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FOURIER SERIES



Some Definitions

Definition: A function f : [a,b] — R is piecewise contin-
wous if [a, b] can be divided into a finite number of subintervals
on the interiors of which f is continuous and has finite left-hand

and right-hand limits at all the endpoints of these subintervals.

Example:
‘ / -
& I L3
1 e

f is piecewise continuous on [0, 3].

Let Cyla,b] denote the set of all piecewise continuouos func-
tions on [a,b]. Then Cjyla, b] is a vector space under function
addition and scalar multiplication. If x( is an endpoint of some
subinterval we write lim f(z) = f(zo+) and lim f(z) =

$—>x0+ T—T

f(zo—). If f is continuous at o, then both of those limits are
the same.

Definition: f : R — R is periodic if there exists some

T < 0 such that f(z +7T) = f(z) for all z € R. The smallest



positive such T is called the period of f.
Example: (i) f(z) = sinz is periodic with period 27, so
f(z) = sinna is periodic with period 2 since sinn(z + ) =
sin{nz + 27) = sinne.
(i) f(z) = ¢, a constant, is periodic but does not have a
period.
(iii)  f(z) = 2* is not periodic.
Note: The sum and the product of periodic functions is
usually periodic.
Definition: f:R — Riseven if f(—z) = f(z) for all z
and f is odd if f(—z) = —f(x) for all z.
Example: cos is even and sin is odd.
Note that (even){even) = even, (odd)(odd) = even and (even)(odd)
= odd.
a a

Theorem: If f is even, then [ f(z)dz = 2 [ f(z)dz and

~a 0

if fisodd, then f f(x)dx = 0.

a

Proof: [ f(z) f flz)dx + ff Ydx. Making the

—a

a
substitution w = —z in the first integral gives [ f(—u)du =
0



f f(—x)dx. Hence both results.

%Ve will need to consider the vector space nature of Cyla, b), so
we recall the abstract definition of a vector space.
Definition: A set V along with an operation +: VxV — V
( addition) and an operation . : R x V' — V/ (scalar multipli-

cation) is called a real vector space if the following properties

i) (u+v)+w=u+ (vl w) Yu,v,w €V (associativity)

) wtv=v+uVuv €V (commutivity)
zero element)

(
(
(iii) 3 an element 0 € V such that u+0=0+uVu €V
(
(

iv) Given any v € V 3 — v € V such that v + (-v) =
(—v) + v = 0 ( inverse element)

V) a(u+v)=cutavVoeRuveV

Vi) (a+plu=au+puvVe,feRuelV

(viD) e.(Bu) = (af)u Vo, € Ryu € V ((v), (vi), (vii)
imply distributivity)

(vii) lu=uVueV.



R3

Recall the structure of R®:

R? = {(a,b,c)|a,b,c € R}, where we write ¥/ = (a,b,c). It
i = (1,0,0),5}: (0,1,0) and k= (0,0,1), then ¥ = (a,b,¢) =
a(1,0,0)+b(0,1,0)+¢(0,0,1) = ai+ b7+ ck, where addition
and scalar mutiplication is defined componentwise. We say
that RS is a vector space with a basis {7, 7, k}.

Thr scalar (dot) product on R? is defined by (a, b, ¢).(d, e, f) =

—

ad + be + ¢f so that =7 = kk = 1.

— — —

We define 4 | ¥ if and only if w4 = 0, so 4,7 and k are

mutually perpendicular.

The norm or length of # is defined by ||7]] = V7.9 = Va? + b* + ¢
and the distance from @ to U'is |4 — /.

Note that if ¥ = (a, b, c) = ai + b}%— CE, then ¢ = 7.1, b = 7.
and ¢ = U.k.

Since every basis of R® has three elements we say that R3 is

three-dimensional. Other vector spaces are infinite-dimensional

e.g. Cyla,bl.



The Vector Space Cyla, b

We define an inner product on Cyla, b] by (f, g) f flx
Then f L g if (f,g) = 0. In this case we bay that f is

orthogonal to g. We write "the norm of f to be |f| =

V(f f f(z)dx) 5 and "the distance from f to ¢’ as

b
I —gll = (J(f( )2d35') We say that f is normal if

a

HfH——lleff2 Ydz = 1.

A set of functions {0, @1, -+ Gn, ...} is orthonormal if
]| = 1 for all n and (¢n, ) = 0 for all n £ m.

Ctiven a set of orthogonal functions {tg, ¥1, ..., ¥n, ...} we geb

an orthonormal set by taking ¢, = ﬁ-ﬁﬁ for all n.

Example: Consider [0, 7] and {1, cos z, cos 2z, ..., cosnz, ..

i i Vi
(f 12dz)? = /7. (f cos? nxdz)? = (5 [ (1+cos onz)dw)? =
0 0

L
3z + o sm2n:z:)|0) 3l(m —0) = (0-0)])z = /5 Also
we get f cos nx cosmadr = 0 for all n # m. Hence

0

{1, cosz, cos 2z, ..., COSNZ, ...} is an orthogonal set and

{%, \/gcos nzin =1,2,3...} isan orthonormal set in Cy[0, 7r].

Similarly the set {sinz,sin 2z, ...,sinnz, ...} is an orthogonal



set and {\/’% sinnzln = 1,2,3...} is an orthonormal set in

Cpl0, 7.



Generalized Fourier Series

Let {¢,} be an orthonormal set in Cy[a, b]. Consider any f €

Cla,b] and let ¢, = (f, ¢a) for all n. Is it possible to write

o 0]
f as an infinite series f = ) ¢u¢yn, Where convergence is in
n=0
e.0]
the norm || ||, or better still, f(z) = > cathn(z), for all

n=0
z € [a, b], where convergence is now the usual convergence in

R? This is analagous to any vector v € R3 being written as

7= ai+bj + CE, where @ = U.7,b = 7.7 and ¢ = 7.
(o]

We call the series S ¢,¢n (), where ¢, = (f, ¢n) = f f(z

=0

for all n, the generalized Fourier series of f(z). We don’t yet

T?S“'l

know whether this series actually converges for any = € [a, b]
or, if it does converge, whether the limit is equal to f(x). We
write f(x) ~ i Cndn(x) to mean that the right-hand side is
the series so og;&(imed from f(z) leaving aside the questions of
convergence for the moment. The theory of Fourier series tells
us that for some subsets of Cpla, b] and for some orthonormal
sets {@n(x)} we do in fact have convergence and equality.

Consider C,[—, 7] and the set {cosnz,sinmz}, n,m N



We have [ sinmaz cosnzdz = 0forallm,n; [ sinmaz sinnwdx

and [ cosma cosnzdz both = 7, if m = n and 0 if m # n.

