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1 Introduction

1.1 Newtonian Theory of Gravity

For a distribution of matter with density ρ(t, x, y, z), we have a gravitational
potential ϕ.

Field Equation:
∇2ϕ = 4πGρ

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

ϕ is given at points inside the matter distribution by solving Poisson’s
equation with ρ given.

Outside the matter distribution (i.e. in a vacuum) ρ is given by solving

∇2ϕ = 0

Equations of Motion

The equations of motion of a test particle are

xi = xi(t), i = 1, 2, 3

⇒ d2xi

dt2
= −ϕ,i

i.e.
d2x

dt2
= −∂ϕ

∂x

d2y

dt2
= −∂ϕ

∂y

d2z

dt2
= −∂ϕ

∂z

Newtonian theory can be written as a metric theory of gravity, though
the spacetime is complicated to describe geometrically. (Requires additional
structures such as absolute time and simultaneous points forming a Euclidean
3-manifold)

E.g. We can rewrite the equations of motion in the geodesic equation
form.
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Define

xµ = (t, x, y, z)

⇒ ẋµ = (1, ẋi)

ẍµ = (0, ẍi) = (0, ϕ,i)

i.e.
ẗ = 0 and ẍi + ϕ,i = 0

⇒ ẍi + ϕ,iẋ
0ẋ0 = 0

Compare with the geodesic equation

d2xµ

dt2
+ Γµνλ

dxν

dt

dxλ

dt
= 0

We can read off the Newtonian connection

ΓiN00 = ϕ,i and ΓµNνλ = 0 otherwise

⇒ RN
i
0j0 = −ϕ,i and RN

µ
νλρ = 0 otherwise

⇒ RN00 = ∇2ϕ and RNµν = 0 otherwise

i.e. Newtonian spacetime is curved.

1.2 Special Relativity

Describes non gravitational physics such as electrodynamics, standard model
etc.

Discard the notion of absolute time, we introduce a 4D space continuum.
To each event in spacetime, we assign the coordinates (t, x, y, z) and the
infinitesimal interval ds between the infinitesimally separated events satisfies
the Minkowski line element.

ds2 = −dt2 + dx2 + dy2 + dz2

= ηµνdx
µdxν

where
ηµν = diag (−1, 1, 1, 1)

The Minkowski line element is invariant under Lorentz transformations

xµ → xµ
′

2



where
Λµ

µ′Λν
ν′ηµ′ν′ = ηµν

and under arbitrary translations

xµ → xµ + dµ

where dµ are constants. Together, these define the Poincare group.

Null cones of νµν describe light rays in a vacuum.
Time-like geodesics of νµν describe force free motion of massive particles and

τ =

∫
dτ =

∫
(−ηµνdxµdxν)

1
2 =

∫
(1− v2)

1
2dt

is the proper time measured by a standard clock associated with the particle
where the integral is taken along a time like path representing the particle’s
trajectory.

Note Used ‘relativistic’ units c = 1. In non-relativistic units

τ =

∫ (
1− v2

c2

) 1
2

dt

1.3 General Relativitiy (Guiding Principles)

• All observers are equivalent.

⇒ physics should be coordinate independent. (Principle of General
Covariance)
⇒ tensor equations are the most natural mathematical framework.

• Should agree locally with SR

• Admit a class of preferred relatively accelerated world lines representing
free fall.

• Should admit a tensor related to the source of the gravitational field.

• Should explain observed solar system phenonema such as light deflec-
tion, perihelian advance of Mercury, time-delay etc.

General relativity assumes spacetime is a pseudo-riemannian manifold
with signature(- + + +).
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Null geodesics represent light rays.

Timelike geodesics represent paths of freely falling particles.
Locally, we can always choose a chart s.t. gµν = ηµν , i.e. SR valid locally.

The field equations are
Gµν = κT µν

where κ is a constant fixed by the Newtonian limit, Gµν is the Einstein
Tensor, and T µν describes the source of the gravitational field.

2 Einstein Equations from an Action Princi-

ple

We first recall two important results:
(i) Fundamental Lemma of Calculus of Variations: If∫ x2

x1

ϕ(x)η(x)dx = 0

where ϕ(x) is continuous, ad η(x) twice differentiable and vanishes on bound-
ary η(x1) = η(x2) = 0, then ϕ(x) = 0 on [x1, x2]
(ii) Gauss Divergence Theorem:∫

V

∇µχ
µdΩ =

∫
∂V

χµdΣµ

where χµ is a vector density of weight 1. An immediate corollary is∫
V

√
−g∇µX

µdΩ =

∫
∂V

√
−g XµdΣµ

where Xµ is a vector field.

