from f(x) leaving aside the questions of
convergence for the moment. The theory of Fourier series tells
us that for some subsets of C)[a, b] and for some orthonormal

sets {¢,(z)} we do in fact have convergence and equality.

Consider C|—m, 7| and the set {cosnx,sinmzx}, n,m € N.



m m
We have [ sinma cosnadr = 0forallm, n; [ sinma sinnadx

—T —T

and [ cosma cosnzdx both = 7, if m = n and 0 if m # n.

Also for n =0 we get [ cos® Ozdz = 2.
o1 1 o _
Hence the set {ﬁ,ﬁcosnx,ﬁsmm:},n = 1,2, 3, forms

an orthonormal set in C)[—m, 7.
m

Letting ¢y = \/% [ flx)dx, ¢, = ﬁ [ f(x)cosnzdx and

—T

d, = == | f(z)sinnzdx we have

f@) ~ Pt S (e dy 2L,

o
so that f(x) ~ % + > (a,cosnw + b, sinnw), where

T = o 80ag = . {T flz)dx, a,= = ;—‘/7; f(x) cosnzdx

and b, = & = 1 [ f(z)sinnzdr. This is called the Fourier
series associated with f(x).

Example:

r+m, —m<xr<0
flx) =

0, 0<zxz<m

10



_fﬂ fla)de = L [(z + m)dz = 1(32° + mx)|°, =

bol=)

an:%ff(a;)cosna:d:n:%f(a:+7r)cosnxda::

0 0 0

1 [ zcosnzdr+ [ cosnzdr = L(izsinnz)|’ . —1 [ sinnzd]
-7 - —
0
+ (%Sinnx)](lﬂ = _% | sinnxzdr = —%(—%cosnx)](iw =

-7
—5(1 — cosnr). O
™
b, =1 [ f(z)sinnzde =1 [(z+ 7)sinnzdr =
—T —T
0 0
L [ wsinnazdz+ [ sinnzdr = [(—izcosnz)|’ +1 [ cosnadz]
—T —T —T

— (+cosna)|® . = L= cosnm) + (Hsinna)|’ ]

+ (=2 + Lcos mr) —1

Therefore f(z) ~ T+ ) [%(1 — COSTTT) COSNT — + sin na).
n=1

Note: Recall that if f(x) is an odd function and ¢ is any

real number, then f f(z)dx = 0. Similarly, if f(x) is an even

function, we get that [ f(x)dx =2 [ f(z)dz.
0
—r, .

Example: f(z) :_\C:U\, T € -7,

11



T
Since |z| is even we get a9 = 2 [zdx = 7. Also a, =
0
s
%Ofxcosna;d:v = =5(cosnm — 1) and b, = 0 for all n > 1.

(0. ¢]
Therefore |z ~ 54 2 > J5(cosnm — 1) cos na.
n=1
In general, if f(z) is even, then b, = 0 for all n > 1 and

ap = %ff(x) cosnxdz for all n > 0. Hence f(x) ~ % +
0

> aycosnx. If f(x)is odd, then a,, = 0 for all n > 0 and

n=1

b, = 2 [ f(z)sinnzdz foralln > 1. Hence f(z) ~ Y b, sinnz.
0 n=1

Example:

—1, <2 <0
flz) =

I, 0<z<nm

Note that f(x) is an odd function on [—7, 7]. Hence a,, = 0

for all n > 0. Also b, = 2 [ f(x)sinnadz for all n > 1,
0

T
sob, = 2 [1l.sinnxdr = 2(—=Lcosnz)|f = (1 — cosnm).
7TO T\ n 0 ™

Therefore f(z) ~ > 2(1 — cosnm) sinnz.

n=1

12



Convergence of Fourier Series

We now discuss the convergence of Fourier series. There are
two types of convergence

(i)  Convergence in the norm or convergence in the mean and
(i)  Pointwise convergence.

(i)  Suppose the f € C)[—m,x]; Then we write

(0.9}
f(x) ~ 2+ > (a,cosnx + b, sinnzx), as before.

n=1
N
Let Sy(z) = % + > (ancosnx + b, sinnx). Convergence in
n=1
the norm (mean) means that Sy — fas N —ooin || | ie.

|f—Sn|| > 0as N — oo or f(f(a:) — Sy(x))?dx — 0 as
N — 0o. We have B

Theorem: If f € C)|—m, x| (in fact f can belong to a
larger space called square-integrable functions), then Sy — f
in the norm.

This result is theoretically interesting but not very useful for
Our purposes.

(i) Now suppose that both f and f € C,[—m,7]. Such a
function is called piecewise smooth. We have

Theorem: If f is piecewise smooth on [—m, 7], then

13



Sv(@) = 5(f(z+) + flz—)) or 3(f(z+) + fla—)) =

2+ Z_:l(an cosnz + b,sinnz) for all x € (=7, 7). If f is

continuous at x, then i(f(z+) + f(z—)) = f(z), so that

(0. 9]
flx) =9+ > (a,cosnx + b, sinnzx).
n=1

If f:R — R is piecewise smooth and periodic of period 27,
then this result applies for all x € R.

Example:

—1, <2 <0
flz) =

I, 0<z<m

)

For all # € (—m,7) we have 3(f(z+) + f(z—)) =

S 2(1—cosnm)sinnr. Sox =0 gives 55t = 0and at & = 2
™ 2 2
n=1

o0

o 2 : T
we get 1= ) %(1 — cosn) sin ni
n=1
o0 0. @) o0
_ 4 I R T _ 4 (=™ T _ (=™
=z Im+1 sin(2m + 1)5 = - om+1r 50 4 = ) om il

14



Functions of any Period

Suppose that f : R — R is piecewise smooth and periodic of

period 2L. Let u = Tz and set g(u) = f(z) = f(fu). We
have g : [—m, 7] = [~L, L] = R, where g = fo£ on R. Then
glut2m) = F(L(ut2m) = f(Eu+2L) = f(Eu) = glu). so

g has period 27.

hgE

Therefore g(u) = L +

5 (a, cosnu + by, sin nu), with

1
f(%U)d’LL, p =

™

ag =1 [ g(u)du =

T —

3 =
—a3

3 =

>H%=1>|1%>1

g(u) cos nudu =

3

™

1 [ f(tu) cosnudu and similarly b, = 2 [ g(u)sinnudu =

7

™

L [ f(tu)sin nudu.