Also for n = 0 we get [ cos? Oxdz = 2.
Hence the set {\/—%,%cosnm,\%sinm:},n = 1,2, 3, forms

an orthonormal set in Cp|—, 7.
’ T

Letting co = \/—1= | f(:c)d:c, By = ﬁ [ f(z)cosnzdr and

T
f )sin nzdz we have
—TT

f( )N\/CSTT_‘_Z_:( cosn:r:_‘_d 51i1/1%$)’

0. 0]
so that f(z) ~ 2+ Y (an cosnz + b, sinnz), where

n=1
% — —-C\/%,soao — % {f(g{;)d;y? i % f?rf x) cosnrdx
e, by, = ” =1 f f(x)sinnzdz. This is called the Fourler

series assoc1atcd W1th Flz).

Example:

z+m, —m<x<0

@) =

10



jﬂ;f(:c)d:c = %fo(a:—I—?T)da: = 1(% 2 L px)|Y, =

=L
0 0 0
L [ zcosnazdr+ [ cosnzds = Ltz sinne)®,—+ [ sinnada]
— —7 —T

0
+ (2sinnz)|?, = —= [ sinnzdr = —L(—Lcosnz)|’, =
-
(1 — cos ).
T 0
=1 [ f(z)sinnzde = ; [ (z +7)sinnzds =
- —r
0 0
%fﬁ:sinn:cdat%—f sinnzdz = L[(—2z cosnz) 0 41 [ cosnzda]
—T —Tr
— (L cosnx)|’, = L2 cosmm) + (S sinnz)|?,]

+ (=L + Leosnm) = —.

Therefore f(x) ~ 7 Z [=5(1 — cosn) cosna — L sin n].
Note: Recall that if f (z) is an odd function and ¢ is any

real number, then f f(x)dx = 0. Similarly, if f(z) is an even

=0

function, we get that [ f(z)dz =2 [ f(z)dz.
—C 0
i

Example: f(z)=|z|, «€[-m, 7]

N

< T

11



T
Since |z| is even we get ag = % [zdz = 7. Also ap, =
0

%fa:cosm:dm = #(cosmr — 1) and b, =0 forall n > 1.
0
(o 0}
Therefore |z| ~ Z 4+ 2 3 -5(cosnm — 1) cos nz.
n=1
In general, if f(z) is even, then b, = 0 for all n > 1 and

™

Gy = 2 ff(a:) cosnxdz for all n > 0. Hence f(z) ~ %Q =
0

S ancosnz. If f(z) is odd, then a, = 0 for all n > 0 and

n=1

w oo
b, = 2 [ f(z)sinnzdzforalln > 1. Hence f(z) ~ }_ bysinnz.
0 n=1

Example:

— 3, il
I

Note that f(z) is an odd function on [—m,7]. Hence a, = 0

for all n > 0. Also b, = -f;ff(sc)sinna:dx for all n > 1,
0

o 1
n

2

T
50 by, = 2 [ Lsinnzdz = 2( A
0

cosnz)|f = =(1 — cosnm).

Therefore f(z) ~ > =(1 — cosnm)sinnz.
n=1

T

12



Convergence of Fourier Series

We now discuss the convergence of Fourier series. There are
two types of convergence

(i) Convergence in the norm or convergence in the mean and
(ii)  Pointwise convergence.

(i)  Suppose the f € Cy|—m, 7]; Then we write

Fz) ~ %L+ > (ay cosna 4 by sinnz), as before.

n=1
N
Let Sy(z) = L+ 3 (a,cosnz + by sinnz). Convergence in
n=1
the norm (mean) means that Sy — fas N —ooin | [ Le.

1F — Sl = 0as N — 00 or [ (f(z) — Sw(z))*dz — 0 s
N — co. We have B

Theorem: If f € Cpl—m, x| (in fact f can belong to a
larger space called square-integrable functions), then Sy — f
in the norm.

This result is theoretically interesting but not very useful for
Our purposes.

(i)  Now suppose that both f and /e C)-m, 7. Sucha
function is called piecewise smooth. We have

Theorem: If f is piecewise smooth on [—7, 7], then

13



Sy(z) = 5(f(z+) + f(z=)) or 5(f(z+) + flz—)) =
R i(an cosnx + bysinnz) for all x € (—m, 7). If [ is

n=1

continuous at z, then (f(z+) + f(z—)) = f(x), so that

O
f(@) =%+ 3 (apcosna + by sinnx).
n=1

If f: R — R is piecewise smooth and periodic of period 2,
then this result applies for all z € R.

Example:
—1, — 7 <z <0

flz) =

1, 0<ae<w

For all # € (—m,7) we have 1(f(z+) + f(z—)) =
e -1 T

Zl %(1 —~cosnm)sinnz. Sox = 0 gives 5 =0 and at = 5
n:

00
we get 1 = Y. =(1 — cosnm)sinng
n=1
o0 o0 o0
B f;]_:_ 1 . T _ i (_1)7??, T (__1)?71
T Z 2m+1 SlIl(Qm + 1)2 oo 2m+1? 80 3 = Z 2m+1-
m=0 m=0 m=0

14



Functions of any Period

Suppose that f : R — R is piecewise smooth and periodic of
period 2. Let u = Tz and set g(u) = f(z) = f(Eu). We
have g : [—m, 7] — [=L, L] — R, where g = fo% on R. Then
g(u+2m) = f(E(u+2m)) = f(Ru+2L) = f(zu) = g(u), so
¢ has period 27. |

Therefore g(u) = 3 + (&n cos nu + by, sin nu), with

ﬁMg

w

f( w)du, a, =+ [ g(u) cosnudu =

T
~T

ag —

2 =
:1%21

9( Jdu =

3 =
:}Lﬁﬂt

w s
: f f(&u) cosnudu and similarly b, = L [ g(u)sinnudu =
-7
7T

L[ f(Eu)sin nudu.

m

Making the change of variable x = -;%u we get that
L

L
ap = 1 [ f(x)dz, an =1 [ flz)cos¥aedz and
-L ~I
L

bn:%f f(z) sin 2 xdx, so

flz) =2+ Z(ancos My + by, sin ).
A piecewise smooth function defined on an interval can be
extended periodically to all of R and then we can apply the

theorem to any interval.

15



Example: Find the Fourier series of the periodic extension

of the function

y
0, —2<z< -1

flz)=q k —-1<z<1

LO’ 1< 2

R % B
«v o €
e N B I >,
The period is 2L = 4 so L = 2. Then ag = 2 fle)de =

1 1
1 — = A pdn — 2 [ baos P rdr —
§fkda:—k,an—2ff\ cos Ezdz = 5 [ kcosGadr =
-z-i‘— sin 5 and b, = 0 tor all n since f is an even function.
Therefore f(z) = £ + 2 Z L sin 2 cos Y.

