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1 Introduction

1.1 Newtonian Theory of Gravity

For a distribution of matter with density p(t, z,y, z), we have a gravitational
potential ¢.

Field Equation:
Vi = 4nGp
where o o 52
Vie —+ —+—
ox?  Oy? 022
@ is given at points inside the matter distribution by solving Poisson’s
equation with p given.
Outside the matter distribution (i.e. in a vacuum) p is given by solving

Vi =0
Equations of Motion
The equations of motion of a test particle are

o' =2'(t),i=1,2,3

_ Pzt
az ~
i.e.
dx Oy
a2~ oz
dy ¢
oy
Pz Oy
a2 0z

Newtonian theory can be written as a metric theory of gravity, though
the spacetime is complicated to describe geometrically. (Requires additional
structures such as absolute time and simultaneous points forming a Euclidean
3-manifold)

E.g. We can rewrite the equations of motion in the geodesic equation
form.



Define

= (t,x,y, 2)
= " = (1,i")
i = (0,3") = (0,,)
ie. ) '
t=0and 2" +¢,; =0
= 7'+ p,;2°7" = 0

Compare with the geodesic equation
d?a* , dx” da?
2 + VA Y, =
dt dt dt
We can read off the Newtonian connection

T noo = ¢, and I, = 0 otherwise

= R0 = —. and Ry, = 0 otherwise
= Rnoo = V?p and Ry, = 0 otherwise

i.e. Newtonian spacetime is curved.

1.2 Special Relativity

Describes non gravitational physics such as electrodynamics, standard model
ete.

Discard the notion of absolute time, we introduce a 4D space continuum.
To each event in spacetime, we assign the coordinates (¢,x,y,z) and the
infinitesimal interval ds between the infinitesimally separated events satisfies
the Minkowski line element.

ds* = —dt® + daz* + dy? + d2?

= N dztdz”

where
N = diag (—1,1,1,1)

The Minkowski line element is invariant under Lorentz transformations

’
ot — ot



where
ANPAN N =N
and under arbitrary translations
ot — k4 d"

where d* are constants. Together, these define the Poincare group.

Null cones of v, describe light rays in a vacuum.
Time-like geodesics of v, describe force free motion of massive particles and

T = /dT = /(—nu,,dx“d:c”)é = /(1 —v?)2dt

is the proper time measured by a standard clock associated with the particle
where the integral is taken along a time like path representing the particle’s
trajectory.

Note Used ‘relativistic’ units ¢ = 1. In non-relativistic units

02\ 2

1.3 General Relativitiy (Guiding Principles)

e All observers are equivalent.

= physics should be coordinate independent. (Principle of General
Covariance)
= tensor equations are the most natural mathematical framework.

e Should agree locally with SR

e Admit a class of preferred relatively accelerated world lines representing
free fall.

e Should admit a tensor related to the source of the gravitational field.

e Should explain observed solar system phenonema such as light deflec-
tion, perihelian advance of Mercury, time-delay etc.

General relativity assumes spacetime is a pseudo-riemannian manifold
with signature(- + + +).



Null geodesics represent light rays.

Timelike geodesics represent paths of freely falling particles.
Locally, we can always choose a chart s.t. g,, = 7,., i.e. SR valid locally.
The field equations are
GH = gTH

where x is a constant fixed by the Newtonian limit, G* is the Einstein
Tensor, and T" describes the source of the gravitational field.

2 Einstein Equations from an Action Princi-
ple

We first recall two important results:
(i) Fundamental Lemma of Calculus of Variations: If

| etamtarts =0

1

where ¢(x) is continuous, ad n(x) twice differentiable and vanishes on bound-
ary n(z1) = n(zz) = 0, then p(z) = 0 on [z1, z»]
(ii) Gauss Divergence Theorem:

/Vux“dQ:/ X'dx,
1% oV

where y* is a vector density of weight 1. An immediate corollary is

/ V=gV, Xt = | =g X*dS,
\% oV

where X* is a vector field.

2.1 Principle of Least Action

We start with an action
S = LdS)

all space
where £ is a Langrangian density of weight 1. We consider small varia-
tions in the metric tensor g,, — ¢ + S¢ Which inducs a variation in the
action functional S — S 4 5. We also assume the metric variations and its
derivatives vanish at infinity.



The action principle implies

08 = LHg,,,d =0

all space

where LM = 5‘;% is a (2) tensor density of weight 1.

2.2 The Stress-Energy-Momentum Tensor

In General Relativity, we must allow for the definition of a tensor related to
the source of the gravitational field, i.e. the action has contributions coming
from the matter fields and the gravitational fields

szsu+sg=/ (L, + L)dQ

all space

We define

J 1
0.5y, = /11 ﬁ5guydﬂ = - V—9T""0g,,d
all space

5gp,u all space

where we have defined
2 0L,

N v—4 5guu

which is the stress-energy-momentum tensor.

Ui

2.3 Varying the Metric Inverse and the Metric Deter-
minant

In what follows, we shall require dg"” in terms of dg,,. We note that
glwg;w = (%\L

= 09" gux + 9" 0gux = 0

Multiply by ¢
= 09" 60 = —g 9" 3

= §g" = —gMg" g, (2.1)

We also require d\/—g. We note that for any non-singular matrix a,,, with
inverse a"” and determinant a. Each element has a cofactor given by

A* = a"*a



Also, the determinant is obtained by expanding across any row.

a= A(”)”a(u),, (no sum over p)
which imples that
82: = A" = a"a
Therefore
Oa = 8?—:8%,, = aaday,

a = /—g, this gives

1

= _§<_g>§gg’/ﬂagm/

1 Va7
5 _gg# aguu

S(v79) = 599" g (22)

An immediate consequence of equation (2.2) is

(Vo0 = 5v5 9" G (23)

Example 2.3.1
Show that equation (2.3) leads to

VM(\/—_g) =0

v—¢ is a scalar density of weight 1. The covariant derivative of a scalar
density of weight a is

Vax = xa —wlx
We wish to show that

Valv=9) = (V=9)x — V=g T}, =

We know that
0= vu Gux = Guipu — Gup Fl))\# — 9xp Fﬁu

= o = Gup F,;\M + 9xrp F,l/)u



Equation (2.3) implies:

1
(V=9)r = 5 V99" G

1 v
= 5 vV—4g gu (gup Fz)\ + guprz,\)

1 1%
= SVEg, T, 4+ 3T

1
= 5\/__9@5,\ + Fﬁx)
= V9Tl
= Vi) =0 O

2.4 The Einstein Hilbert Action

We now consider the contribution to the action coming from the gravitational

field:
Sy = / L,dS)
space

The only scalar density of weight 1 involving the metric and its derivatives
up to second order is \/—gR. i.e. we take

‘CQ =k \/_gR =K V=g gMVRuV

= 08, =x" / [6(vV=99" )Ry + V=9 " 0 R, |08

We require our expression for 6z, schematically, we have
R=0I'-0I'+IT-1IT

Thus
OR=0(0') — (o) + 0I'T + I'oT" — 6I'T" — I'oT

6T, is a well defined tensor (even though I'?, is not, since this involves the
difference of two connections) we can therefore convert partial derivatives to
covariant derivatives:

SRy, = (0T% ) — (6Th).,

vAp

7



The second term of the gravitational action is therefore

/ VG [(g78T™ ), — (g8 )] dS)

Now ¢“P6T'l;, and g”#T'l;, are vectors, so we may apply the corollary to the
divergence theorem to convert to a surface integral