A

L

L o
ap=1 [ flx)dz, a,=1 [ f(z)cos®Tadz and
L L

L

b, = 1 fL f(x)sin 2radz, so

Making the change of variable x = Zu we get that

(0.¢}
flz) =9+ Zl(an cos BLx 4 by, sin ).

n=
A piecewise smooth function defined on an interval can be
extended periodically to all of R and then we can apply the

theorem to any interval.

15



Example: Find the Fourier series of the periodic extension

of the function

)
0, 2<zx<—1

flx)=<¢k —-1<z<1

0, I1<ax<?2

\

2
The period is 2L = 4 so L = 2. Then ay = % [ f(z)dz =
-2

1 2 1
lfkdg;: k. a, = %ff( ) cos Hadr = fkcos%a:da::

% sin 5~ and b, =0 for all n since f is an even function.

Therefore f(z) =% + 2£ Z L 8in 2F cos L.

Exercise: Find the Fourler series of the 2 L-periodic exten-

sion of the function

16



Sine and Cosine Series

If a function f is defined on [0, L] only we can extend the
definition of f to an even (odd) function on all of [—L, L] and
then extend to a 2L-periodic function on all of R. The even
extension of f is given by

fe(x) = f(x) for 0 < & < L and fo(x) = f(—x) for —L <
x < 0.

Obviously f.(—z) = f.(z) for all x € [-L, L].

The odd extension of f is given by

folx) = f(x) for 0 <o < Land f,(z) = —f(—=x) for =L <
x < 0.

Then we get f,(—x) = —f,(x) for all x € [—L, L.

Now fe(x )—CLO—FZanCOS Ly and f,(z) = ib sin 2%

1
L

for all z € [—L, L|, where ag = % [ fe(z)dx = %
L

L
an =71 [ fe(x)cos Zadr = %Off(:c) cos “Fxdr and

l@%h

17



L
=+ [ folz)sinZadr = 2 [ f(x)sin2Zzdz. In particular
0
this is true for all x € [0, L], so we have sine and cosine Fourier
series for f(x) on [0, L].

Example: Find the Fourier sine and cosine series for f(x) =

x on [0, L].

L L
ao—%{xdsz, an:%ofxcos”%xdx:%[(x%sm o
L
b[# sin Yo dz) = %[ng; cos “I][§ = S=5(cosnr — 1) and

L L
b, = Ofxsm Mrdr = 2[(—xL cos )| f + of L cos M yda]
= —2L cosn.

o

Hence the sine series for f(z)is x = —2& )~ @80T gin BTg and

n=1

the cosine series is x = % +

18



DIFFERENTIAL EQUATIONS
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Ordinary Differential Equations

We first need to briefly consider second order linear ordinary
differential equations. A second order linear ordinary differen-
tial equations is an equation of the form
y () + pe)y (z) + q(2)y(x) = r(z)

or simply y' +p(x)y +q(z)y = r(z), where y is a real or com-
plex valued function of a real variable x and p(x), q(z),r(z)
are real-valued functions of x. It is homogeneous if r(x) = 0.
If we insist that y(zg) = ko and y' (zo) = k; for some zy |
where ko and kq, are real or complex constants, then we get
the
Theorem: If p(x) and ¢(x) are continuous on some open
interval I and zy € I, then the initial-value problem

y +p@)y +al@)y =0, ylzo) = ko,y (z0) = ky
has a unique solution y(x) on I.
This is an example of an existence and uniqueness result. We
can use any method we like to find this unique solution.
Defining the differential operator L by

2
L =& +p(x)f + q()

20



gives the equation in the form L(y) = r(x) with L(y) = 0 in
the homogeneous case. We have the obvious result, called the
principle of superposition:

Theorem: If y; and ys satisfy L(y) = 0 , then so does
ayy + By for any real or complex numbers a;, 5.

Theorem:  The solution space of L(y) = 0 on the open
interval I is two-dimensional.

Proof: Let xy be some point in I. Let y1(x) be the unique
solution satisfying y;(xo) = 1 and yj(z¢) = 0 and let yo(x) be
the unique solution satisfying yo () = 0 and y5(zy) = 1. Then
y1 and ys are linearly independent (consider the Wronskian).
Suppose that y is any other solution. Letting k; = y(xg) and
ko = 9'(xo) we get that y and kyy; + koys are solutions with
the same initial conditions and hence, by uniqueness, are the
same. We conclude that y; and ys form a basis for the solution
space.

We shall be interested in the case where p(x) = a and g(z) = b
where a and b are real constants i.e.

y' +ay +by =0.

21



Recalling that a first order linear differential equation '+ ky =

k

0 has a solution y = e™** we try a solution y = e** for the

second order equation. Substituting into the equation gives

(A2 +a)X+b)e* = 0 and hence A2+ a4+ b = 0. This is called
—a+\/2a2—4b and

the characteristic equation. Its roots are A\; =

N T : :
Ay = %‘lb with corresponding solutions eMa and e*2z.

We have three cases:
(1) a* —4b > 0, two real roots

(2) a* —4b =0, one real double root

(3)  a*—4b < 0, two fully complex roots.

A1 A9

In case (1) y; = e™* and yo = €"2* are linearly independent

and so constitute a basis for the solution space on any interval

I and the general solution is y = c1y; + coys i.e.