Exercise: Find the Fourler series of the 2 L-periodic exten-

sion of the function

0, —L<z<0
flz)=
z, 0<2< L
L A
yd
.//




Sine and Cosine Series

If a function f is defined on [0, L] only we can extend the
definition of f to an even (odd) function on all of [—L, L] and
then extend to a 2L-periodic function on all of R. The even
extension of f is given by
fo(z) = f(z) for 0 < z < L and fe(x) = f(—=x) for =L <
z <l
Obviously fo(—z) = fe(z) for all x € [-L, L].
The odd extension of f is given by
fo(z) = f(z) for 0 < z < L and fo(x) = —f(—=z) for =L <
z < 0.
Then we get f,(—z) = —fo(z) for all z € [-L, L.
™ \I///.--g--m
f(_,— gp//f/] L

Now fo(z) = 3%+ Z an cos %z and f,(z) = ioz b sin

bIH
t-f‘—wt*-'
;-h
o
@)
[#p]
~(3
=
Q
=
I
lanl )
U
e
el
)
@)
O’J
t"
H
Q2
8
oo
)
ol
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f fo(z) sin Fadr = % f f(x)sin Zadz. In particular
this is true for all x € [0, L], so we have sine and cosine Fourier
series for f(z) on [0, L.

Example: Find the Fourier sine and cosine series for f(z) =

z on [0, L]
L L

agy=2[zdz=1L, an=% [zcos¥adr= 2[(zLsin 2 z)[¢—
0 0

L

{"ﬁ% sin P xdx] = %[52—;2— cos Z|¢ = n2L (cosnm — 1) and
L L

by, = Lfﬂ:sm Mydy = 2[(—zL cos Zz)|§ + [ £ cos Fadz]

0
= —gﬁ COS M.
Hence the sine series for f(z) is 2L Z 8N gin &z and

ﬂ—l

ST =
2L el (cosnm—1)
the cosine series is = 5 + >3 Z

wltﬂ

nw
COS 7L

18



DIFFERENTIAL EQUATIONS
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Ordinary Differential Equations

We first need to briefly consider second order linear ordinary
differential equations. A second order linear ordinary differen-
tial equations is an equation of the form
y'(z) + pl@)y () + g(z)y(z) = r(z)

or simply y' +p(z)y +q(x)y = r(z), where y is a real or com-
plex valued function of a real variable z and p(z), ¢(x), r(z)
are real-valued functions of z. It is homogeneous if r(x) = 0.
If we insist that y(z¢) = ko and y (z0) = k; for some zq ,
where ky and ki, are real or complex constants, then we get
the
Theorem: If p(z) and ¢(z) are continuous on some open
interval T and xg € I, then the initial-value problem

y' +p(z)y +a(@)y =0, y(zo) = ko,y (x0) = ku
has a unique solution y(z) on 1.
This is an example of an existence and uniqueness result. We
can use any method we like to find this unique solution.

Defining the differential operator L by

2
L= +p(@)g +alz)

20



gives the equation in the form L(y) = r(z) with L(y) =01in
the homogeneous case. We have the obvious result, called the
principle of superposition:

Theorem: If y; and o satisfy L(y) = 0, then so does
ayy + By for any real or complex numbers «, B.

Theorem: The solution space of L(y) = 0 on the open
interval I is two-dimensional.

Proof: Let z be some point in I. Let y1(z) be the unique
solution satisfying y1(zg) = 1 and y{(z) = 0 and let ya(z) be
the unique solution satisfying y2(wo) = 0 and y5(zo) = 1. Then
y; and v, are linearly independent (consider the Wronskian).
Suppose that y is any other solution. Letting k; = y(zg) and
ke = y'(x) we get that y and kyy1 + kayp are solutions with
the same initial conditions and hence, by uniqueness, are the
same. We conclude that y; and vy, form a basis for the solution
space.

We shall be interested in the case where p(z) = a and g(z) = b
where a and b are real constants i.e.

v+ ay + by =0.

21



Recalling that a first order linear differential equation Yy +ky =
0 has a solution y = e~ we try a solution y = e’ for the
second order equation. Substituting into the equation gives
(A2 +aX+b)e* = 0 and hence A2 4+ aX+b = 0. This is called
the characteristic equation. Its roots are A; = ﬂ%@ and

Ay = ,.17___;2\/————_4.@ with corresponding solutions eMz and ez,
We have three cases:
(1) a® — 4b> 0, two real roots
(2) a®—4b =0, one real double root
(3) a®—4b < 0, two fully complex roots.
In case (1) y1 = eM? and y, = e*® are linearly independent
and so constitute a basis for the solution space on any interval
I and the general solution is y = c1y; + c2y2 1.e.

y = c1eM° + cpe?”.
In case (2) we only get one root Ay = Ap = —£ and hence only
one solution y; = e~%%. To find a second linearly independent
solution we try a solution of the form yo = uyi, where u(x) is

some function to be determined. Differentiating gives

yh = u'ys + g and vy = uy + 20y + uyy

22



and now substituting into the equation we get

(uyy + 2u'y; + uyl) + alu'ys +uys) + buyr = 0.
Rearranging gives

W'y + (2, + ayr) + u(y! +ayy +byr) = 0.

Now the two terms in brackets are 0, so v’y = 0 i.e.
u'e % = 0. Hence w” = 0 and so u = diz + dp for any
constants d; and dy. Taking d; = 1 and dy = 0 gives u(z) = .
We conclude that y2(z) = zyi(z) = ze~ % is a second solution.
y; and yo are easily scen to be linearly independent on any
interval I and so the general solution is y = c1y1 + cay2 1.e.

y = (¢ + coz)e 2%

VaZ—1b N
In case (3) we have Ay = —3 veodh — ¢ 4 e
a . _ a2 . 2 L . ﬁ . o Q .
—24i4/b— 4. Writing w® = b— 7 gives 100ts Al = —5+iw
and Ap = —§ —iw. Then eM® and e*® are complex solutions.

Now eSt# = efe = e®(cost + isint), so
eM? = ¢ 3%(coswz + isinwe)
and €2 = e~ %%(coswx — i sinwWz).
Now 2(eM* + %) and (M — e*2®) are also solutions i.e.

_a Q. . . .
e—37 coswz and e~ #¥sinwz are solutions and are obviously

23



linearly independent. Hence the general solution is
y = e °(Acoswz + Bsinwz).

Example: Solve the initial-value problem

y'+y —2y=0, y(0)=4,9y(0)=-5.
Characteristic equation is A+ X —2 = 0 with roots 1 and —2.
General solution is y = c1€” + cpe™?*. The initial conditions
imply that ¢; + ¢y = 4 and ¢; — 2¢; = —5. Hence ¢; = 1 and
¢y = 3 and the solution is y = e® + 3¢~
Example: Solve the initial-value problem

Y — 4y +4y =0, y(0)=3,9(0)=1.
Characteristic equation is A*—4A+4 = 0 with a single real root
9. General solution is y = (c; + coz)e?®. The initial conditions
imply that ¢; = 3 and 2¢; +c3 = 1. Hence ¢; = 3 and ¢p = —5
and the solution is y = (3 — 5z)e™.
Example: Solve the initial-value problem

'+ 2/ +5y=0, y(0)=1,9(0)=5.
Characteristic equation is A24+2A+5 = 0 with roots —1+4-27 and
—1—24. General solution is y = e~ %(A cos 2z + B sin 2z). The

initial conditions imply that A = 1 and —A + 2B = 5. Hence

24



A = 1 and B = 3 and the solution is y = e~ *(cos 2z+3sin 2).