2.1 Principle of Least Action

We start with an action

S =

∫
all space

LdΩ

where L is a Langrangian density of weight 1. We consider small varia-
tions in the metric tensor gµν → gµν + Sgµν which inducs a variation in the
action functional S → S + δS. We also assume the metric variations and its
derivatives vanish at infinity.
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The action principle implies

δS =

∫
all space

LµνδgµνdΩ = 0

where Lµν = δL
δgµν

is a ( 2
0 ) tensor density of weight 1.

2.2 The Stress-Energy-Momentum Tensor

In General Relativity, we must allow for the definition of a tensor related to
the source of the gravitational field, i.e. the action has contributions coming
from the matter fields and the gravitational fields

S = Sµ + Sg =

∫
all space

(Lµ + Lg)dΩ

We define

δSµ =

∫
all space

δLµ
δgµν

δgµνdΩ =
1

2

∫
all space

√
−g T µνδgµνdΩ

where we have defined

T µν =
2√
−g

δLµ
δgµν

which is the stress-energy-momentum tensor.

2.3 Varying the Metric Inverse and the Metric Deter-
minant

In what follows, we shall require δgµν in terms of δgµν . We note that

gµνgµν = δµλ

⇒ δgµνgνλ + gµν∂gνλ = 0

Multiply by gλρ

⇒ δgµνδρν = −gλρgµνδgνλ

⇒ δgµρ = −gλρgµνδgνλ (2.1)

We also require δ
√
−g. We note that for any non-singular matrix aµν , with

inverse aµν and determinant a. Each element has a cofactor given by

Aµν = aνµa
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Also, the determinant is obtained by expanding across any row.

a = A(µ)νa(µ)ν (no sum over µ)

which imples that
∂a

∂aµν
= Aµν = aνµa

Therefore

∂a =
∂a

∂aµν
∂aµν = aνµa∂aµν

a =
√
−g, this gives

∂(
√
−g) =

1

2
(−g)

1
2∂g

= −1

2
(−g)

1
2 ggνµ∂gµν

1

2

√
−ggµν∂gµν

δ(
√
−g) =

1

2

√
−g gµν∂gµν (2.2)

An immediate consequence of equation (2.2) is

(
√
−g),λ =

1

2

√
−g gµνgµν,λ (2.3)

Example 2.3.1

Show that equation (2.3) leads to

∇µ(
√
−g) = 0

√
−g is a scalar density of weight 1. The covariant derivative of a scalar

density of weight a is
∇λχ = χ,λ − ω Γµµλχ

We wish to show that

∇λ(
√
−g) = (

√
−g),λ −

√
−g Γµµλ = 0

We know that
0 = ∇µ gνλ = gνλ,µ − gνρ Γρλµ − gλρ Γρνµ

⇒ gνλ,µ = gνρ Γρλµ + gλρ Γρνµ

6



Equation (2.3) implies:

(
√
−g),λ =

1

2

√
−ggµνgµν,λ

=
1

2

√
−g gµν(gµρ Γρνλ + gνρΓ

ρ
µλ)

=
1

2

√
−g(δνρ Γρνλ + δµρΓρµλ)

=
1

2

√
−g(Γννλ + Γµµλ)

=
√
−g Γµµν

⇒ ∇λ(
√
−g) = 0 �

2.4 The Einstein Hilbert Action

We now consider the contribution to the action coming from the gravitational
field:

Sg =

∫
space

LgdΩ

The only scalar density of weight 1 involving the metric and its derivatives
up to second order is

√
−gR. i.e. we take

Lg = κ−1
√
−gR = κ−1

√
−g gµνRµν

⇒ δSg = κ−1
∫

[δ(
√
−g gµν)Rµν +

√
−g gµνδRµν ]δΩ

We require our expression for δRµν schematically, we have

R = ∂Γ− ∂Γ + ΓΓ− ΓΓ

Thus
δR = ∂(δΓ)− ∂(δΓ) + δΓΓ + ΓδΓ− δΓΓ− ΓδΓ

δΓµνλ is a well defined tensor (even though Γµνλ is not, since this involves the
difference of two connections) we can therefore convert partial derivatives to
covariant derivatives:

δRµ
νλρ = (δΓµνρ);λ − (δΓµνλ);ρ
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The second term of the gravitational action is therefore

κ−1
∫ √
−g
[
(gνρδΓµνρ);µ − (gνρδΓµνµ);ρ

]
dΩ

Now gνρδΓµνρ and gνρΓµνµ are vectors, so we may apply the corollary to the
divergence theorem to convert to a surface integral

κ−1
∫ √
−g(gνµδΓρνµ − gνρδΓµνµ)dΣρ = 0)