Az Ao

Yy = e + coe

_a

5 and hence only

In case (2) we only get one root Ay = Ay =
one solution y; = e~ 2%. To find a second linearly independent
solution we try a solution of the form ys = uy;, where u(x) is

some function to be determined. Differentiating gives

yé = u'y1 + in and yé’ = U"y1 + 2u/yi 4+ uy/lf

22



and now substituting into the equation we get
(w1 + 2u'y) + wyl) + a(u'yy + uy)) + buy; = 0.
Rearranging gives
u'y + ' (2y] + ayr) + uly) + ay) +by) = 0.
Now the two terms in brackets are 0, so u”y; = 0 i.e.
u"e 2% = (. Hence v = 0 and so u = dyx + dy for any
constants di and dy. Taking d; = 1 and dy = 0 gives u(x) = .
We conclude that ys(z) = 2y (z) = ze™2" is a second solution.
y1 and 1y are easily seen to be linearly independent on any
interval I and so the general solution is y = ci1y; + coys 1.e.
y = (c1 + cyw)e 2",

Va2— N Ah— 2

In case (3) we have A\ = viboo —

a . a2 . . 2 a2 . _ _a .
—5+i4/b— . Writing w® = b— % gives roots Ay = —5 +iw
and Ay = —% —iw. Then eM?” and e*2® are complex solutions.
Now et = eselt = e%(cost + isint), so

Az -2 -
e’ = e 2%(coswx + i sin wx)

_a ..
and e’ = e~ 2%(coswr — i sinwz).
Now £(eM” + e*2") and 5(eM* — e*2) are also solutions i.e.

_a _a . . .
e 2" coswzr and e 2*sinwax are solutions and are obviously

23



linearly independent. Hence the general solution is
y = e 2%(Acoswx + Bsinw).

Example: Solve the initial-value problem

y'+y —2y=0, y(0)=4,4(0)=-5
Characteristic equation is A> + X — 2 = 0 with roots 1 and —2.
General solution is y = c1e® + cpe™?*. The initial conditions
imply that ¢; + ¢y =4 and ¢; — 2¢co = —5. Hence ¢; = 1 and
co = 3 and the solution is y = e* + 3e 7.
Example: Solve the initial-value problem

y'— 4y +4y =0, y(0)=3,y(0)=1.
Characteristic equation is A> —4\+4 = 0 with a single real root
2. General solution is y = (¢; + cox)e*. The initial conditions
imply that ¢y = 3 and 2¢; +¢co = 1. Hence ¢; = 3 and ¢y = —5
and the solution is y = (3 — bx)e”.
Example: Solve the initial-value problem

'+ 2y +5y =0, y(0)=1,94'(0)=>5.
Characteristic equation is A24+2A+5 = 0 with roots —1+2¢ and
—1—21. General solution is y = e™*( A cos 2x + B sin 2x). The

initial conditions imply that A =1 and —A + 2B = 5. Hence

24



A = land B = 3 and the solution is y = e~ *(cos 2x+3sin 2x).

25



General Partial Differential Equations

A partial differential equation (PDE) is an equation involving
partial derivatives. The order of the equation is the highest
partial derivative in the equation.

Example: % = % is first order, % — % = f(z,t) is
second order etc.

A PDE can have any number of variables > 2.

Example: u; = u,, has 2 variables, namely ¢ and z,

U = Upp + %ur + ugp has 3 variables, namely ¢, and 0, etc.
A second order equation in 2 variables is linear if it is of the
form Au,, + Bu,, + Cuyy + Du, + Eu, + Fu = G, where
A B,C,D,E F and G are functions of x and y i.e. there

exists a linear operator L such that Lu = G, where

L=AZ+ B2 +CL+ DL+ EL+F.
Example: wuy; = e “uy, + sint (linear)
Uty + up = 0 (non-linear)
Uy + YUy, = 0 (linear)

Tu, + yu, + u* = 0 (non-linear).

We shall be interested in the linear case only. The general

26



linear equation above is homogeneous if G = 0. Otherwise it
is inhomogeneous.

A solution of a PDE in some region R of the space of the
variables involved is a function of the variables that has all
the partial derivatives appearing in the equation in some do-
main containing R and satisfies the equation everywhere in R.
Usually there are many such solutions. However if we impose
conditions that the solutions must satisfy on the boundary of
R (boundary conditions) or, if one of the variables is time ¢, at
t = 0 (initial conditions), then hopefully we can get a unique
solution. This is our objective. The boundary and initial con-
ditions arise from physical considerations in each particular
case.

Important PDEs from physics:

2 . . ,
% = c% (one-dimensional heat equation)
2 2 . . )
% = 02% (one-dimensional wave equation)

% + giy% = 0 (two-dimensional Laplace equation)
V?u = 0 (three-dimensional Laplace equation).

These equations arise in many areas of physics. Our task is

27



to solve these equations given various boundary and initial
conditions.

Note: Some PDEs can be solved by integrating.
Example: Solve u,, —u =0, where u = u(x,y).

For each y we consider v as a function of x and use ODE

techniques to solve:

d*u
dx?

solution has the form A(y)e” + B(y)e™".

— u = 0 has characteristic equation \> — 1 = 0, so any

Example: Solve u,, = —u,, where u = u(z, y).
2 . .9 d
82:52/ = —%; letting u, = p gives 8—5 = —p, SO f?p = — [ dy;

hencelnp = —y+c,sop = De Y foreach x i.e. % = D(x)e™V.

We conclude that u = e [ D(z)dx + g(y).

28



The Heat Equation

The temperature u(z, t) of a slender metal bar of length L sat-

isfies the diffusion equation

o _ 0%
ot~ “ox2

where c is a positive constant. The bar is embedded in a per-
fect insulator so that the boundary conditions are given by
u(0,t) = 0 and u(L,t) = 0. Initially the temperature of the
bar is given by u(z,0) = f(x), for some function f(z). Find
the temperature at a distance x from one end of the bar at any
time .

This situation also applies to an infinite vertical slab (see dia-

gram below).

We have
%20%, O<z<L, t>0
with w(0,¢) = 0, u(L,t) = 0 for all ¢ and u(x,0) = f(z) for

all z.

To solve we use the method of ”Separation of Variables”.

29



Try a solution of the form u(x,t) = F(x)G(t).