25



General Partial Differential Equations

A partial differential equation (PDE) is an equation involving
partial derivatives. The order of the equation is the highest
partial derivative in the equation.
Example: 2 = Qu js first order, %%;- — % — f(z,t) is
second order etc.
A PDE can have any number of variables > 2.
Example: u; = gy has 2 variables, namely t and z,
Up = Upp + -};ur 4 g has 3 variables, namely ¢,7 and 6, etc.
A second order equation in 2 variables is linear if 1t is of the
form Atgy + Bugy + Cuyy + Dug + Eu, + Fu = G, where
A, B,C,D,E,F and G are functions of x and y i.e. there
exists a linear operator L such that Lu = G, where
L=ALy + B +CL+ DE+Eg + F.
Example: uy = e g, +sint (linear)
gy + uy = 0 (non-linear)
Ugz + Yy = 0 (linear)
Ty -+ YUy + 2 = 0 (non-linear).

We shall be interested in the linear case only. The general

26



linear equation above is homogeneous if G = 0. Otherwise it
is inhomogeneous.

A solution of a PDE in some region R of the space of the
variables involved is a function of the variables that has all
the partial derivatives appearing in the equation in some do-
main containing R and satisfies the equation everywhere in R.
Usually there are many such solutions. However if we impose
conditions that the solutions must satisfy on the boundary of
R (boundary conditions) or, if one of the variables is time %, at
t = 0 (initial conditions), then hopefully we can get a unique
solution. This is our objective. The boundary and initial con-
ditions arise from physical considerations in cach particular
case.

Important PDEs from physics:

du __ 0% - : :
5 = Co3 (one-dimensional heat equation)
Ou

2 . . :
Ty = zgﬁ (one-dimensional wave equation)

%i% + %% — 0 (two-dimensional Laplace equation)

V2y = 0 (three-dimensional Laplace equation).

These equations arise in many areas of physics. Our task is

27



to solve these equations given various boundary and initial
conditions.

Note: Some PDEs can be solved by integrating.
Example:  Solve g, — u = 0, where u = u(z, ).

For each y we consider u as a function of z and use ODE

techniques to solve:

Pu
dz?

solution has the form A(y)e” + B(y)e™ .

u = 0 has characteristic equation A* —1 = 0, so any

Example: Solve v, = —u,, where u = u(zx,y).

2 . : 5 d
5655;_@; = — 2 letting u, = p gives 5; = —p; 0 1l L= [ dy;
hence lnp = —y-+c,s0p = De™? foreach wi.c. % = D(x)e7Y.

We conclude that v = eV [ D(z)dz + g(y).

28



The Heat Equation

The temperature u(z, t) of a slender metal bar of length L sat-

isfies the diffusion equation

ou __ Cé]zu
ot — “ox2

where ¢ is a positive constant. The bar is embedded in a per-
~ fect insulator so that the boundary conditions are given by
w(0,t) = 0 and u(L,t) = 0. Initially the temperature of the
bar is given by u(z,0) = f(z), for some function f(z). Find
the temperature at a distance = from one end of the bar at any
time .

This situation also applies to an infinite vertical slab (see dia-

gram below). ittt

moeoy = §E)
w(H0y = £ Ge)

O L o' L

We have WVVWVT

%%:c%j;%, 0<z <L, t >0
with u(0,t) = 0, u(L,t) = 0 for all ¢ and u(z,0) = f(z) for
all

To solve we use the method of ” Separation of Variables”.

29



Try a solution of the form u(z,?) = F (2)G(t).

Then
" 2 2
g - Pl mnd 25 = 45600,
so that F(m)% = c%x—gG(t) or G EFE,

where ! means differentiation with respect to the relevant vari-
able. Now the left-hand of this equation is a function of t only
while the right-hand side is a function of z only, s both sides
must be constant Le. % = ’Pz;—” = k, for some constant k. We
get two ODEs
Cig = ckG and sz = kF
or —d;PCkG’:Oand%gkaz(J.
Now u(0, t) = 0 implies that F(0)G(t) = 0 for all ¢, so F(0) =
0 or G(t) = 0 for all t. If G(t) = 0 for all £, then u = 0, the
trivial solution (with f(z) = 0 also). Hence F(0) = 0. In the
same way we get F'(L) = 0.
We now have the second order ODE

Lr _ kF =0 with F(0) = 0 and F(L) =0.

For k = 0 the general solution of this initial-value problem is

F(x) = az + b. The boundary conditions imply that a = b =
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0, again the trivial solution. Next consider k = p? > 0. We

d*F

48 — p?F = 0 with general solution

F(z) = AeP” + Be ™™

have

The boundary conditions now give A+ B = and
AePE 4 BePL =, so that B = —A and AePl — Ae7Pl = 0.

Therefore A(ePX — Eff) =0, 0 A(egzi;l) = 0 and hence A =0
since 2pL # 0. Again we get the trivial solution. The final
possibility is k = —p* < 0. We have %g— + p?F = 0 with
general solution

F(z) = Acospx + Bsinpz.
Applying the boundary conditions gives A =0 and
BsinpL = 0,50 A = 0 and B = 0 or sinpL = 0. If
B = 0 we again get the trivial solution. Hence B # (0 and
sinpL = 0,80 p =" forn € Z. Taking B = 1 gives solutions
F(z)=sin®xforn=1,2, 3...(For n < 0 we get — sin %Fz.)
Next consider the other ODE %‘% — ckG = 0, where now
k=—p?= —-——7%-2-. For convenience write A, = %, so that

€ 4 eX2G =0.

Try G = et to get (u+ch)e =0or p= —cA2. We have
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solutions G,, = B,e~t n=1,2,3...