< [ VEag Ty, - g st i, = 0)
The gravitational action reduces to
68, =K /(5(\/—_gg‘“’)RWdQ
=k ! /[(5(\/—_9)9“"]%“,, + v=90g"" R, ]d$2
=r / (%\/—_gg”’égxpg“”Rw - x/—_gg“AégApRW) ds)
= k! / V=g (%g)‘pR — RM) 5xpdS2
= rﬁl/\/—_gG)‘pégAde

2.5 Einstein’s Field Equations

Putting the results together, we have

08 =68, + 65,
= [GvraT g0 - x5 6sg,an
1
_ / Ny <§TW _ K—law) 8w d2 =0

Since we assume metric variations vanish at the boundary, we must have

1
—TH — g7IGM =0
2
= S
2



In the weak field slow moving approximations, they reproduce Poisson’s
equation only when
167G
K= -
or, in natural units ¢ = g = 1,k = 167.
GM = dnT* Recall the twice contracted Bianchi identities

G =0

== T/ =0

)

(D’Inverno)

2.6 Further Remarks on the Field Equations

The history of an isolated body in spacetime is a timelike world tube filled
with the world lines of the constituent particles. Inside the world tube, we
have T* £ 0 , and we solve the non vacuum Einstein Field Equations.

G = o T

Outside the world tube, 7" = 0 and we solve the vacuum field equations

G" =0 <<= R" =0
Agreement with Newtonian limit requires x = 167.
= G =8rTH
The world line of a particle z#(s) with non zero mass is timelike. Taking s
to be arc-length along the curve, we have
dzt dz”
Iwas ds

If the particle is a test particle (doesn’t perturb the geometry of spacetime),
then the world line is a timelike geodesic satisfying

d? 4 dz? dx?
+ -
ds? YA ds ds

where s is now the proper time along the curve.

We take the world line of massless particles to be null geodesics
o, da” da?

+ 1 ——

dr? YAdr o dr

and Jot da®
TH dx ~0

W dr =



3 The Stress-Energy-Momentum Tensor

3.1 Decomposition of the Stress-Energy-Momentum Ten-
sor in an Orthonormal Tetrad

The stress-energy-momentum tensor satisfies
1
™ = —G" and TE' =0
8 v

T+ is a symmetric 4x4 matrix and in general will have 4 mutually orthogonal
eigenvectors; one timelike and three spacelike.
Let u* be the unit timelike eigenvector of T* with eigenvalue —p, i.e.

T, = —pu, v, =1
= —p GMAU)\

We take timelike worldlines tangent to u* (i.e. the integral curves of u*)
to be the worldlines of the constituent particles of the matter distribution.
We take p to be the proper density of the matter (density observed in the
rest frame of the constituent particle). u* is the 4-velocity of a constituent
particle, and it describes the interval motion of the body.

We further define

Sy = puyuy, — Ty = S
S’ = puy(uu”) — Tu”
= —PUu + puy
=0
u” is a unit timelike eigenvector of S, with eigenvalue zero.
S, has 6 independent components, and is called the stress tensor of the
matter distribution.
We now let {ef), e(s), €3t = {efs) 3 | be the unit spacelike eigenvectors
of TH with eigenvalues {p(; };_,, respectively.

Tywel = p@ee@u ¢ =1,2,3 no sum over ¢

Mutual orthogonality implies

Therefore



Hence {el(’i)}f’zl are the unit spacelike eigenvectors of S, with e-value {pg }i_;.
These are called the 3 principle stresses in the matter distribution.
For pressures p(;) > 0.
For tensions p; < 0.
So we have 4 mutually orthogonal eigenvectors satisfying

ufu, = —1

eneim = 0@

oytn =
We set u = e[, then we have
elpyeou = —1
e = 96)0)
¢oyewu =0
= elfa)e(b)u = M(a)(®) (a,b=0,1,2,3)

(parenthesis around indices to distinguish tetrad indices from spacetime in-
dices)

= eﬁa)e(b)u =n(a)(B)
= diag(—1,1,1,1)

= | Gu€(0)€(o) = Ma)(v)

{e’(a)}izo is an orthonormal tetrad. 7q)e) are the components of the metric
tensor on this orthonormal tetrad.

Any vector or tensor may be projected onto the tetrad from, for example,
the components of the curvature tensor in the orthonormal tetrad are

v A O
Riaywy(e)(a) = RuvAoel, el et ely

We can also write the metric components ¢g"” in terms of {e’(‘a)} following
from the orthonormality conditions:

g = n(a)(b)el(la)el(fb)

Therefore, we can pass freely from tensor components to tetrad components
and vice-versa.

11



Note:

Toy0) = Twelyelo) = Twuu” = —pu,u” = p
Ty = Tuvelg) ey = Tuput'e(yy =0 (i=1,2,3)

TGy = Tuweyely = Paeawe(y) = Pod)6)
STy = diag(/),pu),p(z),p(s))

Guv€(ay€s) = Ma)(b) (a)
g0 Vel el (b)

3.2 Stress-Energy-Momentum Tensor for a Perfect Fluid
and for Dust

Writing (b) out explicitly:

¢ = OOl et Ok GOt oy GOl ot

2

_ 77(0)(0)6;(10)61(/0) + n(l)(l)e’é)e’(’l) + 77(2)(2)6’(2)@1(’2) + 77(3)(i’>)e’(‘3)e 3)
3
=+ Y elyely
i=1
3
S elyety =

1

Recall

Suwe(sy = —PG) €@
3 3
v A
= Z Sueeiy = = Zp@)%)ue(i)
i=1 =1

3
LHS =5, Ze’(’i)ea) = S (g" + u'ut) = S;‘ +0

=1

3
= | SHY — Zp(z)elé)el(jz)
=1

For a perfect fluid, the stress is an isotropic pressure (no preferred direction)
Pa) =P =P3) =P

12



3

_ 12 v

= S =D Y efyely
=1

= | S" = —p(g" + utu") (stress tensor for a perfect fluid)

where 4" is the 4-velocity.

By definition, we have

T, = puyuy, — Sy

= puyUy, + p(guu + uuul/)
Ty = (p+ p)uytty, + P
(st

ress-energy-momentum tensor for a perfect fluid)

Example 3.2.1

Show that for incoherent matter with proper density p, that p changes along
integral curves of u* according to

puutt = pul, =0

Further show that the world lines of the dust particles are timelike geodesics.
We have T" = putu*. The conservation equations are

T =0
= 0=V,(pu'u")
= p v’ + p(V,ut)u” + put'V,u”

= uM(pyu” + puy,) + pulu” (1)
= 0= —(pu” + pul,) + puyut,
1
But wyul, = §(uuu“);,, =0 (as required)

Sub this result back into (1)

= uhu" =0

~— D,u=0

i.e. the integral curve of the dust particle parallel transports its own tangent
vector = geodesics.

13



4 The Schwarzschild Solution

4.1 Canonical Form of a Spherically Symmetric Line-
Element

We shall consider spherically symmetric solutions to Einstein’s vacuum field
equations.

Spherical symmetry implies that there exists a coordinate system (¢, 7, 0, )
say, in which the line-element is invariant under the reflections

Q-0 =rm—20
o= ¢ =—p

i.e. no cross terms of the form drdf, drdy, d0dy, d0dp, dtdd, dtde and that
each 2D submanifold defined by ¢ =const, » =const, are the 2-spheres.

di* = a*(d0* + sin*0dp?)