Then
2 2
% — F(:C)% and % — %G(t),
2 / 1"
o ha P = G0 or & =

where " means differentiation with respect to the relevant vari-
able. Now the left-hand of this equation is a function of ¢ only
while the right-hand side is a function of x only, so both sides
must be constant i.e. % = %ﬁ = k, for some constant k. We
get two ODEs
%:ckGaHd%{;:kF

or %—ckG:Oand‘ng—kF:O.
Now u(0,t) = 0 implies that F'(0)G(t) = 0 for all ¢, so F/(0) =
0or G(t) =0 forall t. If G(t) = 0 for all ¢, then u = 0, the
trivial solution (with f(z) = 0 also). Hence F'(0) = 0. In the
same way we get F/(L) = 0.
We now have the second order ODE

TP kF =0 with F(0) = 0 and F(L) = 0.
For k = 0 the general solution of this initial-value problem is

F(x) = ax +b. The boundary conditions imply that a = b =
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0, again the trivial solution. Next consider & = p* > 0. We

have %; — p?F = 0 with general solution

F(x) = AeP* + Be™ "
The boundary conditions now give A + B = 0 and
AePt + Be Pl = (), so that B = —A and AePt — Ae Pk = (.

Therefore A(ePt — ep%) =0, so A(GQZZL,L_l) = (0 and hence A =0
since 2pL # 0. Again we get the trivial solution. The final
possibility is k& = —p? < 0. We have ‘51275 + p?F = 0 with
general solution

F(z) = Acospx + Bsinpz.
Applying the boundary conditions gives A = 0 and
BsinpL, = 0, s0 A = 0and B = 0 or sinpL = 0. If
B = 0 we again get the trivial solution. Hence B # 0 and
sinpL = 0,s0p =" for n € Z. Taking B = 1 gives solutions
Fy(z) = sin Tz forn = 1,2,3...(For n < 0 we get —sin “*x.)
Next consider the other ODE % — ckG = 0, where now

2.2 . .
k = —p? = —™7° For convenience write \,, = 2Z. so that

12 I
dd 20
It + C)\nG = 0.

Try G = e to get (p+ cA2)e =0 or p = —cA2. We have
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solutions G, = Bye~ it n =1,2,3...
Now for each n = 1,2,3... we have a solution w,(x,t) =

E,(2)G,(t) = Bye ! sin 22z for our PDE. However the so-
lution must also satisfy the initial condition u(z,0) = f(x).
In general none of the u,(x,t), or any finite sum of them, will

satisfy this condition. Let’s try an infinite sum, called a formal

sum, leaving aside questions of convergence for the moment,
(0.¢}

u(x,t) = E:Iun(a:,t) ZB e~ Nl sin "y,
If u(z,0) = f(x), then f(x) = Z B, sin “Fx i.e. the B, must
be the coefficients of f(z) in 1ts Fourler sine series expansion
on the interval [0, L]; in other words
B, = %ff( sin “Fad.
With the B,, so chosen thgn u(x,t) above will be a solution
of the heat equation satisfying all the boundary and initial

conditions.

Example:

0, 0o <L, [h<x<L
flz) =

1, <z <Ly
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L Ly
B, =2 [ f(z)sinZzdr = % [ 1sinZxde
0

L1
_21_L nr la 2 nrly nmLo
= === cos Fw|? = =(cos 77+ — cos 77 2)

and so

u(z,t) = 2 i l(cos nrhy oo 2k2) gip 0 —eAit
T n
n=1
Note that if L; = % and Lo = L, then
(0. @]

w(z,t) =25 L(cos T — cosnr)sin "7~

n=1
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Different boundary conditions for heat equation:

Consider 2 5 = c%, —L<zx<L, t >0
with u(—L,t) = u(L,t) , ( L,t) = (L,t) and

u(z,0) = f(x).
As before we write u(x,t) = F(z)G(t) to get
—cszOand‘fT};—kF:O,

where k is a constant. The boundary conditions become

F(=L) = F(L) and “L(—L) = 45(L). Again, k = 0 gives

F(z) =ax+band F(—L) = F(L) implies that
a(—L)+b=a(L)+b,s0a=0and F(z) = b, a constant.

For k = p? > 0 we have o — p?F = 0 with general solution

F(x) = AeP” + Be P,

F(—L) = F(L) now gives Ae Pl + Be!l = AePl + Be Pl

so that A + Be?* = Ae** + B or (A — B)(1 — e**) = 0.

Hence A = B since p # 0 and F(z) = A(eP” 4+ e7P*). Also

@B L) =9L(L) gives Ap(e Pt — ePl) = Ap(e!t — e7PL), so

that 2Ap(e L — ePt) = 0 and hence A = 0, the trivial solu-

tion. The final possibility is & = —p? < 0 to give, as before,

F(x) = Acospx + Bsinpzx.
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F(—L) = F(L) implies that Acos(—pL) + Bsin(—pL) =
AcospL + BsinpL, so 2BsinpL = 0. Hence B = 0 or
sin pL = 0. Also %(_L) dF(L) gives Apsin pL+BpcospL =
—ApsinpL + BpcospL, so 2ApsinpL = 0. Hence A =0 or
sinpl = 0. If sinpL # 0 then both A and B are 0 and we
get again the trivial solution. We conclude that sin pL, = 0 so
that p = %5, n = 1,2, 3... We have solutions
Fn( ) = Ay cos x4 By sinFr,n =1,2,3...

and Fy(x) = Aj as the constant solution.

Now for —ckG = 0. k = 0gives dG = 0, so G = a constant.

nm

k = —p* gives solutions G, (t) = Bie~“%' where X, = 2.

Putting it all together we get solutions

Uy (x,t) = (A, cos Fx + B, sm"L”x)e_CA%t form=0,1,2,3...;

n = 0 giving the constant solution.