Now for each n = 1,2,3... we have a solution u,(z,t) =
Fo(z)Gp(t) = Bre~tsin nty for our PDE. However the so-
lution must also satisfy the initial condition u(z,0) = f(z).
In general none of the un(x,t), or any finite sum of them, will
satisfy this condition. Let’s try an infinite sum, called a formal

sum, leaving aside questions of convergence for the moment,

o0 oo 9
w(z,t) = Y un(z,t) = Bpe ®ntsin M.
n=1

n=1

o0
If u(z,0) = f(z), then f(z) = 21 B, sin®z ie. the By, must
be the coefficients of f(z) in its Fourier sine series expansion

on the interval [0, L]; in other words

L
B, =2 [ f(z)sin Tzd.
0

‘With the B, so chosen then u(z,t) above will be a solution

of the heat equation satisfying all the boundary and initial

conditions.
Example:
0, 0<z<L,Ly<z<L
He)=
1, i<z <Ly
l [ S——— o)
¢ 4 Ly L




L L
B, = %{f{ z) sin 2rdr = Lf 1sin ¥ xdx
1

Ly 2 nm L nmlo
= 2 (cos 2= — cos M)

and so

o0
u(z,t) =2 Z—:1 L(cos ™ mrli _ cos ”7}:52) sin MZe —eAnt,

Note that if L; = % and Lo = L, then
T c)\%t.

o0
w(z,t) =23 1(cos G — cos n) sin “Fre
n=1

3
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Different boundary conditions for heat equation:

32

Consider & 5 = €522 -L<xz<r, t>0
with u(—L, t) = u(L,t) , &(~L,t) = 34(L,t) and
u(z,0) = f(z).

As before we write u(z, t) = F(z)G(t) to get
—ckG = Oanddg EF =0,
where k is a constant. The boundary conditions become
F(=L) = F(L) and 4£(—L) = 45(L). Again, k = 0 gives
F(z) = az + b and F(—L) = F(L) implies that
a(—L) +b=a(L)+b,s0 a=0and F(z) = b, a constant.
For k = p* > 0 we hav %{; — p?F = (0 with general solution
F(x) = AeP” + Be™F*.
F(~L) = F(L) now gives Ae ¥ + Bet = AeP" + Be Pl
so that A + Be¥* = Ae*L + B or (A — B)(1 —e**) = 0.
Hence A = B since p # 0 and F(z) = A(eP* + 7). Also
dE(_L) = 2E(L) gives Ap(ePL — ePl) = Ap(ert — e7P%), s0
that 2Ap(ePX — ePL) = 0 and hence A = 0, the trivial solu-
tion. The final possibility is k = —p? < 0 to give, as before,

F(z) = Acospx + Bsinpz.
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F(~L) = F(L) implies that Acos(—pL) + Bsin(—pL) =
AcospL + BsinpL, so 2BsinpL = 0. Hence B = 0 or
sinpL = 0. Also ‘%(WL) = %(L) gives ApsinpL+BpcospL =
—ApsinpL + BpcospL, so 2ApsinpL = 0. Hence A =0 or
sinpL = 0. If sinpL % 0 then both A and B are 0 and we
get again the trivial solution. We conclude that sinpL = 0 so
that p =%, n=1,2,3... We have solutions

F,(z) = Apcos %z + Bpsin Fz,n =1,2,3...
and Fy(z) = A as the constant solution.
Now for m—mckG = 0. k = 0 gives = dG = (, so G = a constant.
k = —p? gives solutions Gn(t) = Be= nt where A, = o
Putting it all together we get solutions
un(z,t) = (A, cos Tz + Bpsin ”gr:c)e“c’\%t forn=0,1,2,3..;
n = 0 giving the constant solution.
Again to satisfy u(z,0) = f(x) consider

o0 2

u(z,t) = Y (A,cos T + Bysin —--—:I,')edﬂ)\nt
n=>0

and 80 flz)= Ao+ Z(A cos 2 + By sin Fz).
Hence Ag, A, and B, must be the Fourier coefficients of f(x)
n[—L,L]ie.
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L L
Ag:—z-lffj;f(:v)dzc, :%{:f ) cos Frdx

L

and B, = % [ f(x)sin*Fzdz. With these Ag, A, and B,
~L

we get that u(z,t) is a solution of the equation satisfying the

boundary and initial conditions.
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The Wave Equation

The deflection of an elastic string of length L fixed at the end-

points is governed by the wave equation

0% _ 20%u
52 — C 5z2

where ¢ is a positive constant. Suppose that the initial deflec-

tion is given by f(z) and the initial velocity is given by g(x).

rd . \5}(%)
S
L

0
We have
%i";:cZg—z%, 0<z<L, t>0
with w(0,t) = 0, u(L,t) = 0 for all ¢ and u(z,0) = f(z),
%‘f(m, 0) = g(x) for all z. As before try a solution of the form
u(z,t) = F(z)G(t).
We get

no__ 21 G
FG"=cF'Gor 35 = F.

Again the only possibility is both sides must be a constant k,

GH FH

2G ~ F

We have two ODEs, namely
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Q" — kG =0and F" — kF = 0.
The boundary conditions become F(0) = 0 and F(L) = 0.
Consider
£E _ kF =0, with F(0) = 0 and F(L) =0.
This is identical to the heat equation with the only non-trivial
solution given by k = —p? 3%’.’ 0. We have % + p?F = 0, with
general solution
F(z) = Acospx + Bsinpz.

Again the boundary conditions give A = 0 and BsinpL = (
so that p = %, n = 1,2,3, ... Taking B =1 gives
F,(z) = sin %z is a solution for n = 1,2,3, ...
Now consider

%%-QG— + ¢?p*G = 0, where p = 2.
Writing A, = “+ > 0 gives %%% + A2@G = 0 with general solu-
tion

Gp(t) = By cos At + B sin Aut,
where B, and B} are constants for each n. We now have
Un (2, 1) = Fp(x)Gy(t) = (By cos At + By sin Apt) sin 7z,

n = 1,2, 3... are solutions of the wave equation satisfying the
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boundary conditions, called normal modes. To get a solution

satisfying the initial conditions also we consider the formal sum
o0 o0

w(z,t) = 3 un(z,t) = 3 (Bncos Ayt + By sin Agt) sin Fa.

n=1 n=1

Then f(z) = u(z,0) = io: By, sin 2z, which is true if the
B, are the coeflicients OF :tile Fourier sine series expansion
of f(z) on the interval [0,L]. Similarly g(z) = %u(g,0) =
Z B\, sin 2z, true if the By, are the coeficients of the
%:)urler sine series expansion of g(z) on [0, L] In other words,
if B, :%f ) sin #adz and By, mLfg ) sin Zxdz,
then u(z, )0

Note: u(z,t) = Z:l B, cos Apt sin -’3575:c+n):1 B! sin A\t sin 2z
ne== —

is a solution satisfying the nntlal conditions also.

= 3" B, cos Aptsin Bx, if g(z) = 0. In this case
n=1

u(z,t) = 2 }Cio: Bysin®(x — ct) + 3 Z B, sin %z + ct) =
H(f @ — et) + o+ b)),

Example:  Suppose that f(z) = sin3z — 4sin10z and
g(z) = 2sindz +sin bz with L = m,¢c = 2

Then sin 3z — 4sin 10x = {E B,sinnzx, so By =1, Bjg = —4

n=1

and all other B,, = 0.
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Also 2sin 4z +sin 6z = E An B sinne = E 2n B sin nx, so
8B; =2,12B; = 1 and gﬁ other B, = 0. Hence the solution 1s
u(z,t) = cos 6t sin 33:—#% sin 8t sin 4zc+% sin 12¢ sin 6x—4 cos 20¢ sin 10z.
Example: Suppose that the midpoint of the string is pulled

up a distance h and then released from rest giving

I~ e

O s L
2-
Az, 0<z<i
fle) = 2h ( L
g{z) =0
o8 L
flz) = Z n SIN L:IZ where B, = %ff( Slﬂ——:cd:c -
=1 0
;o .
%'%{xsm—fxd:wr =, —E{(L——az) sin Zxdy = ...-3% sin 2.
2

g(z) = 0 means that all B = 0.