Therefore, the spherically symmetric line-element has the form

ds® = —A(r, t)dt* + 2B(r,t)dtdr + C(t,r)dr* + D(t,7)(d6* + sin*0dy?)
Changing the radial coordinate r — 7 = /D

= ds? = —A(t,7)dt> + 2B(t, 7)dtdi + C(t,7)di® + 7(d6* + sin®0dp?)
Introduce a new time coordinate by

di = I(t,7)[—A(t,7)dt + B(t,7)dF]
= di* = I(t,7)[A%dt* — 2ABdtdr + B2di?
dt*  B?

= _Adt® + 2Bdtdi = — —— + ——di*?
I2A A

The line-element now reads
dt?

2 __
45" =~Ta

B2
+ (7 + C) dr® 4+ r*(d6* 4 sin®0dy?®) (dropped the tildes)

Defining 2 new functions p = p(t,r);q = q(t,r) by

1 B?
m:ep; 7—1—026“’

Our canonical form of a spherically symmetric line-element reads

ds® = —ePdt* + e'dr® + r*(d0* + sin*0dp?)

14



4.2 The Schwarzschild Solution

To determine the functions p(¢,r),q(t,r) we must solve the vacuum field
equations G* = 0. The non vanishing components of the Einstein tensor are

tm o (M- 1)1 0

ror r? r2
, € 10q .
Gi=—o (i)
19p 1 1
r_ —qf(l0p 1y 1
G, =e <7“87“ + 7"2) = (iii)

1 _(10pdg 109 18p 1 [dp\> %
0 _ v _ _ —_—q| ¥4 ¥4 2HF - [YPY) Y P
G G“’ 26 (2 or or + ror rOor 2 \Or or?

1 (% 1 (0q\*> 1010p
— —e _+_ J— -
2 \oz " 2\ot) 20tot

We see that the Einstein equations give us 4 non trivial equations. However,
they are not all independent. The twice contracted Bianchi identities G4 =
imply that vanishing of (i) — (¢é¢) implies vanishing of (iv). So we have 3
independent equations

ror 72 72
Jq
5_0 (b)
_(1ap 1 1
6q(;§+7’_2)_ﬁ20 (C)

It is immediately obvioius from (b) that ¢ is a function of r only. i.e ¢ = ¢(r)
and therefore, (a) becomes a simple ODE:

e l—eIr—=1

dr
d
= %(re_q) =1
=re ¢ =r = const

Taking our constant of integration to be —2M (which we will interpret later)
yields:



To optain p we note that adding (a) and (c) gives
dp | 9q
ar or

ie. p+q= f(t)

0

= P = e/

= 1_% ef@®
r

oM\
> ef @ g2 + (1 — —) dr? + r? (dQQ + sin29d902)
T

Our line element reads

2M
w = (12
r

Finally, we may eliminate f(t) by redefining our time coordinate by
ex!Odt = dt’

t
=t :/ e3f @ dy
which gives (after dropping primes)

2M oM\~
d32 = — (1 — T) dtz + (1 — T) er + TQ(CZQQ + Sin29d902)
(Schwarzschild Solution)

4.3 Properties of the Schwarzschild Solution
4.3.1 Limiting Cases M — 0,7 — o0

It is clear that by setting M = 0 we retrieve the Minkowski metric in spherical
polar coordinates. The parameter M represents the mass/energy and one
may interpret the Schwarzschild solution as the geometry due to a point
mass M at the origin.

We further note that as r — oo, we again retrieve the Minkowski met-
ric. We did not impose asymptotic flatness! Spherically symmetric vacuum
solutions of Einstein’s equations are necessarily asymptotically flat.

16



4.3.2 The Coordinate Singularity at » = 2M

The metric components of G, are singular at r = 0, and r = 2M (r = Qgéw in

non natural units). The r = 0 singularity is known as a curvature singularity
and is irremovable. The r = 2M singularity is a coordinate singularity
and may be rmoved by an appropriate coordinate transformation (though
r = 2M still has important physical implications). To see this, we make the
coordinate transformation (¢,r,0,¢) — (u,r, 0, @) where

u=t—r—2Mlog(r —2M)

oM\ !
:>du:dt—(1——) dr
r

In these coordinates, the metric reads

2 2M\ ", 20102 | 297 2
ds*=—[(1—- — du® — 2dudr + r*(d6” + sin“0dp*)

r

In coordinates (u,r, 6, ¢) the components of G, are non singular at r = 20/

—(1-25) -1 0 0

B -1 0 0 0

G = 0 0 2 0
0 0 0 7r%sin?

We also note that in the standard form of the Schwarzschild metric

2M
gtt:—(l——><0, r>2M

r
>0, r>2M

so that the signature of the metric is (+ — +4) for » < 2M. In this region,
r takes on the character of a time coordinate and ¢ a spatial coordinate. We
call the region r > 2M the exterior Schwarzschild geometry, and the region
0 <r < 2M the interior Schwarzschild geometry.

4.4 Birkhoff’s Theorem

Definition: Static space time: A space time is said to be static if there exists
a coordinate system in which the metric components are time- independent
and the metric is time reversal invariant, i.e. there exists a coordinate system
such that g,,, = 0, and there are no cross terms dtdz’ (i = 1,2,3)

17



Note: The chart independent definition relies on the existence of a time-
like killing vector that is hypersurface orthogonal.

We note that the Schwarzschild solution is static, but we did not impose
this!

Birkhoff’s Theorem: A spherically symmetric vacuum solution in the
exterior region is necessarily static.

Corollary: For a spherically symmetric source in the region r < a, where
a > 2M, the exterior Schwarzschild solution is the unique solution.

5 Solar System Tests of GR

In order for GR to be considered a viable theory of gravitation, it ought
to be able to explain various phenomena in our solar system such as light
deflection

We model the gravitational field by the Schwarzschild solution with M =
M, the mass of the sun. We model the planets as text particles which move
on timelike geodesics of the Schwarzschild spcacetime. There are 3 classical
tests we shall consider:

5.1 The Gravitational Red-Shift

Let C, and C be the timelike world lines of an emitter and receiver of light,
respectively. Let 7 be the proper time along them. Let Fy and P; be the null
worldline of a photon emitted at the even P, on Cy and received at the event
P, on (. Suppose in a short interval dry of proper time on Cy, n photons

are emitted and these are received in an interval dr; of proper time on Cf.
Then,

vy = frequency of emission

= no. of photons per unit time
n

:d—TO

18



Similarly,

v, = frequency of reception

oon
Cdn
= vodry = 11dmy
vo dm
v dn
If A\g, A1 are the emitted and received wavelengths respectively, then
)\0 = l )\1 = i (Czl)
) 4t
A1 dm
X dn

A signal is red shifted (loses energy) if A\; > Ag or if dry > dr.
Suppose the emitter is at rest on the surface of the sun. Then the world

line Cy would be given by

r = a = solar radius

9 == 90
¥ = %o
On Coi
2M
d32:—<1—— dt?
a
/ 2M
a
Similarly, on Cj:
2M
dry =4/1 — —dt
r
Mo _dn V15
)\0 - dTo - 1 _2M

For % small (:> % small)

Bz (1—¥+O(M)2> <1+%+0<%>2>

2M
1 ===

M M
Ml -
a T
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A M M

Ml —

0 a r

=

Since % > %, we have A\; > )\g. i.e. signals are red-shifted as they pass

through the gravitational field

M NN AN (M u
_)\0_ )\0 N )\0_ a r
(or =38 (L — 1) in standard units)

Note: This is not a Doppler shift since there is no relative motion between
observers.