The gravitational action reduces to

δSg = κ−1
∫
δ(
√
−g gµν)RµνdΩ

= κ−1
∫

[δ(
√
−g)gµνRµν +

√
−gδgµνRµν ]dΩ

= κ−1
∫ (

1

2

√
−g gλρδgλρgµνRµν −

√
−g gµλδgλρRµν

)
dΩ

= κ−1
∫ √
−g
(

1

2
gλρR−Rλρ

)
δgλρdΩ

= κ−1
∫ √
−g GλρδgλρdΩ

2.5 Einstein’s Field Equations

Putting the results together, we have

δS = δSµ + δSg

=

∫
1

2

√
−g T µνδgµνdΩ− κ−1

∫ √
−g GµνδgµνdΩ

=

∫ √
−g
(

1

2
T µν − κ−1Gµν

)
δgµνdΩ = 0

Since we assume metric variations vanish at the boundary, we must have

1

2
T µν − κ−1Gµν = 0

=⇒ Gµν =
κ

2
T µν

8



In the weak field slow moving approximations, they reproduce Poisson’s
equation only when

κ =
16πG

c4
(D’Inverno)

or, in natural units c = g = 1, κ = 16π.
Gµν = δπT µν Recall the twice contracted Bianchi identities

Gµν
;ν = 0

=⇒ T µν;ν = 0

2.6 Further Remarks on the Field Equations

The history of an isolated body in spacetime is a timelike world tube filled
with the world lines of the constituent particles. Inside the world tube, we
have T µν 6= 0 , and we solve the non vacuum Einstein Field Equations.

Gµν = δπT µν

Outside the world tube, T µν = 0 and we solve the vacuum field equations

Gµν = 0 ⇐⇒ Rµν = 0

Agreement with Newtonian limit requires κ = 16π.

⇒ G = 8πT µν

The world line of a particle xµ(s) with non zero mass is timelike. Taking s
to be arc-length along the curve, we have

gµν
dxµ

ds

dxν

ds
= −1

If the particle is a test particle (doesn’t perturb the geometry of spacetime),
then the world line is a timelike geodesic satisfying

d2xµ

ds2
+ Γµνλ

dxν

ds

dxλ

ds
= 0

where s is now the proper time along the curve.

We take the world line of massless particles to be null geodesics

d2xµ

dr2
+ Γµνλ

dxν

dr

dxλ

dr
= 0

and

gµν
dxµ

dr

dxν

dr
= 0
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3 The Stress-Energy-Momentum Tensor

3.1 Decomposition of the Stress-Energy-Momentum Ten-
sor in an Orthonormal Tetrad

The stress-energy-momentum tensor satisfies

T µν =
1

8π
Gµν and T µν;ν = 0

T µν is a symmetric 4x4 matrix and in general will have 4 mutually orthogonal
eigenvectors; one timelike and three spacelike.
Let uµ be the unit timelike eigenvector of T µν with eigenvalue −ρ, i.e.

T µνuν = −ρ uµ, uµuµ = 1

= −ρGµλuλ

We take timelike worldlines tangent to uµ (i.e. the integral curves of uµ)
to be the worldlines of the constituent particles of the matter distribution.
We take ρ to be the proper density of the matter (density observed in the
rest frame of the constituent particle). uµ is the 4-velocity of a constituent
particle, and it describes the interval motion of the body.

We further define

Sµν = ρuµuν − Tµν = Sµν

Sµνu
ν = ρuµ(uνu

ν)− Tµνuν

= −ρuµ + ρuµ

= 0

uν is a unit timelike eigenvector of Sµν with eigenvalue zero.
Sµν has 6 independent components, and is called the stress tensor of the

matter distribution.
We now let {eµ(1), e

µ
(2), e

µ
(3)} = {eµ(i)}3i−1 be the unit spacelike eigenvectors

of T µν with eigenvalues {p(i)}3i=1, respectively.

Tµνe
ν
(i) = p(i)e(i)µ i = 1, 2, 3 no sum over i

Mutual orthogonality implies

uµe(i)µ = uµe
µ
(i) = 0

Therefore

Sµνe
ν
(i) = ρuµuνe

ν
(i) − Tµνeν(i)

= −ρ(i)e(i)µ i = 1, 2, 3
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Hence {eν(i)}3i=1 are the unit spacelike eigenvectors of Sµν with e-value {p(i)}3i=1.
These are called the 3 principle stresses in the matter distribution.
For pressures p(i) > 0.
For tensions p(i) < 0.