3 *

oQ
We have u(z,t) = %% >~ = sin B sin . cos "74.
n=1
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d’Alembert’s solution of the wave equation:

2 2 .
‘ngzczg-;%, witht >0, —oco<z <00

and u(x,0) = f(z), Z(z,0)=g(z).

Note that if ¢ : R — R is any twice differentiable function and
u(z,t) = ¢(x+-ct), then 2% = ¢ (z+ct), %2%- — ¢ (z+ct) and
e = e (z+ct), %%% = 2’ (z+ct), so that u(z, ) is a solution
of the equation. Similarly, if 4 : R — R is any other twice
differentiable function and u(z,t) = ¥(x — ct), then u(z, t) is
also a solution. We have that u(z,t) = ¢(z + ct) + (z — ct)

is a solution. We wish to show that every solution is of this

type.

Introduce the variables y, z, where y = z +ct and z = x — ct.

_ S Ou __ Oud Sudz __ .0 2}
Then u = u(y, z) glvmga—‘;—a—;a—?;'+a—‘;3—§—c~é~;ﬁ—c£

2 ad a o
and 5F = £(%%) = e (50) — c5(5)
9 ( cBu Cg% _ 02(321.25 &, &2 82u)

dy T Pydz  Ox20y ' 92

i
= cg-g(cg—g — ) —c

_ 2(8%u _ o 0% 9%y ot Py Pu 5 5%y

— C (W 2_”_6y8z 32’2)' Slmllaﬂy 02— g2 -+ Qayaz 522

Hence 424 = 0 or 2% = 0. Now 2 (2) = 0 implies that
oydz Oyoz ’ oy\oz p

% is a function of z only, h(z) say.

Therefore u = [ h(z)dz + k(y), for some function k(y). We
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write u(z,t) = ¢(y) + ¥(z) = ¢(x + ct) + PY(z — ct), so every

solution is of this form.

Now consider the initial conditions.

u(z,0) = f(z) gives £(z) = §() + ¥(z) and (z,0) = g(a)

gives g(z) = c(gb’(a:) — 4)'(z)). Integrating the second identity
1

we get ¢(z) — ¥(x) = - [ g(s)ds, where zg is an arbitrary
0

T
e
constant and now solving gives ¢(z) = 3f(z) + 5 [ g(s)ds
Io

and 9(z) = 3 f(z) — % f g(s)ds.

0
Hence u(z, t) = ¢(z + ct) + (z — ct)
z+ct T—ct

=if@+ct)+5 [ gle)ds+3fl@—ct)—5 [ gls)ds
zT+ct
=3fle+et) + flo—ct)) +5 [ als)ds,

In particular, if g(x) = 0, then we get

u(z,t) = $(f(z + ct) + f(z — ct)), a superposition of two
~ travelling waves in opposite directions with velocity c.

For a physical interpretation of d’Alembert’s solution consider
$(z,t) = f(z—ct). Suppose that t; < 3. ¢ will have the same

value at z1 at time ¢; as at z at time &9 if 1 — ¢t; = 22 — clo
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If 21 is the space coordinate of any point on the curve ¢z, t) =

f(z — ct) at time t¢1, then the same point at time ¢, has coor-

r2—T1 —

dinate xy, where oo

Gt |
- %,(v&,‘cv)

Since z; is any point on the curve and t3 — ¢ is any time inter-
val ¢(x,t) = f(x — ct) represents a displacement of arbitrary
form travelling at constant speed c in the positive z-direction
without change of shape. Similarly ¢(z,t) = f(z + ct) rep-
resents a displacement of arbitrary form travelling at constant

speed ¢ in the negative z-direction without change of shape.

43



Two Dimensional Laplace’s Equation
Let u(z,y) be the steady-state temperature in a rectangular
metal sheet 0<z<L, 0<y<H.
It is known that u(z,y) satisfies the equation
P4+ 240,
Suppose the sheet is insulated along the sides y = 0,y = H
and = = L and the temperature of the side z = 0 is given by

f(y). Hence the boundary conditions are

w(0,y) = f(y),u(L,y) = 0,u(z,0) = 0 and u(z, H) = 0.

A =0
t
" =
= §0Y) <M EQ M=o
O Ad =0 L,

Let u(z,y) = F(z)G(y), giving F'(2)G(y) + F(z)G (y) = 0,

I

k. a constant. Again we get two ODEs
F'(z) —kF(z)=0, F(L)=0

and G'(y)+kGy) =0, GO)=0 GH)=0.

Consider G’ (y) + kG(y) = 0. If k = 0, then G(y) = ay + b.

Now G(0) = 0 implies b = 0 and then G(H) = 0 gives

/! i
F G

a = 0, the trivial solution. Next consider k = —p? < 0. Then
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G (y) — p*G(y) = 0 with general solution

G(y) = Ae?Y + Be™.
G(0) = 0 gives B = —A, so G(y) = A(e”™ — e?). Now
G(H) = 0 implies that A(e*? —1) = 0,50 A = 0 also
and again we get the trivial solution. The final situation is
k = p? > 0. We have Gt p?G(y) = 0 with general solution

G(y) = Acospy + Bsinpy.

G(0) = 0 gives A = 0 and G(y) = Bsinpy; now G(H) = 0
implies that B = 0 or sinpH = 0. B = 0 again gives the
trivial solution, so sinpH =0 or p = 5F,n = 1,2,3... Hence,
for each n = 1,2, 3... we have a solution Gn(y) = sin Fy.
Now consider F' (z) — kF(z) = 0, where k = p* = (57)*. Let
A, = "™ Then we have F' (z) — AX2F(z) = 0 with general

H

solution
F(z) = Ae*® + Be ",
F(L)=0gives B = — AL and we get a solution
Fy(z) = An(e® — ePnzenl)
foreachn=1,2,3...

Rearranging, we get F,(z) = Apenl(e?Fe Mk — e~ MnTehnly —
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Apernb(enle=l) — e~ (@=L)) = A sinh \,(z — L), where
Al =2A,eMT.
Now for each n = 1,2, 3... we have a solution
un(z,y) = A, sinh A, (z — L) sin Ay
None of the u,(x,y) will, in general, satisfy the boundary con-

dition u(0,y) = f(y), so we consider
w(z,y) =3 unlz,y) = 2 A, sinh A, (z — L) sin Apy. If this
n=1

n=1

satisfies u(0,y) = f(y), thenf(y) = >_ A sinh(—\, L) sin Ay,
n=1

which is true if the A, sinh(—\,L) are the Fourier sine series

coefficients of f(y) on [0, H] i.e.