5.2 Planetary Motion and Perihelian Advance of Mer-
cury

5.2.1 Geodesic Equations

We treat planets as test particles moving among timelike geodesics of Schwarzschild
spacetime. Line element

2M oM\~
ds* = — (1 — —> dt? + (1 - —) dr? + 1*(d6” + sin® 0dy?)

T r

IM) oM\ ! :
L = guid"i" = - (1 - _> o (1 - _> i 4 r2(67 + sin 0p%) = —1

r r
(5.1)
dt
d(proper time)
pop= (3_L) oL _,

~dr \oir ) T oxm

t=
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T
|
ﬁ
QU
)

-1
:in[<1_%) 72] _ [_ﬂﬁ_(l_%) %r +2T(02—|—Sln 0p )]
r

oM\t M oM
:>7'«':—(1——) T —(2—2M)(92+sm 9@)—1——(1—7)152—0

d .
p=20:0= d—(2r29) — 2r%sin 6 cos 0
T

= 04 Z7? —sinfcosOp*  (iv)
r

p=¢:0= i(2r2 sin? )
dr

= r?sin?0p = h

5.2.2 Propagation Equation for 6(7)

(iv) = 7 is a solution. Assume 0(0) = 7, 0(0) = 0= A(0) =

Differentiating (iv) gives 6(0) = 0.
= all derivatives of 6 vanish.
Consider 7 = 11 > 0 close to 7 = 0, then

emg:mm+mmﬁ+%amf+lymﬁﬂau

3]
8(ry) = 6(0 ()ﬁ+;mm b
=0(m) =

)+
0(m) =

SIE

Therefore we have shown that assuming 6(0) = 7, 0(0) = 0, then it remains
true for some nearby point. By induction, it is true for all values of 7,

0(r) = %,9(7) =0.

= only consider equatorial plane. We now have

2M .
(1-2)i-p
T
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Substitution: h = ’”70

. dr drdu

"Tdr T dudr

_drdudyp

" dudpdr

_du 2\ .

_@(_E)g}

_ hdu

T rody
“—2<d—“>2 h—2u2<1—ﬂ)—E2 M
r2 \dy 2 70 To

du\* re 2Mur, 2Mu?

i(@) bt = B D) e

(omitting %, we retrieve the Newtonian result)

Differentiation gives the more familiar form

d*u N M, N 3Mu?
- u =
dp? h? To

(Relativistic Binet Equation)

5.2.3 Newtonian Result
Ignoring % and writing % ek
dupy 2 9 r% 9 uNrg
= | — = —(F“—-1 I3
() o~y

This can be solved exactly by writing the solution as uy + ug + v., where g
is a constant chosen to eliminate the term linear in v.

dv 2 re er?
= (%) +ud + 2upv + v? = h—g(E2 —1)+ h—go(uo +v)
ug 1s chosen such that
er, _lerg
— % T
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- h2 h2
= v(p) = ksin(y — o)
= uy = uo(1l + esin(p — g))

S (22) +r= o1y -

with e = £ (defines ellipse for 0 < e < 1)

2 r2(c2-1 ur us
(%) +u? = MG 4 20 4 oM

Newtonian result obtained by ignoring u® term. Solved with Ansatz

Uny = Uy +v

= up(1 + esin(p — o))

ellipse with period 27

5.2.4 Shape of General Relativistic Orbit

Again we take u = ug+v where ug is a constant chosen to eliminate the term
linear in v.
= This leads to requiring that ug satisfies the quadratic

2

r
Seuy — 2u0+6h—g =0

where € = % < 1 and we choose the solution that is closest to the Newtonian
result. Then v satisfies

v\ -1 M
(d_v) +ul + v =12 (e 2 ) +2 ;guo + eud + 3eugv® + ev?
¥

Ignoring the v® term and collecting constants
do\ 2
(%) + (1 — 3eup) = k?
which is easily solved, yielding

k.
v = —sinw(p — o)
w

23



where w? = 1 — 3eug. i.e. the shape of the orbit as predicted by relativity is
an ellipse with a periodicity

2 3
5 ~2m(1+ §euo)

the periolian advance is given by (in standard units)

Ay = 3meug
— 67TG]2W (@)
C To

To approximate 1;_3 we use the fact that each orbit is approximately Newto-
nian and we know for an ellipse

Tmax = a(1+¢€) T = a(l —e)

where a is the semi-major axis

To To
(uN) uO( + 6) Toin a(l — 6)
To 7o
min — 1-— = =
(uvhin = w0l =€) = 2 = =S4 )
2U0 1 1 2

ro  a(l—e?) * a(l—e2)  a(l —e?)

6mrGM

TAp =
o 2a(l — e?)

For Mercury, this predicts a shift of 43” per century while the observed value
is437.14+0.5

5.3 Light Reflection

We consider photon paths in the Schwarzschild gravitational field. We de-
scribe the photons by null geodesics

- B
a* + I \atz” =0

and
e
Gt
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where zt = % is an affine parameter.
Again, without loss of generality, we take the photon path to be in the
equatorial plane 6(s) = 7 for all s. Our geodesic equations are
2M -
O——)ﬁE
r
r?o=nh
M? oM\ ! 2M
7“——2( ——) 7“2—(7“—2M)902+—(1——>t2—0
r r r r

The 1st integral of the motion

0= gpats”

M\ . oM\
:—(1——)t2+r2¢2+<1——) 72
r r

Using the fact that
dr . hdr

r = — =

dp”  r2dp

and the conservation equations to simplify

oM\t h2 2 p2 oM\ !
T A o I
r rt \dp 72 r

Again, we take u = ¢
T

or

2
<j_u) +u? —eu® = Erg
v

where € = %4 <1
Take u = uy + €u, and subbing into our equation and equating equal orders
of € gives

dug\ r2 h
(%> +ul = d—g where d = 5 (A)
and p p
u u
2 (T;) <d—¢1) + 2uguy — uj =0 (B)
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Equation (A) is easily solved

Uy = %)singo taking ¢ =0

Then subbing this into equation (B)

d 172
cos (digpl) + sin pu; — 5% sin®p =0

Try a solution of the form
uy = A+ Bsinp + Ccos? ¢
17l
2 d?
1

2 d?

= B +sing(A — C) + sin® o )=20

= B+0,A=C,C =

2
Ly

:>U1:§d2

(1 + cos® p)

= u= %singo—ir %(a—l—coszgo)

We require the total deflection in the asymptotic regions r — oo(u — 0).
r— 00,as Y — —

T — 00,88 © — T+ P2

subbing these into our equation gives

T 1rg N
= p1 = @6
d
1 2
0= —%’@ + e;%(l +14+0(e)
T
= P9 = EOE
27’0t 4M
". A = = —— = —
Y= PP d d
AGM
Ap = — g (total deflection angle (in standard units))
c

Take M = Mg,d = Ry, gives Ap = 17.75. Observed in 1919 by Sir Arthur
Eddington during a solar eclipse.
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6 Black Holes

6.1 Radial In-falling Photons

Consider an observer at rest relative to the source of the Schwarzschild grav-
itational field. The observer’s world line is » = constant, # = constant, ¢ =

constant and o1f
m3_<1———>ﬁ2

r

where 7 is proper time

_dT_ 1_2M 3
dt r

For r > 2M, then along the observer is world line
dt
o= 1 =t = 7(choosing 7(0) = 0)
Therefore, t corresponds to proper time measured by an observer at rest
at infinity. How does such an observer ‘see’ a radially in-falling photon as

r— 2M?
The world line of a radially in-falling photon satisfies

-1
<1 — %) dr? = (1 — %) dt?
r T

oM\ !
:iﬂ:ig__g

where + represents an outgoing photon and - represents an ingoing pho-
ton.
Solving gives

t==+(r+2Mlog(r —2M)+ C)
=u=tF (r+ 2M log(r — 2M))
= constant along radially null geodisics.
Clearly, as r — 2M,t — oo. i.e. an observer at infinity will never ‘see’

the photon cross the horizon (r = 2M), according to this observer, it takes
an infinite amount of time to reach r = 2M.