So we have 4 mutually orthogonal eigenvectors satisfying

uµuµ = −1

eµ(i)e(j)µ = δ(i)(j)

eµ(i)uµ = 0

We set uµ = eµ(0), then we have

eµ(0)e(0)µ = −1

eµ(1)e(1)µ = δ(i)(j)

eµ(0)e(1)µ = 0

⇒ eµ(a)e(b)µ = η(a)(b) (a,b=0,1,2,3)

(parenthesis around indices to distinguish tetrad indices from spacetime in-
dices)

⇒ eµ(a)e(b)µ = η(a)(B)

= diag(−1, 1, 1, 1)

⇒ gµνe
µ
(0)e

ν
(b) = η(a)(b)

{eµ(a)}3a=0 is an orthonormal tetrad. η(a)(b) are the components of the metric
tensor on this orthonormal tetrad.

Any vector or tensor may be projected onto the tetrad from, for example,
the components of the curvature tensor in the orthonormal tetrad are

R(a)(b)(c)(d) = Rµνλσeµ(a)e
ν
(b)e

λ
(c)e

σ
(d)

We can also write the metric components gµν in terms of {eµ(a)} following
from the orthonormality conditions:

gµν = η(a)(b)eµ(a)e
ν
(b)

Therefore, we can pass freely from tensor components to tetrad components
and vice-versa.
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Note:
T(0)(0) = Tµνe

µ
(0)e

ν
(0) = Tµνu

µuν = −ρuνuν = ρ

T(0)(i) = Tµνe
µ
(0)e

ν
(i) = Tνµu

µeν(i) = 0 (i=1,2,3)

T(i)(j) = Tµνe
µ
(i)e

ν
(j) = p(i)e(i)νe

ν
(j) = p(i)δ(i)(j)

∴ T(a)(b) = diag(ρ, p(1), p(2), p(3))

gµνe
µ
(a)e

ν
(b) = η(a)(b) (a)

gµνη(a)(b)eµ(a)e
ν
(b) (b)

3.2 Stress-Energy-Momentum Tensor for a Perfect Fluid
and for Dust

Writing (b) out explicitly:

gµν = η(0)(b)eµ(0)e
ν
(b) + η(1)(b)eµ(1)e

ν
(b) + η(2)(b)eµ(2)e

ν
(b) + η(3)(b)eµ(3)e

ν
(b)

= η(0)(0)eµ(0)e
ν
(0) + η(1)(1)eµ(1)e

ν
(1) + η(2)(2)eµ(2)e

ν
(2) + η(3)(3)eµ(3)e

ν
(3)

= uµuν +
3∑
i=1

eµ(i)e
ν
(i)

⇒
3∑
i=1

eµ(i)e
ν
(i) = gµν + uµuν

Recall

Sµνe
ν
(i) = −p(i)e(i)µ

⇒
3∑
i=1

Sµνe
ν
(i)e

λ
(i) = −

3∑
i=1

p(i)e(i)µe
λ
(i)

LHS = Sµν

3∑
i=1

eν(i)e
λ
(i) = Sµν(g

νλ + uνuλ) = Sλµ + 0

⇒ Sµν =
3∑
i=1

p(i)e
µ
(i)e

ν
(i)

For a perfect fluid, the stress is an isotropic pressure (no preferred direction)

p(1) = p(2) = p(3) = p

12



⇒ Sµν = −p
3∑
i=1

eµ(i)e
ν
(i)

⇒ Sµν = −p(gµν + uµuν) (stress tensor for a perfect fluid)

where 4µ is the 4-velocity.

By definition, we have

Tµν = ρuµuν − Sµν
= ρuµuν + p(gµν + uµuν)

Tµν = (ρ+ p)uµuν + pgµν
(stress-energy-momentum tensor for a perfect fluid)

Example 3.2.1

Show that for incoherent matter with proper density ρ, that ρ changes along
integral curves of uµ according to

ρ,µu
µ = ρuµ;µ = 0

Further show that the world lines of the dust particles are timelike geodesics.
We have T µν = ρuµuµ. The conservation equations are

T µν;ν = 0

⇒ 0 = ∇ν(ρu
µuν)

= ρ,νu
µuν + ρ(∇νu

µ)uν + ρuµ∇νu
ν

= uµ(ρ,νu
ν + ρuν;ν) + ρuµ;νu

ν (1)

⇒ 0 = −(ρ,νu
ν + ρuν;ν) + ρuµu

µ
;ν

But uµu
µ
;ν =

1

2
(uµu

µ);ν = 0 (as required)

Sub this result back into (1)

⇒ uµ;νu
ν = 0

⇐⇒ Duu = 0

i.e. the integral curve of the dust particle parallel transports its own tangent
vector ⇒ geodesics.
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4 The Schwarzschild Solution

4.1 Canonical Form of a Spherically Symmetric Line-
Element

We shall consider spherically symmetric solutions to Einstein’s vacuum field
equations.