A sinh(—X\,L) = % [ f(y)sin Frydy.

Example Suppose f(y) = y(H —y).

fy (H — y) sin Fydy = nysm oo dy — fy sin Fydy.
Let I = nysm Mydy and J = fy sin 2y dy.

Integration by parts gives I = H [——y COS 7 e += H f cos Fyay
= m—is COS V7T

Also J = [—&4%cos mylg + A f2ycos BT oydy
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_ _ B 2H2 7
= —-cosnm + S 5lysin Ty f sin 2y dy =

H3

2H3 nm H3 2H3
— £ cosnm + 23 cos ﬁy]o = ——--——cosn7r+ 3(

cosnm—1).
7T

Honce A sinh(~\,) = 455(1—c0s ), so A, — 45 (o)

and u(x,y) = 4H2 Z cosnm—1) inh An (2 — L) sin Apy.

n3 sinh{AnL) (AnL)

Note: Con81der

g_i%+gz =0, 0<z<IL  0<y<H,
where u(z,0) = fi(z), wu(z,H) = folz), u(0,y) = a1(y)

and w(L,y) = galy).

Separation of variables depends on some bounday conditions
being homogeneous i.e. = 0. To solve the above we consider

solutions of

with u(z,0) = fi(z) and the others — 0 etc. If the solutions
are uy, Us, Us, Ug, Tespectively, then v = uy + ug + us + uy will
be a solution satisfying all the boundary conditions above.

Example: The voltage V(z,y) at any point in a square

metal plate of side length 7 satisfies Laplace’e equation

8%V 82v

The plate is earthed at x = 0,z = 7 and y = 0, so that
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V(0,y) = 0,V(m,y) = 0 and V(z,0) = 0. A voltage f(z) is
applied along the fourth side y = 7 so that Viz,n) = f(z),

where
x, 0<z <3
flz) =
T—x, 5<x<7W

Solve for V(z,y).
V(z,y) = F(z)G(y) so that F'(z) — kF(z) =0 and
G'(y) + kG(y) = 0, with F(0) =0, F(x) = 0 and G(0) = 0.
Consider F" (z)—kF(z) = 0, with F(0) = 0, F(m) =0. k=0
implies F = 0. k = p? also gives ' = 0 as before. Therefore
k = —p? and so F' (z) + p?F(z) = 0, with general solution

F(x) = Acospx + Bsin pz.
The boundary conditions now give A = 0 and sinpm = 0 so
that p = n,n = 1,2,3,... and sinnz is a solution for each
n=123..
Now consider G (y) — p*G(y) = 0, with G(0) = 0,p = n.
For each n we have a general solution

Gn(y) = Ape™ + Bre™™.

G(0) = 0 implies that B,, = —A, 80 Guly) = A (e —e™™).

We have solutions V,(z,y) = Apsinnz(e¥—e ™) = A sin nz sinh ny.
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Consider V(z,y) = 3 A, sin nxsinh ny. Then
n=1

oo
V{(z, ) = f(z) implies that f(z) = > A, sinnzsinhnm, so
n=1
that A sinhnr is the Fourier coefficient of the sine series ex-
pansion of f(z) on the iterval [0, ] i.e. A sinhnr =

m 2 T m
2 [ f(z)sinnadz = 2[[ zsinnzdz+n [ sinnzdr— [ zsinnzdz]
0 0 T T

7 3
_ 4 ..nm : :
= —3 8l 5, On integrating.

. 4 e sin L . .
Finally we have V(z,y) = = Z_: ——2—sinnz sinh ny.

n=1
Example: The voltage V(x,y) at any point in a square

metal plate of side length 27 satisfies Laplace’e equation

The plate is earthed at z = 0,z = 27 and y = 2, so that
V(0,y) =0,V(2mr,y) =0 and V(z,2r) = 0. A voltage sin 2z
is applied along the fourth side y = 0 so that V(z,0) = sin 2.
Solve for V(z,y).

V(z,y) = F(z)G(y) so that F'(z) — kF(z) = 0 and

G (y)+kG(y) = 0, with F(0) = 0, F(27) = 0 and G(27) = 0.
Consider F'(z) — kF(x) = 0, with F(0) = 0, F(2r) = 0.
k = 0 implies F = 0. k = p? also gives F' = 0 as before.
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Therefore k = —p? and so F "(z) + p*F(z) = 0, with general
solution

F(z) = Acospz + Bsinpz.
The boundary conditions now give A = 0 and sin2pm = 0
so that p = §,n =1,2,3,... and sin 5z is a solution for each
n=1,2,3.
Now consider G (y) — p*G(y) = 0, with Gfzr)= 0,p = 5.
For each n we have a general solution

Gnly) = A,e?Y + Bpe~ Y.

G(2r) = 0 now gives Ape™™ + Bpe™™ = 0,50 By, = —Ape¥.
Therefore Gn(y) = An(e?? — 2 e~ 3Y)
= A" (e@ym) — e~ By} = 9 A, e sinhn(§ — 7).
Write Gu(y) = A, sinhn(¥ — ) and then
V,(z,y) = A,sinhn(} — 7)sin § is a solution for each n =
1,2,3... Now consider V(z,y) = 2‘4;” sinhn(§ — ) sin 22.
If this is a solution, then V(x,0) = sin 2z implies that
sin 2% = i A sinh n(—) sin 3. We conclude that

n=1

A, sinh(—4m) = 1 and all other A = 0. We get our solution

sinh (47— 2y)

sinh 4 sin 2.

Viz,y) = m‘&?@ﬂ sinh4(4 — ) sin 2z =

30



FOURIER TRANSFORM
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Definition of Fourier Transform

Consider f : [-L,L] — Ror f : R = R periodic with period

2L. Then
00 L
flx) = 92Q+Z:1(an cos 2 x4-by, sin Fx), where ag = [ flx
L L -
ay = %&f (z) cos xdz and by, fo sin ¥ dz. Now
e'L? = cos By +isin 7o and e “L* = cos L — isin L,

-&'JI’ _.n?r
so that cos ™z = £(e'2” + e~ 1) and
nmr
sin 2z = (e Pe _ e~t1%). Hence

(o) = g + 2 (lagteleEe - Caghilenie) =
n=1

‘T _nm y
co + Z(Cneﬁ"fm +c_pe %Liﬂ)} where cy = %Q? Cp = ap, zzbn and
n=1

« w .
Cog = 9—1?";—”’@ Therefore f(z) = 3. cae'L%, where for each
NnE=—00
1 L N
n, c, =37 | flx)e " 17dz.
-L
w .
Now set 2 = wy, so that f(z) = > cpe™™* =
=—00

o . L +
mlf j‘ f —zwntdt Wnt % Z etn® f f(t)e_zw”tdt.
=0 — n=—00 —L
Let Aw = wpt1 —wp, = (n‘zl)” =7 and consider L — oc.
Then f(z) = 5 E ghn? f f(t)e ™ntdt) Aw. Letting
n=—00