Again to satisfy u(x,0) = f(x) consider

o0

u(xa t) - Z (An COS ”TW:U + B, sin "%Tx)e—c)\%t
n=0
oo
and so flz)=Ag+ Zl(An cos Fw + B, sin Fx).
n—=

Hence Ay, A, and B,, must be the Fourier coefficients of f(z)
n|—L,L|ie.
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L L
Ay =5 [ flz)dz, =+ [ f(z)cosZadx
“L “L
L
and B, = 7 [ f(x)sinZxdx. With these Ay, A, and B,

h

we get that u(x,t) is a solution of the equation satisfying the

boundary and initial conditions.
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The Wave Equation

The deflection of an elastic string of length L fixed at the end-

points is governed by the wave equation

Py _ 20%
Ot2 ox2’

where c is a positive constant. Suppose that the initial deflec-

tion is given by f(x) and the initial velocity is given by g(x).

We have

%:cz% 0<ax<L, t >0
with u(0,¢) =0, u(L,t) = 0 for all ¢ and u(z,0) = f(z),
du

57 (x,0) = g(z) for all z. As before try a solution of the form

u(z,t) = F(x)G(t).
We get

no__ 2mn G B
FG"=cF'G or 35 =+

Again the only possibility is both sides must be a constant k,

G//_F_//_
%_F_k'

We have two ODEs, namely
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G" — kG =0and F" — kF = 0.
The boundary conditions become F'(0) = 0 and F(L) = 0.

Consider
dx — kF =0, with F(0) =0 and F(L) =0.
This is identical to the heat equation with the only non-trivial
solution given by k = —p* < 0. We have 6575 + p?F = 0, with
general solution
F(z) = Acospx + Bsinpz.

Again the boundary conditions give A = 0 and BsinpL = 0
so that p =" n=1,2,3,... Taking B =1 gives
Fy(r) = sin “Fx is a solution for n = 1,2, 3,.
Now consider

‘579 + cp*G = 0, where p = T
Writing A, = 7+ > 0 gives 4 dt2 + A2G = 0 with general solu-
tion

Gn(t) = By cos A\t + B sin A\t
where B,, and B’ are constants for each n. We now have

Uy (2, t) = F(2)G,(t) = (B, cos A\t + By sin At) sin “,

n = 1,2, 3... are solutions of the wave equation satisfying the
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boundary conditions, called normal modes. To get a solution

satisfying the initial conditions also we consider the formal sum

u(w,t) = Y uy(x,t) = ) (B, cos A\t + Bysin A\yt) sin .
n=1 n= 1

Then f(z) = wu(z,0) = Z B, sin “Fx, which is true if the
B,, are the coefficients of the Fourier sine series expansion

of f(z) on the interval [0, L]. Similarly g(z) = %(z,0) =

©. 9]
> BiA,sin “Fx, true if the B\, are the coefficients of the
n=1

Fourier sine series expansion of g(x) on [0, L]. In other words,

L L

if B, =2 [ f(z)sin“fadz and Bi\, = %fg sin " xd,
0

then u(z, t) is a solution satisfying the 1n1t1al conditions also.

Note: wu(x,t) = ZB cos A\t sin 2 x+z B sin At sin 27

n=1
= i B, cos Ayt sin %, if g(x) = 0. In this case

u(x,t) = ZZB sin2T(z — ct) + 1 ZB sin % (z + ct) =
s((flz — t) + f(x +ct)).
Example:  Suppose that f(x) = sin3x — 4sin 10z and
g(x) = 2sindx + sin 6z with L = 7w, ¢ = 2
Then sin 3z — 4sin 10z = i B, sinnx, so B3 =1, By = —4

n=1

and all other B,, = 0.
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Also 2sin4x 4 sin 6z = Z A B sinnx = Z 2n B’ sinnx, so
8By = 2,128 = 1 and alllother B} = 0. He_nlce the solution is
u(z,t) = cos 6t sin 3z+1 sin 8 sin 4z+5 sin 12¢ sin 6z —4 cos 20t sin 10z
Example: Suppose that the midpoint of the string is pulled

up a distance h and then released from rest giving

flx) =

00 L
flz) = ;anin “fx, where B, = %bff sin Fadr =

L
2 L
220 [ g sinPady + 2.2 [(L — z) sin Zady = §h2 sin 7.
0
g(x) = 0 means that all B} = 0.
o0
We have u(x,t) = —Z # sin 7 sin T2 cos “T°L.
n=1
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d’Alembert’s solution of the wave equation:

%202%, with t >0, —oo <z < o0
and u(z,0) = f(z), 2(z,0) = g(x).

Note that if ¢ : R — R is any twice differentiable function and
u(x t) = gb(a;+ct) then 5% = ¢ (z+ct), % — ¢ (z+ct) and
W — ey (z4ct), 2 W — ¢ (z+ct), so that u(z, t) is a solution
of the equation. Similarly, if ¢ : R — R is any other twice
differentiable function and u(x,t) = ¥ (x — ct), then u(z,t) is
also a solution. We have that u(x,t) = ¢(z + ct) + Y (z — ct)
is a solution. We wish to show that every solution is of this
type.

Introduce the variables y, z, where y = x + ¢t and z = x — ct.

— o _ Ouldy | Judz _ .0 0
Then u = u(y, z) giving at aZ 5t T 559t = Coy — Cos

and 5 = 5(5) = con(G8) — ez (5))
_ .0 0 0 0 0 0 o 9/ 92 92 52 52
C@y<05§'__caz) 082(65%-—'Caz> C (ayu-__8y§;-__8z§;'+'a;g)

2 2 2 .
=c (gy — 2%82 32). Similarly 3 —“ =2y 20

Pu
Hence 4(9 5 = 0 or

g“ is a function of z only7 h(z) say.

07u
ayaz + 022"

a = 0. Now (g—) Oimphes that

Therefore u = [ h(z)dz + k(y), for some function k(y). We
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write u(z,t) = ¢(y) + ¥(z) = ¢(x + ct) + (x — ct), so every
solution is of this form.