Note: As r — oo, we have j—i =tl=>t=+r+c.
i.e. as r — oo, ingoing and outgoing null rays are straight lines with angle

+45°.
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6.2 Radially In-falling Particles

A radially in-falling particle will move on a timelike geodesic given by

oM\ .
(L__y:E
T
oM\ . oM\ !
_Q__Qﬁ:(yu_) 2o
T T

If we consider a particle initially at rest at infinity
=F=1

Then the geodesic equations give

L(EY
dr) — 2M

(minus sign reflects the fact that the particle is ingoing.

Integrating, we obtain
2

T = =(r,
3(2M)z
where the particle is at rg at 7 = 79. Now the proper time to reach the
singularity » = 0 is

O rolw

—ri)

2
3(2M)z

T =Ty + 1"0%
which is finite.

According to his clock, he passes through the coordinate singularity r =
2M continuously, and reaches the curvature singularity » = 0 in a finite
proper time.

If we now describe the motion in terms of coordinate time ¢ (time mea-
sured by an observer at rest at infinity), then

dt i r 2M
E_F‘EMO_7J (E=1)

Integrating, we obtain
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(2M)z
+2M log < T%  (2M)")(r = (2M);)>
(r§ + (2M)2)(r2 — (2M)?)

t — oo, as t — 2M. So again, an observer at infinity never ‘sees’ the
particle cross the horizon despite the fact that according to a clock attached
to the particle, it reaches the singularity in an infinite time. According to
his clock, he passes through the coordinate singularity » = 2M continuously,
and reaches the curvature singularity » = 0 in a finite proper time.

The path of a photon is always tangent to the local radial null cone and
here two photon paths passing through P define the local null. The paths of
massive particles are always inside the null cone. In there (¢,r) coordinates,
the local radial null cones are closing as r — 2M. For r < 2M, the null cones
tip over and we can see that an observer cannot remain at rest but is forced
to move towards the singularity.

6.3 The Kruskal Extension of the Schwarzschild Man-
ifold

It is clear that the coordinates (¢,r) are a bad choice for wollowing an in-
falling particle.

We look for new coordinates (u, v) in terms of which the local radial null
cones do not close as r — 2M. We employ Kruskal coordinates:

r % _r_ t
U= <m - 1) e cosh (W)
v-(L—lfestinh L
2M 4M
du = ! (L — 1)_; e cosh t dr—i—— <— — ) e sinh t dt
- 8M2 \2M 4M 2M 4M
dv = ! (L — 1)_é e sinh t dr—i— ( > e cosh t dt
SM?2 \2M 4M aM

o o T . (0 2M 24 _2_
= du dv—32M3e2M[ (1 r)dt ( 7") d}
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L g2 320
S =

e~ 20 (du® — dv?) + r*(df* + sin’® Odp?)
where r = r(u,v) is defined implicitly by

Remarks:
1. The line element is singular only at r» = 0.

2. r =0 <= u®—0v? = —1 hyperbola with u, v as Cartesian coordinates.

r = constant > 2M <= u? — v? = positive constant
r = constant < 2M <= u? — v? = negative constant

3. Null radial geodesics are now defined by g—z = +1. ie. in R(u,v) are

Cartesian coordinates with local null cones as straight lines at 45°. This
is because (u,v) was chosen to satisfy

2M oM\
— (1 - —) dt* + <1 - —) dr? = F(u,v)(du® — dv?)

T r

t v
tanh | — | = 2.
an <4M) u

t = constant = v = constant.u

5. r=2M <+— u = *w.

Conclusions from Space-Time Diagram in Kruskal Coordinates

e r = 2M is a null-cone (null hypersurface) separating I and III from II
and IV respectively.

e Massive particles and photons can cross the radius r = 2M from I to 11
but not from II to I. Hence, r = 2M is a ‘one-way membrane’ known as
the event horizon; it is the boundary of the Schwarzschild black hole.

e Region I corresponds to the exterior Schwarzschild solution (r > 2M),
describing the gravitational field outside a spherically symmetric object
of mass M.
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e Region II represents a black hole solution. Observers inside this region
cannot send signals to an observer in region I and all observers in this
region are destined for the future singularity r = 0.

e Region III is a universe whose geometry is identical to that of Region
I, though the two regions are causally disconnected, i.e. no communi-
cation either way is possible.

e Region IV is the Schwarzschild white hole, the time reversal of a black
hole. Generally not thought to be physical since “nature abhors naked
singularities.”

7 Cosmology

7.1 The Cosmological Principle:

Our position in the univers, with respect to the largest scales, is in no sense
preferred. Extends the familiar Copernician Principle which states that our
position in the solar system is in no sense preferred.

The cosmological principle is modelled by asserting that the universe is
globally spatially isotropic. (globally isotropy implies homogeneity.)

Definition Homogeneous: For each space-like hypersurface, there are no
privileged points, i.e. each point is a centre of spherical symmetry.

Definition Isotropy: For each space-like hyperspace, there are no privileged
directions about any point.

7.2 Kinematics of the Continuum
7.2.1 Connecting Vectors

We consider the spacetime of the universe to be filled with the trajectories of
massive particles (the galaxies) forming a congruence of timelike world lines
with one world line passing through each point of the space time.

Let X be a space like hypersurface, then the normal to ¥ is timelike and
vectors tangent to X are spacelike.

Let {£'}?_5 be an intrinsic coordinate system on X. Since there is a line
of the congruence passing through every point of ¥, we can use the points of
3} to label the lines of the congruence.
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The congruence is timelike, so we use proper time 7 as parameter along
each worldline. Then for {z##}3_; a chart on the manifold, the parametric
equations of the congruence are

o' =M1, &), p=0,.,3 i=1,..3.
A particular line of the congruence is given by
¢ = constants; " = 2#(1, "),

the unit tangent to this line is

B ozt

or’

% B
U uuy,

the 4-velocity of particle with worldline &°.

Consider now two neighbouring lines of the congruence & and & + §¢°.
¢* is an infinitesimal connecting vector defined along &°.

¢* connects points of equal parameter value 7 on & and &% 4 6&°
= ("= (1,6" 4 68") — at(r, &)

Taylor expanding for small §¢7.