L — oo, so that Aw — 0 and wy, — & continuous variable w,
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o0

to give f(z) = \/% T ei“””(ﬁ [ flt)e ™t dt)dw =

\/57? f Flw)e™*dw, where Flw) = —-ﬁ [ f(t)e ™dt s called
the Fourier transform of f and f(z) = \/2—7T f Flw)e™dw is

called the inverse Fourier transform of f We have

Fflw) = \/-% Tf(as “wedr and f(z \/- f Flw)e™Fdw.
All of the al)_gs'e is formalised in the following theorem
Theorem: If f(z), —oo <z < oo, IS piecewise con-
tinuous on each finite interval and if T |f(z)|dz < oo, then

—00

the Fourier transform f (w) exists. Furthermore

W) + S-S Flued
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Properties of Fourier Transform
() Fraw)=Ffw)+gw) and af(w) = af(w)
Proof: Obvious from the definition.
(ii) If f(z) is continuous on R and f(z) — 0 as [z| — oo

and f | (z)|dz < oo, thenf( ) = iwf(w).

~

Proof: f'(w)

ﬁlH
3

j‘o f —zwxdm — \/__{:[f(w)e—iwx]gooom

—=(—iw) [ flz)e ™ dz = 0+ i) flz)e™*dx = iw f(w).
word! “{O \/“ f A (w)
Note that from this we can deduce that f” (W) = (iw)(iw) f(w) =
—w? f(w).

b . iwh _iwa
) [ oo = g T o)
Proof: afb = ﬁ {b [MZZ Flw)er dw)dx
b oo, b
= [ f(w)e™dz]d \/—é—_;_f f(w) [ e™*dz]dw

S o

38y 8

f( )( glwb 6zwa)dw.
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Examples

k, 0<zx<a
flz) =

0, x<0orzxz>a

flw) == Of ke™rdz;  w =0 gives f(w) = .

w # 0 gives f(w) = &= [ ke~ ™“?dz =
0
(ii)

1, a<z<b
flz) =
0, z<aorx>b
A b ~
flw f “wrdr w =0 gives f(w) = L.
~ b . —i ewiwa__e—iwb
w # 0gives f(w) = %{e_“"xd:c = ﬁ;[:w | = ﬁ[—m&————]
(iii)
e’, x <0
flz) =
0, >0

0 0 .
; T —WT —iw)T el1—iw)z
flw) = m\/]é_w [ efe ™% dy = —\/12-7? [ ell=w)rdy = \/12—7;[ e
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xe ¥ x>0

0, x <0

flw) = mf:re e~ Wiy = \/—fxe (IHiw)e oy —

1 rze ~(I+Hw)T o 1 ooe—(l-H'w)a: 1 (1+iw)z . 1
S o~ v | St = TnlSmarlt = Ve
v)

f2) E, —-n<z<T
Trl =
0, z<—m, w<x
fw) =g | f@)erdn = Z [ f(e)e ™ da
= ﬁ_fw f(z)(coswz — isinwzx)dr = %bff( ) cos wxdz
(‘since f(z) is even) = & [ coswrdr = 221
V2 g‘ 2

(vi) The truncated cos function

flz)=
0, < —m, T<LT
f = L [ flz)e™*dzx = 2. cos 3z cos wadz
2m {o \/Q—be

2wsinmw

as in (v)) = T

Vanian N
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The Heat Equation

2
20y —oco<z<oo, t>0, ¢>0

Assume that u and % are finite as |z| — oo and

w(z,0) = f(z), —oo < z < oo, where f(z) is piecewise
smooth on every finite subinterval and T | f(z)|dz is finite.
Define the spatial Fourier transform of ;LO(Om, t) to be

t(w, t) \/— f u(z,t)e ™ dz.

Applying the spatla,l transform to the differential equation

we get ~—\/1= f %z, t)e” ™ dr = ﬁ f 0282“(3: t)e o dz,

so that & \/L f u(z, t)e”edz] = c*—= f 8:1:2 e Wy
giving 22(w, ) = —c2w?i(w, t) and hence u(w, t) = Alw)e™® Wt
where A(w) is some function of w.

Now u(z, 0) = f(z) implies that 4(w, 0) = # [ u(z,0)e “*dx =
7 | f@erde = fw), 0

Alw) =

i (w) and 4(w,t) = f (w)e ~chw?t, Taking the inverse
t)

o0
Fourier transform we get u(z,t) = \/% f f e~ CW it ) —

=

% f f(w)ew(ix——cgwt) dw.

a7



The Wave Equation

2 2
%55%2625_“ —o<zr<oo, t>0, c¢>0.

o5

Assume that u and 2 are finite as |z| — oo and
o
u(z,0) = f(z), g}‘(x 0) = g( ), —o0o < x < o0, where
f(z) and g(z) are p1eceW1se smooth on every finite subinterval

and f |f(z)|dz, f \g(x)|dz are both finite.

—00C
Applying the Spa,tlal transform to the differential equation we
get \/‘— f &2 z,t)e “idr = \/% f (32‘92 Uz, t)e” ™ dzx, so

o0
that £ ‘/%—{o u(z,t)e"“idx] = 02 f Je~Wrdx
giving gﬁ(w t) = —c?w?i{w,t) and hence

%%"%(w, t) + c2w?i(w,t) = 0. The general solution is
w, t) = A(w)e"™" + B(w)e ™.
Now u(z,0) = f(z) and 2(z,0) = gfa:)) imply that
a(w,0) = f(w) and %(w,0) :g(w), so that .,
A(w) + B(w) = f(w) and icw(A(w) — B(w)) = g{w). Hence

-

Alw) = %(f( ) + f’“’)) and B(w) = 3(f(w) — 422) and so

(513 t) 2\/_ f [ ( ))eicwteiwx+(f(w)_%Lc%l)e—icwteiwm}dw
f glwlz+ct) g f gtw(z— ) doo 4+

o8



o0

T [ )N g = Y f (@t et) + f(o — ct)] +

z4ct
—21—0 [ g(v)dv, which is d’Alembert’s solution.
Tt

( Recall property (iii) of the Fourier transform.)
Considering the simpler case of g(x) = 0, we get

A(w) + B(w) = f(w) and icw(A(w) — B(w)) = 0. Hence
A(w) = Lf(w) and B(w) = & f(w) and so

u(z,t) = ﬁ jo[f(cu)e?;c“”bei“’m + flw)eiwteivn)dy,

—00

@ f f elw $+ct)dw+ \/_ f f ot (z— t)
= [f (m—I—ct) +f (a: ct)] which agam is d’Alembert’s solution.

T
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