Now consider the initial conditions.

u(z,0) = f(z) gives f(z) = d(x) + ¥(x) and (=, 0) = g(=)
gives g(x) = (¢ (z) — ' (x)). Integrating the second identity

we get o(x) — () = %fg(s)ds, where x( is an arbitrary

constant and now solving gives ¢(x) = 5 f(x) + o= [ g(s)ds

2 2695
and () = 3f (x fg
Hence u(x,t) = (:U+ct)+¢(as—ct)
x+ct
2f(x+ct) QL f g(s ds+2f(:1:—ct f q(s
— %(f(a: +ct)+ f(z —ct)) + i x}itg(s)ds

In particular, if g(x) = 0, then we get

u(z,t) = 5(f(x + ct) + f(z — ct)), a superposition of two
travelling waves in opposite directions with velocity c.

For a physical interpretation of d’Alembert’s solution consider
o(x,t) = f(x—ct). Suppose that t; < to. ¢ will have the same

value at x1 at time ¢; as at x5 at time ¢y if x1 — ct; = x5 — ¢ty

L2—21 __

Le. P
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If 21 is the space coordinate of any point on the curve ¢(z, t) =
f(z — ct) at time t1, then the same point at time ¢, has coor-

dinate xy, where

L3=T1 _
-

to—11

Since xq is any point on the curve and t9 — ¢4 is any time inter-
val ¢(z,t) = f(x — ct) represents a displacement of arbitrary
form travelling at constant speed ¢ in the positive x-direction
without change of shape. Similarly ¢(z,t) = f(x + ct) rep-
resents a displacement of arbitrary form travelling at constant

speed c¢ in the negative x-direction without change of shape.
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Two Dimensional Laplace’s Equation

Let u(z,y) be the steady-state temperature in a rectangular
metal sheet 0<x<L, 0<y<H.

It is known that u(x,y) satisfies the equation

Z+iy=0.
Suppose the sheet is insulated along the sides y = 0,y = H
and x = L and the temperature of the side x = 0 is given by
f(y). Hence the boundary conditions are
uw(0,y) = f(y),u(L,y) =0,u(r,0) =0 and u(x, H) = 0.

Let u(z,y) = F(x)G(y), giving F' (2)G(y) + F(x)G' (y) = 0,

S0 % = —%” = k, a constant. Again we get two ODEs
F'(x)—kF(z) =0, F(L)=0

and G'(y)+kG(y)=0, GO)=0 G(H)=0.

Consider G" (y) + kG(y) = 0. If k = 0, then G(y) = ay + b.

Now G(0) = 0 implies b = 0 and then G(H) = 0 gives

a = 0, the trivial solution. Next consider k = —p? < 0. Then
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2

G (y) — p’G(y) = 0 with general solution

G(y) = Ael” + Be ™Y,
G(0) = 0 gives B = —A, so G(y) = A(e?Y — e ). Now
G(H) = 0 implies that A(e*? — 1) = 0, so A = 0 also
and again we get the trivial solution. The final situation is
k =p*> > 0. We have G" + p*G(y) = 0 with general solution

G(y) = Acospy + Bsinpy.

G(0) = 0 gives A = 0 and G(y) = Bsinpy; now G(H) = 0
implies that B = 0 or sinpH = 0. B = 0 again gives the
trivial solution, so sinpH = 0 or p = 77,n = 1,2, 3... Hence,
for each n = 1,2, 3... we have a solution G,,(y) = sin “7y.
Now consider F' (z) — kF(x) = 0, where k = p? = (%7)?. Let
An = %%, Then we have F "(z) — N2F(z) = 0 with general

solution
F(z) = Ah* + Bew
F(L) =0 gives B = —Ae?ML and we get a solution
Fo(z) = A, (eM® — e o2l
for eachmn =1,2,3...

Rearranging, we get Fn<gj) — ATLe)‘nL(6)\nx€_)\nL_€—>\n$6)\nL) _
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At (ene=L) _ e=Mnle=L)y — A ginh \,(x — L), where
A =2A4,eME.
Now for each n = 1, 2, 3... we have a solution
un(x,y) = A, sinh A\, (z — L) sin \py.
None of the u,(x,y) will, in general, satisfy the boundary con-

dition u(0, y) = f(y), so we consider
u(z,y) = Z up(z,y) = > A,n sinh \,,(x — L) sin A\py. If this
n=1

n:

satisfies u(0, y) = f(y), thenf(y) = 3. A sinh(—\,L)sin Ay,
—1

which is true if the A sinh(—\, L) are the Fourier sine series

coefficients of f(y) on [0, H] i.e.

A;Sil’lh( ML) = % f(y) sin Fydy.

Example: Suppose f(y) = y(H —y).
H

fy(H — y)sin rydy = nysm ydy — fy sin “rydy.

Let I = nysm Zydy and J = fy sin ‘Fydy.

H
Integration by parts gives [ = H [——y COS 11 | i +-— H f cos ‘ydy
= —H—3 COS M.

Also J = [——y cos & y Hf2ycos Zydy
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= —H—cosmr+ = 2[ysm | 2H2 fsm ydy =

— H—3 COS T + 245 [COS 2yl —H— cos N + 25 (cos nmw—1).

Hence A sih(—\ L) = 45 (1—cosnm), o 4, = 5 {dzesre)

and u(z,y) = 452 > % sinh \,,(z — L) sin \,y.
1 n

n=

Note: Consider

Pe+li=0, 0<a<L 0<y<H
where u(z,0) = fi(x), u(x,H) = fo(x), u(0,y) = q1(y)
and u(L,y) = ga(y).
Separation of variables depends on some bounday conditions
being homogeneous i.e. = 0. To solve the above we consider
solutions of

4+ 24 =0,

with u(z,0) = fi(x) and the others = 0 ete. If the solutions
are Ui, Us, U3, Uy, respectively, then v = uq + uo 4+ ug + uy will
be a solution satisfying all the boundary conditions above.
Example: The voltage V(x,y) at any point in a square

metal plate of side length 7 satisfies Laplace’e equation

PV PV _ g
0z Oy?