Spherical symmetry implies that there exists a coordinate system (t, r, θ, ϕ)
say, in which the line-element is invariant under the reflections

θ → θ′ = π − θ
ϕ→ ϕ′ = −ϕ

i.e. no cross terms of the form drdθ, drdϕ, dθdϕ, dθdϕ, dtdθ, dtdϕ and that
each 2D submanifold defined by t =const, r =const, are the 2-spheres.

dl2 = a2(dθ2 + sin2θdϕ2)

Therefore, the spherically symmetric line-element has the form

ds2 = −A(r, t)dt2 + 2B(r, t)dtdr + C(t, r)dr2 +D(t, r)(dθ2 + sin2θdϕ2)

Changing the radial coordinate r → r̃ =
√
D

⇒ ds2 = −Ã(t, r̃)dt2 + 2B̃(t, r̃)dtdr̃ + C̃(t, r̃)dr̃2 + r̃2(dθ2 + sin2θdϕ2)

Introduce a new time coordinate by

dt̃ = I(t, r̃)[−Ã(t, r̃)dt+ B̃(t, r̃)dr̃]

⇒ dt̃2 = I(t, r̃)[Ã2dt2 − 2ÃB̃dtdr̃ + B̃2dr̃2]

⇒ −Ãdt2 + 2B̃dtdr̃ = − dt̃2

I2Ã
+
B̃2

Ã
dr̃2

The line-element now reads

ds2 = − dt2

I2A
+

(
B2

A
+ C

)
dr2 + r2(dθ2 + sin2θdϕ2) (dropped the tildes)

Defining 2 new functions p = p(t, r); q = q(t, r) by

1

I2A
= ep;

B2

A
+ C = eq

Our canonical form of a spherically symmetric line-element reads

ds2 = −epdt2 + eqdr2 + r2(dθ2 + sin2θdϕ2)

14



4.2 The Schwarzschild Solution

To determine the functions p(t, r), q(t, r) we must solve the vacuum field
equations Gµ

ν = 0. The non vanishing components of the Einstein tensor are

Gt
t = −e−q

(
1

r

∂q

∂r
− 1

r2

)
− 1

r2
(i)

G2
t =

e−q

r

∂q

∂t
(ii)

Gr
r = e−q

(
1

r

∂p

∂r
+

1

r2

)
− 1

r2
(iii)

Gθ
θ = Gϕ

ϕ =− 1

2
e−q

(
1

2

∂p

∂r

∂q

∂r
+

1

r

∂q

∂r
− 1

r

∂p

∂r
− 1

2

(
∂p

∂r

)2

− ∂2p

∂r2

)

− 1

2
e−p

(
∂2q

∂t2
+

1

2

(
∂q

∂t

)2

− 1

2

∂1

∂t

∂p

∂t

)
We see that the Einstein equations give us 4 non trivial equations. However,
they are not all independent. The twice contracted Bianchi identitiesGµν

;ν = 0
imply that vanishing of (i) − (iii) implies vanishing of (iv). So we have 3
independent equations

e−q
(

1

r

∂q

∂r
− 1

r2

)
+

1

r2
= 0 (a)

∂q

∂t
= 0 (b)

e−q
(

1

r

∂p

∂r
+

1

r2

)
− 1

r2
= 0 (c)

It is immediately obvioius from (b) that q is a function of r only. i.e q = q(r)
and therefore, (a) becomes a simple ODE:

e−q − e−qrdq
dr

= 1

⇒ d

dr
(re−q) = 1

⇒ re−q = r = const

Taking our constant of integration to be −2M (which we will interpret later)
yields:

e−q =

(
1− 2M

r

)−1
15



To optain p we note that adding (a) and (c) gives

∂p

∂r
+
∂q

∂r
= 0

i.e. p+ q = f(t)

⇒ ep = e−qef(t)

=

(
1− 2M

r

)
ef(t)

Our line element reads

ds2 = −
(

1− 2M

r

)
ef(t)dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2θdϕ2

)
Finally, we may eliminate f(t) by redefining our time coordinate by

e
1
2
f(t)dt = dt′

⇒ t′ =

∫ t

c

e
1
2
f(u)du

which gives (after dropping primes)

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2θdϕ2)

(Schwarzschild Solution)

4.3 Properties of the Schwarzschild Solution

4.3.1 Limiting Cases M → 0, r →∞

It is clear that by setting M = 0 we retrieve the Minkowski metric in spherical
polar coordinates. The parameter M represents the mass/energy and one
may interpret the Schwarzschild solution as the geometry due to a point
mass M at the origin.