_ (7, §)

M= 96 6

So see how (* varies along the line of congruence &!, we differentiate with
respect to 7

oct 9 (dxt(r,&") i
or "ol (—a@' ) ”*
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But

out B out 0x”
o0& Qav O&I
acr i ox” i
or ~“vae
— ¢
ot Ox” u v
or’ Or Wk

= = ¢

)

— [C,ul*=0
We also know that
XrYr—Yh XV =XI VY -YH XY
.. The propagation equation may be rewritten

CM;V uV = UM;VCV

— é‘ﬂ — UN;VCV

where Des
ST

dr
We may also define the orthogonal connecting vector

Y s

where h*, = 0" + u*u, is the projection tensor which projects vectors or-
thogonal to u*.

h, = ot + u'u,
<~ h" = ¢g"" + u'u”
= hyw = g +uuu,

It is straight forward to verify that h*, satisfies
i. k' u” =0

ik Ry, = b

33



i A", =3

Arbitrary tensors may be projected onto the plane orthogonal to u*, e.g. for
a (2) tensor Q", its projection orthogonal to u* is

Quu _ hu}\hupQ)\p

It is trivial to see that 5 .
u, Q" =0 =u,Q"

7.2.2 Shear, Stress and Expansion

The 3-velocity of the line of congruence £ + §¢ relative to £ is defined as

o = W

(3-velocity since v*u, = 0 implies only 3 independent components)

Lemma 7.2(a)

Ho— AR YV — A
vt = AF n” where A, = u,\h",
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Proof

o = Wi

,'71/ — hV,\C)\
= (5; + UVU)\)C)\
= (" u'un g

=1 =+ Wun + u (ur )
_ UV;ACA + uVU)\g)\ + UV(UACA).
= ol = R
G i R (¢
= (0¥ + u“uy)u“;/\(’\ + (0% + ufuy, ) un g
= u“;/\C)‘ + 1¢L“(u,,u”;A)CA + u“;pupuAC’\ + u“u,,u”;pupu,\C’\
- u“;ACA + u“;pu"u,\@
= u“;péﬁc)‘ + u“;pupu,\c)‘
=", (05 + uPuy )¢
= ul‘;phpAg)\
= uu;pnp
= uf b ™
= A"
where A, = u#, SN
= A =uy,hf, O

Lemma 7.2(b)

A, may be written as
A ].
A =\, =0 +wp + gehw

where

. I
Oy = U(uzp) + U(uly) — 3 Ao

is a symmetric, trace free () tensor known as the shear tensor.

Wy = U] + U]

is an antisymmetric () tensor known as the vorticity tensor. 6 = u*

expansion or contraction of the congruence.

. is the
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Proof

) 1 . 1
RHS = () + Uty — gu/\;/\huv + U + U + gu/\;)\huv
= Uy + Uyl
_ A A
= Uy 20, + U Uy AUy
= uu;sz)/\ + u)\ul/)

= uph, = A, O

Conclusion

In going from 7 to 7 + 07 along &, the 3-space of orthogonal connecting
vectors undergoes a linear transformation or

1. a shear, or distortion
2. a twist, or rotation

3. an expansion, or contraction.

7.3 The Friedman-Robertson-Walker (FRW) Metric
7.3.1 Isotropy

The model universe is a spacetime manifold (M, g) filled with a congruence

K of timelike worldlines &k € K. We assume spatial isotropy.

Definition: If (M, g) is isotropic with respect to a k € K, then all
directions orthogonal to k at each point of £ are equivalent, i.e. if ) is a
hypersurface orthogonal to the tangent to k, then there are no preferred
directions in €.

Consequence of isotropy of k

1. u* =0 along k, i.e. k is a geodesic.

Proof
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= at each point of k,u* is a special vector orthogonal to u*.
[sotropy = no such vector exists = u* = 0.

. 0 = 0 along k.

Proof

o, is a 424 symmetric trace-free matrix which is orthogonal to u* in
both of its indices.
oput =o,u’ =0

o, has 4 mutually orthogonal eigenvectors, one timelike and 3 space-
like, where u* is the unit timelike eigenvector with eigenvalue 0. Hence,
the 3 unit spacelike eigenvectors constitute 3 unique directions orthog-
onal to u* (i.e. lying in the hypersurface Q) at each point of k. By
isotropy, no such directions = o0, = 0.

. wy, = 0 along k.

Proof
Let €,,,, be the Levi-Civita symbol and take €,,,, = /=9, as the
Levi-Civita tensor. We define the vorticity vector by

Wy = sw,\pu”w’\p

wyuut = 0. There is a unique vector orthogonal to u*.
Isotropy = w, =0 = w,, = 0.

. h#0, = 0 along k.

Proof

u,(h*,0 ) =0, hence h*,0 , is a unique vector orthogonal to u*.
Isotropy = h*,0, = 0.

Definition: Isotropic universe:()M, g) is spatially isotropic if it is isotropic
with respect to all £ € K. Since a worldline k£ passes through every
point of M, this implies:

ut =0
o =0
wt =0
h*,0, =0
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7.3.2 Comoving Coordinates

[sotropy implies
Wy = Ul + Ufutty) = 0
and
W =0
= Ufup) = 0
< Uppy = Uyy
<= there exists a scalar function ¢(z") such that u, = —t,
= uydrt = —t ,dx" = —dt

= the worldlines k € K intersect the t =constant hypersurfaces orthogonally.

Since -

x

B

Y or
and

dt ot Ozt
dr Ozt O
=t u"
= —u,u”

=1

=>7=t (taking the integration constant to be zero)

Hence t is the proper time along each k£ € K, this is known as cosmic
time.

Taking {z*} = (t,2%) to be the coordinates on M, then x' =constant
label each k € K. In these coordinates
Lo o,
o ot !
= u" =(1,0,0,0).

ut

Since the 4-velocity in these coordinates has no spatial components, we say
the coordinates are “co-moving” with the matter.

Galaxies move on integral curves of the vector field %.
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7.3.3 The Spacetime Metric

We have shown that isotropy yields

v —_—
UpGput = —t
which, in co-moving coordinates, implies

Gudi = —t, = _5Z
:>gut == _5;
=0y = —(Slf =-1

gti:O Z:17273
The metric reads , o
d52 = —dtQ + glj (t7 xz)dl’zdl‘]

Next we consider

.0, =0

where
B SH I
h*, = o8 + u'u,

wich in comoving coordinates gives
(0 —0/0,)0,, =0
=0, =1050,
#071‘ =0
=0 = 0(t)
Finally, we have that
O =0

The orthogonal connecting vector of two neighbouring galaxies x* and x* +
dx* in comoving coordinates is

n" = (0,0z").

Let [ be the invariant length of this vector

2 = Gun'n” = g,-jc?a:iéa:j (1,7 =1,2,3)
= |2 = ag;j Sx' 0z’ (A)
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We may also write n* = In* where n* is a unit spacelike vector. Recall that
S

where

1
A, =0t ot + O,

In our case 0, = 0.

: 1
= Wi = W' + SOn
. . 1
= hbln” 4+ hlinY = w",In" + §9h’jln”

Multiplying by n,, and using n*n, = 1 and n,u, =0

. 1
[+ (68 + vu'uy)ln,n = W, In,n, + 59(5,’,” + ufu, )in,n”

o+ ufu, =0 (since n*n, = 0)

W, In,n” =0 (since w*, anti-symmetric, n,n” symmetric)
-1

=\l = gﬁl (B)

where 6 = 6(t) in comoving coordinates.

Subbing (B) into (A)

2 2_agij Q5
39(t)l = 2 dx'dx

2 S 0Gii « i
- S Sed — (¥ 5.7
= 39(15)92](53: ox ¥ dz'ox
99i
ot

A separable solution of the form g;; = h;;(x%)[*(t) satisfies this equation, so
the metric now reads

2
= 30(t)gi; =

ds® = dt* + 1*(t)hy;(2")dx'da?
where [(t) satisfies
S
[ ==0(t)l
=0

and h;; is a positive definite metric on a Riemannian 3-manifold which is
isotropic at each of its points. This is consistent with asserting that h;; is

a positive definite 3-metric of constant curvature. There are only 3 distinct
possibilities: R?, S3 H?.
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1. Flat Space R?®: This is the familiar infinite Euclidean geometry

O dr? = hyjda' da?
= dz? + dy* + d2?
= dr® +r*(d6* + sin® 0dp?)