The plate is earthed at x = 0,z = 7 and y = 0, so that
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V(0,y) =0,V(m,y) =0 and V(x,0) = 0. A voltage f(x) is
applied along the fourth side y = 7 so that V(z,7) = f(x),

where

=
&
[
s
o
IA
S
IA
M

IA
&
VAN
N

T —,

b0l

Solve for V' (z,y).
V(z,y) = F(z)G(y) so that F' (x) — kF(z) = 0 and
G'(y) + kG(y) = 0, with F(0) = 0, F(r) = 0 and G(0) = 0.
Consider F"'(z)—kF(z) = 0, with F(0) =0, F(7) = 0. k=0
implies I = 0. k = p? also gives I’ = 0 as before. Therefore
k=—p?and so F' (x) + p?F(x) = 0, with general solution

F(x) = Acospx + Bsinpzx.
The boundary conditions now give A = 0 and sinpm = 0 so
that p = n,n = 1,2,3, ... and sinnx is a solution for each
n=1273..
Now consider G (y) — p?G(y) = 0, with G(0) = 0,p = n.
For each n we have a general solution

Gn(y) = Ane™ + Bpe ™.

G(0) = 0 implies that B,, = —A,, s0o G,(y) = A, (™ —e™™).

We have solutions V,(, y) = A, sinnz(e™—e ™) = A’ sin na sinh ny.
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Consider V(z,y) = S A sinnasinh ny. Then
n=1

o0

V(x,m) = f(x) implies that f(x) = ) A, sinnxsinhnr, so
n=1

that A, sinhnm is the Fourier coefficient of the sine series ex-

pansion of f(x) on the iterval [0, 7] i.e. A sinhnr =

71'

%ff(x) sin nxdr = fa:sm nxd:c—l—ﬁfsm nrdr— f:csm nxdz]

2 2
= 42 sin & 2 , on Integrating.

(0. 9]

Finally we have V(z,y) = 2 Z

™

Smh — sin na sinh ny.
Example: The voltage ( y) at any point in a square

metal plate of side length 27 satisfies Laplace’e equation
2250

The plate is earthed at x = 0,2 = 27 and y = 2, so that

V(0,y) =0,V(2mr,y)=0and V(z,27) = 0. A voltage sin 2x

is applied along the fourth side y = 0 so that V' (z,0) = sin 2.

Solve for V(z,y).

V(z,y) = F(z)G(y) so that F' (z) — kF(x) = 0 and

G (y)+kG(y) = 0, with F(0) = 0, F(2r) = 0 and G(27) = 0.

Consider F'(z) — kF(z) = 0, with F(0) = 0, F(2r) = 0.

k = 0 implies FF = 0. k = p* also gives F' = 0 as before.
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Therefore k = —p? and so F' () + p*F(z) = 0, with general
solution

F(x) = Acospx + Bsinpzx.
The boundary conditions now give A = 0 and sin2pm = 0
sothat p=2,n=1,2,3,... and sin 2z is a solution for each

2
n=1,23..

Now consider G (y) — p*G(y) = 0, with G(27) = 0,p = 5.
For each n we have a general solution

Gn(y) = A,e?¥ + B,e 2.
G(27) = 0 now gives A,e"™+ B,e™"" = 0, s0 B,, = —A,e*"".
Therefore G, (y) = A,(e2¥ — 2"~ 2Y)
= Ape"™(el2vmm) — e~ (2ynm)) = 24, e sinhn (¥ —
Write G,,(y) = A, sinh n(5 — ) and then
V,(z,y) = A sinh n(§ — m)sin 52 is a solution for each n =

S !/
1,2,3... Now consider V(z,y) = zlen sinhn(f — ) sin 5.
n=

If this is a solution, then V(x,0) = sin 2x implies that
sin 2z = Z A sinhn(— ) sin . We conclude that

A, sinh(— 47r) — 1 and all other A, = 0. We get our solution

Vir,y) = = h( 1 sinh 4(§ — ) sin 2z = snhU7=29) gin 2.

sinh 47
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FOURIER TRANSFORM
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Definition of Fourier Transform

Consider f: [—L,L] — Ror f : R — R periodic with period

2L. Then
00 L
flx ):%Jrz:l(ancos b, sin ), where ag = %fo(x)dx,
n=
L L
%fo(:U) cos “Txdx and by, if f(x)sin “Fxdx. Now
Lt = cos 7-x + isin7x and e —ipr — COS 7+ — isin 7,
so that cos x = ("% + ¢ 7"7%) and

14 N 1 T -
sinx = L(e"T¢ — e7"T*). Hence

- ' T ; T
f(g;) — % + Z(<an—2zbn)€zfx + (an—gzbn)e_zfx> _
n=1

co + Z:l(cnei%x + c_pe "LT), where ¢y = G cn = @ and

n=

) S VT
c_p = @ Therefore f(z) = Y. c¢,e' L%, where for each
I . n=——oo
n,c, =5 [ flz)e "L7dx.
Now set “F = wy,, so that flx)= 3 cpe“n =
n=—oo

00 L ‘ ‘

- L[ ft)e“ntdt]etnt = L Z e'wn? f f(t)e wnldt,
n=—00 —L n=-—00

Let Aw = wy1 —wy = (nJrLl)W — 2% = T and con81der L — .
Then f(x) = Z elwnt( f f(t)e “ntdt)Aw. Letting

TL——OO

L — 00, so that Aw — 0 and w, — a continuous variable w,

o2



9]

to give f(z) = \/ﬂ f e ( ¢12—7T [ ft)e ™ dt)dw =

—0o0

ﬁ_f fw)e™dw, where f(w 1% f f(t)e “tdt is called

the Fourier transform of f and f(x) = w)erdw is

S
called the inverse Fourier transform of f We have
flw) = \/% [ f(x)e ™*dzx and f(z \/— f flw)e™ dw.

All of the above is formalised in the following theorem.

Theorem: If f(z), —oo < x < oo, is piecewise con-
(0. ¢}

tinuous on each finite interval and if [ |f(x)|dz < oo, then
— 00

the Fourier transform A(w) exists. Furthermore

HI )+ =) = e [ flw)esrd.
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Properties of Fourier Transform

(i) T+gw) = fw) +iw) and af(w) = af(w).
Proof: Obvious from the definition.