We further note that as r → ∞, we again retrieve the Minkowski met-
ric. We did not impose asymptotic flatness! Spherically symmetric vacuum
solutions of Einstein’s equations are necessarily asymptotically flat.
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4.3.2 The Coordinate Singularity at r = 2M

The metric components of Gµν are singular at r = 0, and r = 2M (r = 2GM
C2 in

non natural units). The r = 0 singularity is known as a curvature singularity
and is irremovable. The r = 2M singularity is a coordinate singularity
and may be rmoved by an appropriate coordinate transformation (though
r = 2M still has important physical implications). To see this, we make the
coordinate transformation (t, r, θ, ϕ)→ (u, r, θ, ϕ) where

u = t− r − 2Mlog(r − 2M)

⇒ du = dt−
(

1− 2M

r

)−1
dr

In these coordinates, the metric reads

ds2 = −
(

1− 2M

r

)−1
du2 − 2dudr + r2(dθ2 + sin2θdϕ2)

In coordinates (u, r, θ, ϕ) the components of Gµν are non singular at r = 2M

gµν =


−(1− 2M

r
) −1 0 0

−1 0 0 0
0 0 r2 0
0 0 0 r2sin2θ


We also note that in the standard form of the Schwarzschild metric

gtt = −
(

1− 2M

r

)
< 0, r > 2M

> 0, r > 2M

so that the signature of the metric is (+− ++) for r < 2M . In this region,
r takes on the character of a time coordinate and t a spatial coordinate. We
call the region r > 2M the exterior Schwarzschild geometry, and the region
0 < r < 2M the interior Schwarzschild geometry.

4.4 Birkhoff’s Theorem

Definition: Static space time: A space time is said to be static if there exists
a coordinate system in which the metric components are time- independent
and the metric is time reversal invariant, i.e. there exists a coordinate system
such that gµν,t = 0, and there are no cross terms dtdxi (i = 1, 2, 3)
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Note: The chart independent definition relies on the existence of a time-
like killing vector that is hypersurface orthogonal.

We note that the Schwarzschild solution is static, but we did not impose
this!

Birkhoff’s Theorem: A spherically symmetric vacuum solution in the
exterior region is necessarily static.

Corollary: For a spherically symmetric source in the region r ≤ a, where
a > 2M , the exterior Schwarzschild solution is the unique solution.

5 Solar System Tests of GR

In order for GR to be considered a viable theory of gravitation, it ought
to be able to explain various phenomena in our solar system such as light
deflection

We model the gravitational field by the Schwarzschild solution with M =
M�, the mass of the sun. We model the planets as text particles which move
on timelike geodesics of the Schwarzschild spcacetime. There are 3 classical
tests we shall consider:

5.1 The Gravitational Red-Shift

Let Co and C1 be the timelike world lines of an emitter and receiver of light,
respectively. Let τ be the proper time along them. Let P0 and P1 be the null
worldline of a photon emitted at the even P0 on C0 and received at the event
P1 on C1. Suppose in a short interval dτ0 of proper time on C0, n photons
are emitted and these are received in an interval dτ1 of proper time on C1.
Then,

ν0 = frequency of emission

= no. of photons per unit time

=
n

dτ0

18



Similarly,

ν1 = frequency of reception

=
n

dτ1
⇒ ν0dτ0 = ν1dτ1

⇒ ν0
ν1

=
dτ1
dτ0

If λ0, λ1 are the emitted and received wavelengths respectively, then

λ0 =
1

ν0
λ1 =

1

ν1
(c=1)

⇒ λ1
λ0

=
dτ1
dτ0

A signal is red shifted (loses energy) if λ1 > λ0 or if dτ1 > dτ0.
Suppose the emitter is at rest on the surface of the sun. Then the world

line C0 would be given by

r = a = solar radius

θ = θ0

ϕ = ϕ0

On C0:

ds2 = −
(

1− 2M

a

)
dt2

dτ =
√
−ds2 =

√
1− 2M

a
dt

Similarly, on C1:

dτ1 =

√
1− 2M

r
dt

⇒ λ1
λ0

=
dτ1
dτ0

=

√
1− 2M

r√
1− 2M

a

For M
a

small
(
⇒ M

r
small

)√
1− 2M

r√
1− 2M

a

=

(
1− M

r
+O

(
M

r

)2
)(

1 +
M

a
+O

(
M

a

)2
)

≈ 1 +
M

a
− M

r
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⇒ λ1
λ0
≈ 1 +

M

a
− M

r

Since M
a
> M

r
, we have λ1 > λ0. i.e. signals are red-shifted as they pass

through the gravitational field

z =
∆λ

λ0
=
λ0 − λ1
λ0

= 1− λ1
λ0

= −
(
M

a
− M

r

)
(or −GM

c2

(
1
a
− 1

r

)
in standard units)

Note: This is not a Doppler shift since there is no relative motion between
observers.