2. Three-Sphere S?: The compact space of constant curvature. To visu-
alise this, we embed S? in R* with points on S? satisfying

2+ 2+ 27 +w? =d’

=0 ds? = dz? + dy* + d2? + dw®
(zdx + ydy + zdz)?

12 2 2
=dx” + dy* + dz" + a2 gt 2

which, in spherical polar coordinates, yields

r2dr?
G ds? = dr® + r3(d6? + sin® dp?) + a2 — r2
d 2
- 1 _rﬁ + TQ(dQQ + sin® 9d902)
0<r<a
0<f<m
0<p<27m

3. Hyperbolic Space H?3: The infinite space of constant negative curvature.
To visualise this, we embed H? in a 4 dimensional Lorentzian space

22yt 42—t = —a?

which yields
(3) 7.2 dr’ 2/ 192 ) 2
ds :1—T2—I—r(d0 + sin” 0dy*)

a2

Scaling the ‘radial’ variable
r—ra

then we may rewrite the general form of the 3pmetric of constant cur-
vature as

d 2
®ds? = a?| ——— + r2(d6? + sin? 9dg02)]



where

E=+1 S* (closed)
0 R*® (flat,open)
—1 H*® (open)

The 4D metric in comoving coordinates is therefore

ds? = —dt? + [(t)d? [1 ETZTQ 72 (d6? + sin? 0%
Finally, taking a(t) = (t)a
ds? = —di* + o (1) (a6 + sin? 0d?)|
1 — kr?

The Friedmann-Robertson-Walker metric, where a(t) satisfies
a 1
- =-0(t
- =390

and is known as the scale factor.

Another particularly useful form of the FRW metric is obtained by the

transformation )
9 dr

e
= |ds® = —dt® + a*(t)[dx* + f*(x)(dO? sin? 0dp?)]

dx

where

f(x)=siny 0<y<m S*
x 0<yoco R?
sinhy 0<y<oo H?

The scale factor a(t) is determined by the Einstein field equations.

7.4 Cosmological Red-Shift and Hubble’s Law
Consider light emitted by a galaxy with world line

T+T070:007S0:900
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Suppose this light is received by our galaxy whose world line is
r+ry,0=01,0=p

Along photon worldline PyP; and QQoQ)4
ds = 0,0 =6y, o = ¢

N e dr?
a2(t) 1 — kr?
Assuming, without loss of generality, that 1 > r¢ and a(t) > 0

N dt dr
a(t) 1= kr2
If n photons are emitted by r = r( in proper time dty, and received by r = r;
in proper time dt, then the emitted frequency is vy = —— while the received

dto
frequency is v = i

@_Al_dtl

v h db
Integrating along Py P, and Q@)1 gives

[a
1 a(t) o V1 —kr?

and t1+dty dt 1 dr
/tg+dt0 % a /ro V1 —kr?
_ /t1 ﬂ _ /t1+dt1 i
o a(t) totdto A1)
writing )
a '(t) = 5

= f(t1) — f(to) — f(t1 +dt1) + f(to + dto) = 0

Taylor expanding, keeping only first order terms

i), (@)
— dty + | — dty =0
(dt t=t1 dt t=to

% . a(tl) . ﬁ
dto N a(to) N )\0
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Observations of distant galaxies= a red-shift

AL > Ao
<~ Cl(t1> > a,(t())
= a>0 (in the present epoch)

iy
.'.@:—a>0
a

= the universe is expanding.

Galaxies are receeding away from one another at a rate proportional to
the distance between them-Hubble’s Law (1929).

Hubble Parameter

7.5 Einstein’s Equations

The scale factor a(t) is determined by considering Einstein’s field equations
with a cosmological constant term

1
Ry, — éRg,w + Agu = 87T},

7.5.1 Matter Content of the Universe

Consistent with spatial homogeneity and isotropy in a comoving frame with
n* = (1,0,0,0) the e.m.s. tensor takes the form of a perfect fluid

T;w = (P +p)uuuu +pg;w
Also, isotropy = p = p(t),p = p(t).
Conservation of em. T = ( gives constraint
. 3a
pt—(ptp)=0
where

p = proper energy density
p = isotropic pressure
To solve this, we further require an equation of state, we assume a barotropic

fluid of the form
P=(y—-1)p (v= a constant)

Two common cases are matter /radiation domination:
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1. Dust: v =1,p =0, i.e. pressureless not interacting matter

) —3a
Pt
p a
=pxa?®
3
Lol
=p="7
2. Radiation: v = %,p =0
P _ 2
p a
:>po<a_4
P0Gy
M

(dilution of energy to expansion and redshift)

7.5.2 The Friedman and Raychauduri Equations

Non-zero components of the FRW-metric:

Ry = -32
a

- oo

R=g"Ry+ ginij
. SN\ 2
k
—6|% +2 (“) +
a

a
e The tt-component of Einstein’s equations

a

a?

2
k

)

1
Ry — -Rgy + Agy = 81Ty,

2
i i a\> k
;»—3—+3[<—>+<—> + =
a a a a
(N kA 8T
a a2 3 3
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e jj-component

Subtracting Friedman’s equations

A 4
a@_ 3= Tﬂ(p + 3p) (Raychauderi Equation)
a

Standard cosmological models are obtained by solving these for some equa-
tion of state.

7.6 Cosmological Models with Vanishing A
(9)2 Lk _ g
a a? 3

(g) = %‘J(p +3p)

7.6.1 Geometry of the Universe

Critical density p.: energy density of flat universe

3 (a\® dH?
Pe= — )y =8 (in theory, Hy is measurable)
8m \a 8m

If we now define the density parameter of the universe to be

0=7"
Pe
Friedman "
= —=0-1
a?lH

E=+1 Q>1 (closed)
0 Q=1 (flat,open)
-1 Q<1 (open)

The actual geometry is still hotly debated.
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7.6.2 Big Bang Singularities

Assuming the matter content of the universe obeys the strong energy condi-

tion (SEC)
1
T, utu” > —§T

for any time-like vector v and T'="T%,.
In our FRW metric with perfect fluid matter distribution, this implies

p+3P >0

This in turn implies (from the Raychaudhuri equation)

S )
H " Hy 0
1
= H< —
Hy ™+ (t —to)

Using the fact that H = % and integrating again, we get

da 1
=< - dt

= |a(t) < alto) (

i.e. a(t) is bounded above by a linear function of ¢, which has t-intercept at
t=ty—hy'.

For some finite time ¢ > ¢, — H, !, we must have a(t) = 0. But as a(t) —
0,p — 00, we have an infinite energy state, and all known laws of physics
breaks down. (Singularity Theorems-Hawking, Penrose,Geroch)

All FRW moels with I' = 0 with a matter distribution satisfying the SEC
predict a ‘Big Bang’ singularity at some finite time in the past.
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7.6.3 The Fate of the Universe (Eschatology)

(Matter Domination P = 0).
We define a conformal time 7 by

e
_CL

dr

and we denote derivatives with respect to conformal time by ’, i.e.