(i) If f(z) is continuous on R and f(z) — 0 as |z| — oo

and f £ (x)|dz < oo, thenf( ) = iwf(w).

o0

Proof: f'(w)=-L [ f(x)e ™ de =

il Flwpe ],

E\H
=)

i) T fperin = 04182 T forerda = i)

Note that from this we can deduce that f” (W) = (iw)(iw) f(w)
—w2f(w).
b

i) [ f(a)de = %_}o F() (€2 g,
Proof: f(x)dz = \/%—W f[ i)fo Flw)e™* dw)da

b

—o e

|
- *
8%8

= \/%jo[ flw)e™ da]dw = [f( ) [ e“*dz]dw
= & [ Fe

o4



Examples

kE, 0<zx<a

fz) =

0, z<0orx>a

flw) = \/%_W [ ke ™*dr; w =0 gives f(w) = 2

0 var
w # 0gives f(w) = \/%_W bf ke “rdy = J%[eizzx]g — \/’;_ﬂ[l_i;m].
(11)
I, a<zxz<b
flx) =
0, x<aorx>b
A b . A
flw) = \/LQ—er_Z”d:U; w =0 gives f(w) = i)/_Q_er
b
o I e~ wT e~ wa e—zwb
w#Oglvesf(w):%fe da::%[ M}Z:\/lz—w[ —
(iii)
e’, x <0
flx) =
0, >0
¢ _ 1 ; T ,—IWT _ 1 ; (1—iw)z 1 rell-wzqg
flw)=—7z [ ee™de= 7= [ e dr = -T2 =
1
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f(w) — 1 x€—$e—iwxd$ — 1 xe—(l—l—iw)xdx _
Vor f N bf

1 rpe— 4wz 1 Ooe—(l—i—iw)x 1 pe(Hwz. o
\/ﬂ[ —(1+iw) 10 _ﬁ{ —(1+iw) dz = \/ﬁ[—(H’M)Q]O T V2r(1tiw)?
(v)
kE, —-n<x<m
flz) =
0, < —m, 7w<x
flw) = \/12—7_{() flx)e “dy = \/LQ_”—[T f(x)e “dy

1 o 2
= —=— | f(x)(coswr —isinwx)dr = f(z) coswxdx
V2T —j7‘r V2T g‘

™
('since f(x) is even) = % { coswrdr = %%

(vi) The truncated cos function

cosdr, —m<zr<T
flz) =

0, r< —m, Tw<<x

cos 3x cos wxdx

S
S—x

2w sin Tw

fw) = [ fl)edr =
(asin (v)) = N

o6



The Heat Equation

ou __ 20%u

o = C o3, —oo<zx<oo, t>0, ¢>0.

Assume that u and 9* are finite as |z| — oo and

uw(z,0) = f(x), —oo < x < oo, where f(x) is piecewise
smooth on every finite subinterval and [ | f(z)|dx is finite.

Define the spatial Fourier transform of u(z,t) to be

u(w,t) = m f u(x, t)e”“dz.
Applying the spatlal transform to the differential equation
we get \/%7 Qu(z,t)e “dr = \/127 f 0282 e “rdx,
so that 2[-= [ u(z,t)e ™*dz] = = a Yz, t)e " rdx
ot \/ﬂ_{o \/ﬂ_{o 0x2 N
giving %(w, t) = —c*w?i(w,t) and hence 4w, t) = Alw)e ¥,

where A(w) is some function of w.

)

Now u(z,0) = f(x) implies that u(w, 0) = \/% [ u(x,0)e ™ dx =

\/%_j? flz)e ™ dr = f(w), so

A

Aw) = f(w) and G(w,t) = flw)e ™. Taking the inverse
) =

. _ 2
Fourier transform we get u(x Cwltgiwr g,y =

1 (0. @]
in

\/% f ]E(w ew(ix—c2wt)dw.
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The Wave Equation

9u 20%u

o7 = C o3, —oo<z<oo, t>0, ¢>0.

Assume that u and 2* are finite as |z| — oo and
u(z,0) = f(z), %(z,0) = g(z), —oo <z < oo, where
f(z) and g(x) are piecewise smooth on every finite subinterval

and f | f(z)|dx, f |g(x)|dx are both finite.

Applymg the spatlal transform to the differential equation we

get = f at2 (z,t)e “dx = \/LQ—W f 02%(95,75)6”“%56, S0
2 . o0 2 .
that 2[4 \/— f u(x,t)e “dx] = 02\/% [ Sz, t)e " da
—00
giving 8752 4w, t) —c2w?l(w, t) and hence

gtg (w, ) + Pw?l(w,t) = 0. The general solution is
t(w,t) = Aw)e'™ + B(w)e ™!,

Now u(z,0) = f(z) and 2(z,0) = g(z) imply that

W(w,0) = f(w) and %(w,@) = g(w), so that

S
£
_|_
%
£
[
>
Q /_\
&
)
@
S
&
S
£
|
=
[

g(w). Hence
w)

“@) and B(w) = (f(w) — &

2 cw

4+ ) and so
(@, t) = 59 [ [(flw)+E)eetert(f(w) -2

) —zcwteiwx} dw

_ 1 f f(w) zw(x—i—ct)dw_l_Z\/_ f f zwx ct)dw_|_

o8



x n ciw(atet) _giw(z—ct)
s J G dw = Sl f(w et + fo —et)] +

z+ct
% [ g(v)dv, which is d’Alembert’s solution.

r—ct

( Recall property (iii) of the Fourier transform.)
Considering the simpler case of g(x) = 0, we get
(w) + B(w) = f(w) and icw(A(w) — B(w)) = 0. Hence
<w>=%f< ) and B(w) = Lf(w) and so

70 [f(w)ezcwtezwa: i f(w)e—icwteiwaj]dw

A
A

u(x,t) =

_ 2\/1% f f(w) zw(x+ct)dw + 2\/_ f f zw r— ct)dw
|f(z+ct)+ f(x—ct)] which agam is d’Alembert’s solution.

DO —
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