5.2 Planetary Motion and Perihelian Advance of Mer-
cury

5.2.1 Geodesic Equations

We treat planets as test particles moving among timelike geodesics of Schwarzschild
spacetime. Line element

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdϕ2)

L = gµν ẋ
µẋν = −

(
1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1
ṙ2 + r2(θ̇2 + sin2 θϕ̇2) = −1

(5.1)

ṫ =
dt

d(proper time)

E − L =
d

dτ

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0
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µ = t :
d

dτ

[
− 2

(
1− 2M

r

)−1
ṙ

]

⇒
(

1− 2M

r

)
ṫ = E

µ = r : 0 =
d

dτ

[(
1− 2M

r

)−1
ṙ

]
−

[
− 2M

r2
ṫ2 −

(
1− 2M

r

)−2
2M

r2
ṙ2 + 2r(θ̇2 + sin2 θϕ̇2)

]

⇒ r̈ =
M

r2

(
1− 2M

r

)−1
ṙ2 − (2− 2M)(θ̇2 + sin2 θϕ̇2) +

M

r2

(
1− 2M

r

)
ṫ2 = 0

µ = θ : 0 =
d

dτ
(2r2θ̇)− 2r2 sin θ cos θϕ̇2

⇒ θ̈ +
2

r
ṙθ2 − sin θ cos θϕ̇2 (iv)

µ = ϕ : 0 =
d

dτ
(2r2 sin2 θϕ̇)

⇒ r2 sin2 θϕ̇ = h

5.2.2 Propagation Equation for θ(τ)

(iv) ⇒ π
2

is a solution. Assume θ(0) = π
2
, θ̇(0) = 0⇒ θ̈(0) = 0.

Differentiating (iv) gives θ̇(0) = 0.
⇒ all derivatives of θ vanish.
Consider τ = τ1 > 0 close to τ = 0, then

θ(τ0) = θ(0) + θ̇(0)τ1 +
1

2
θ̈(0)τ 21 +

1

3!

...
θ (0)τ 31 + ...

θ̇(τ1) = θ̇(0) + θ̈(0)τ1 +
1

2

...
θ (0)τ 21 + ...

⇒θ(τ1) =
π

2
, θ̇(τ1) = 0

Therefore we have shown that assuming θ(0) = π
2
, θ̇(0) = 0, then it remains

true for some nearby point. By induction, it is true for all values of τ ,
θ(τ) = π

2
, θ̇(τ) = 0.

⇒ only consider equatorial plane. We now have(
1− 2M

r

)
ṫ = E
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r2ϕ̇ = h

ṙ2 +
h2

r2

(
1− 2M

r

)
− E2 +

(
1− 2M

r

)
= 0

Substitution: h = r0
r

ṙ =
dr

dτ
=
dr

du

du

dτ

=
dr

du

du

dϕ

dϕ

dτ

=
du

dϕ

(
−r

2

r0

)
ϕ̇

= − h
r0

du

dϕ

u2

r20

(
du

dϕ

)2

+
h2

r20
u2
(

1− 2M

r0

)
− E2 + 1− 2Mu

r0
= 0

⇒
(
du

dϕ

)2

+ u2 =
r20
h

(E2 − 1) +
2Mur0
h2

+
2Mu3

r0

(omitting 2Mu3

r0
, we retrieve the Newtonian result)

Differentiation gives the more familiar form

d2u

dϕ2
+ u =

Mr0
h2

+
3Mu2

r0
(Relativistic Binet Equation)

5.2.3 Newtonian Result

Ignoring 2Mu3

r0
and writing 2M

r0
= ε� 1

⇒
(
duN
dϕ

)2

+ u2N =
r20
h

(E2 − 1) + ε
uNr

2
0

h2

This can be solved exactly by writing the solution as uN + u0 + v., where u0
is a constant chosen to eliminate the term linear in v.