_da
dr

/
a

Defining H = %, then
a ddr H

a adt a
The Friedmann equation in conformal time becomes

H> + k= S pa”
3
and the Raychaudhuri equation becomes
H  —47np
5= (for dust P = 0)

Combining the two to eliminate p, we obtain

2H +H? + k=0

For an open universe, k = —1: We have

a1
/1—%2_§/dT

This may be solved with the substitution

‘H = coth <g)
= H = coth (g)
= =5 (5) = oo

From the Raychaudhuri equation

H  —Amp  —Ampoad
a 3  3a3
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—47r

=a(r) = Tpoag(l — cosh 7)
We have
_ 87 po
*" 3H2

1
= a(7) = —§QOH§ag(l — cosh )

We also have

k
W = g
= ay = Hy*(1—Q)72)
1
a(r) = 5QH; " (1~ Qo) = (cosh — 1) (A)
We also have
dt = adr

1 3
=t = SO H; (1 - ) /(COShT ~dr

1
t= 5 H; (1~ )% (sinh T — 7) (B)
(A) and (B) together form a parametric solution for an open £ = —1 universe.
As t — oo, the £ = —1 universe expands forever. As a(t) gets larger and

larger, in the Friedmann equation

a\* 1 8mpoa}
a a®> 3a3

the curvature term a% dominates the matter term

K|

pxa K (for a — o0)
a
:>d 1
a a?

=a(t) xt

The universe undergoes a period of free expansion as the density drops off
rapidly.
p X t3
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8 The Linear Approximation

8.1 The Einstein Equations in the Linear Approxima-
tion

We begin with the assumption that there exists coordinates in which the
metric of a weak gravitational field can be written as

G = N + h,u,u

where
|| <1

Introduce a fictitious ‘book-keeping’ parameter
Guv = Nuw + ehuu

We neglect all O(e?) and higher terms. We further assume the boundary
condition

lim hy,, =0

T—00

i.e. the spacetime is asymptotically flat.
If we think of h,, as a tensor on 7),,, then we can raise indices of h,, by
contracting with n*”, e.g.
h,uu - U”Vnygh,\a

It is easy to verify that the metric inverse (to first order) is
g = — eht
To see this, we check that
9" gur = 0% + O(€?)
. The Christoffell symbols in the linear approximation are
I, = %g‘“’(gw,A + Prow — Goro)
= S0P — ) (el + ey — chns)

1
= §€(h“y,x + 0", =)+ O()

14
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The Riemann curvature tensor is given by

Rune = 9upR’ )5,
= (nﬂp + Ehﬂp) (Fpua,)\ - Fpu)\,cr + Fauarpa)\ o FOCV)\FpOtU)

1 1
= Nvp ée(hpu,a/\ + hpa,r/)\ - hl/a,p)\) - §€<hpy,/\a + hp)\,uo - huz\,pa)]

1
= §€(hua,l/)\ + hy)\,z/a - h,u)\,ua - hucr,u)\) + O<€2)

The Ricci tensor components in the linear approximation are
A
R,, = gN Rw/)\a

1
= nukie(hua,y)\ + hu)\,zza - h#)\,ua - hVCTuLL)‘) + 0(62)

1
= §E(h/\a,u>\ _I— huu,ua - h’J/U - Dh,VG) + 0(62)

where h = n*h,,, and

_? o2 o2 92
o2 o2 Top T a2

O =n"0,0, = 0,0" =
The Ricci scalar in the linear approximation is

1
R=(n" — eh‘“’)ge(hAy,M + R — My — Ohyy) + O(€%)

= e(h‘“’w — [Oh)
Finally, the Einstein tensor in the linear approximation is
1
GMV = R,uV — §Rguy

- _€<h)\u,,u)\ + h)\,u,)\u

1 A
— hw — Ohy) — §nﬂye(h ? o — 0Oh) + O(€?)
A
6<h’>\u,u)\ + h’/\u,/\u - h:/U/ - Dhlﬂ’ o nlWh p,)\p + nlWDh)
The linearised vacuum field equations would involve setting this to be zero

and solving for h,,. It is convenient to write the Einstein tensor in terms of
a new dependent tensor. the “star conjugate” of h,,

. 1
hp,u = huu - §nwjh (1)
W = Ty

o1



Note that 1
h* =n""h,, =h— 5(4)11 =—h
Using this to invert (1)
* 1 *
hl“/ = hl“’ — En/“’h'

Note also, we can perform a double star conjugate
b = Iy

In terms of A* ., the Einstein tensor reads

p
1 1 1
Gy =€ (1, = SO0 n + (0, = SO0 o + B,

- D(h’yy§7]w/h ) - null(h A 577/\”1 ),)\p - n,uzzljh ):|

1
- le _ §€|: _ Dh;y + h*)\#’)\y + h*)\y’Ay, . npyh*Ap,Ap]

8.2 Gauge Transformations

Let us consider coordinate transformations of the form
at — ot =t + e

(Sacrificed general covariance, considering only coordinate transformations
close to the identity).
Under this transformation

) Ox 0x”

Guv = %@g)\a
But

at =zt —e&(x”)
= (@ — eS(a))
— i eh(3) + O()
Ozt
RO
= G = Guv — €€up — €€y + O(€2>

= 65 - egu,y + 0(62)
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and since

g,uzz = Nuw + eh,uu
= N + E(h;w - gu,u - gu,p)

1.e.

iLW = huw — 2§(u) (Gauge Transformation of hy, )

We can check that

~

R,ul/)\a = Rw/)\p

i.e. the Riemann curvature tensor (and hence the Einstein tensor) are gauge
invariant (to first order).

8.3 The Newtonian Limit

8.4 Gravitational Waves
8.4.1 The Linearised Vacuum Solutions

8.4.2 Energy Transfer
9 Einstein-Maxwell Theory

9.1 The Field Equations

The variables of Einstein-Maxwell theory are:
e The metric g,
e Maxwell tensor F),,
e Stress-energy tensor 7T},
e Current 4-vector J*
If p is the proper electric density and u* the 4-velocity of the charge, then
JH = put

At each point p € M, we construct an orthonormal tetrad

{A(a)“}izo
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where
Ao Ao = —1
MoyAow = —0
A A = 0@)4)

(1=1,2,3)
(6,7 =1,2,3)

Then )\’(“La)/\(b)u = N = diag(—1,1,1,1). The orthonormal tetrad of the

Maxwell tensor are
Flayw = FuXNoAe = —Fo)
These components define the electric and magnetic 3-vectors

0 —-F, —-Fy —FEj

2 | E1 O Bs —B,

(a)(6) — E, —Bs 0 - B,
Es By —B; 0

Ej: (E17E27E3)
B = (317327BS>

Maxwell’s equations in flat space are

These may be written in tensor notation as
Fro e

Ful/,)\ + F)\u,u + FI//\,M =0

where J# = (p, J) ' ‘
FO'L — F

ijk
ij = €7 By,

(i)
(i)

(i=1,2,3)
(i,5,k =1,2,3)

The covariant generalisations of these equations are obtained by the “comma

goes to semi-colon” rule:
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Fr, = "

(Maxwell’s equations in curved spacetime)
F/U/,)\ + F)\u,u + FV)\,,u =0

It is easy to prove that the second equation above is equivalent to (ii) and
hence there exists a 4-potential A, such that

Fuy = Apy — Ay = A — Avy
For source-free regions (J# = 0) in a vacuum, we still have a contribution to

the energy-momentum tensor coming from the Maxwell tensor. The electro-
magnetic Lagrangian density is defined by

9.2 The Reissner-Nordstrom Solution
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