⇒
(
dv

dϕ

)2

+ u20 + 2u0v + v2 =
r20
h2

(E2 − 1) +
εr20
h2

(u0 + v)

u0 is chosen such that

2u0 =
εr20
h2
⇒ u0 =

1

2

εr20
h2
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⇒
(
dv

dϕ

)2

+ v2 =
r20
h2

(E2 − 1)− u20 +
εr20u0
h2

= k2

⇒ v(ϕ) = k sin(ϕ− ϕ0)

⇒ uN = u0(1 + e sin(ϕ− ϕ0))

with e = k
u

(defines ellipse for 0 < e < 1)(
du
dϕ

)2
+ u2 =

r20(c
2−1)
h2

+ 2Mur0
h2

+ 2Mu3

r0

Newtonian result obtained by ignoring u3 term. Solved with Ansatz

uN = u0 + v

= u0(1 + esin(ϕ− ϕ0))

ellipse with period 2π

5.2.4 Shape of General Relativistic Orbit

Again we take u = u0 +v where u0 is a constant chosen to eliminate the term
linear in v.
⇒ This leads to requiring that u0 satisfies the quadratic

3εu20 − 2u0 + ε
r20
h2

= 0

where ε = 2M
r0
� 1 and we choose the solution that is closest to the Newtonian

result. Then v satisfies(
dv

dϕ

)2

+ u20 + v2 = r20
(c2 − 1)

h2
+ 2

Mr0u0
h2

+ εu30 + 3εu0v
2 + εv3

Ignoring the v3 term and collecting constants(
dv

dϕ

)2

+ v2(1− 3εu0) = k2

which is easily solved, yielding

v =
k

ω
sinω(ϕ− ϕ0)
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where ω2 = 1− 3εu0. i.e. the shape of the orbit as predicted by relativity is
an ellipse with a periodicity

2π

ω
≈ 2π(1 +

3

2
εu0)

the periolian advance is given by (in standard units)

∆ϕ = 3πεu0

= 6π
GM

c2

(
u0
r0

)
To approximate u0

r0
we use the fact that each orbit is approximately Newto-

nian and we know for an ellipse

rmax = a(1 + e) rmin = a(1− e)

where a is the semi-major axis

(uN)max = u0(1 + e) =
r0
rmin

=
r0

a(1− e)
(uN)min = u0(1− e) =

r0
rmax

=
r0

a(1 + e)

⇒ 2u0
r0

=
1

a(1− e2)
+

1

a(1− e2)
=

2

a(1− e2)

∴ ∆ϕ =
6πGM

c2a(1− e2)

For Mercury, this predicts a shift of 43” per century while the observed value
is 43”.1± 0.5

5.3 Light Reflection

We consider photon paths in the Schwarzschild gravitational field. We de-
scribe the photons by null geodesics

ẍµ + Γµνλẋ
µẋλ = 0

and
gµν ẋ

µẋν
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where ẋµ = dxµ

ds
is an affine parameter.

Again, without loss of generality, we take the photon path to be in the
equatorial plane θ(s) = π

2
for all s. Our geodesic equations are(

1− 2M

r

)
ṫ = E

r2ϕ̇ = h

r̈ − M2

r2

(
1− 2M

r

)−1
ṙ2 − (r − 2M)ϕ̇2 +

M

r

(
1− 2M

r

)
ṫ2 = 0

The 1st integral of the motion

0 = gµν ẋ
µẋν

= −
(

1− 2M

r

)
ṫ2 + r2ϕ̇2 +

(
1− 2M

r

)−1
ṙ2

Using the fact that

ṙ =
dr

dϕ
ϕ̇ =

h

r2
dr

dϕ

and the conservation equations to simplify(
1− 2M

r

)−1
h2

r4

(
dr

dϕ

)2

+
h2

r2
− E2

(
1− 2M

r

)−1
= 0

Again, we take u = r0
r

⇒
(
du

dϕ

)2

+ u2 − 2Mu3

r0
=
E2r20
h2

or (
du

dϕ

)2

+ u2 − εu3 =
E2r20
h2

where ε = 2M
r0
� 1

Take u = u0 + εu, and subbing into our equation and equating equal orders
of ε gives (

du0
dϕ

)2

+ u20 =
r20
d2

where d =
h

E
(A)

and

2

(
du0
dϕ

)(
du1
dϕ

)
+ 2u0u1 − u30 = 0 (B)
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Equation (A) is easily solved

u0 =
r0
d

sinϕ taking ϕ0 = 0

Then subbing this into equation (B)

cosϕ

(
du1
dϕ

)
+ sinϕu1 −

1

2

r20
d2

sin3 ϕ = 0

Try a solution of the form

u1 = A+B sinϕ+ C cos2 ϕ

⇒ B + sinϕ(A− C) + sin3 ϕ(C − 1

2

r20
d2

) = 0

⇒ B + 0, A = C,C =
1

2

r20
d2

⇒ u1 =
1

2

r20
d2

(1 + cos2 ϕ)

⇒ u =
r0
d

sinϕ+
ε

2
(a+ cos2 ϕ)

We require the total deflection in the asymptotic regions r → ∞(u → 0).
r →∞, as ϕ→ −ϕ1

r →∞, as ϕ→ π + ϕ2

subbing these into our equation gives

0 =
r0
d

(−ϕ1) + ε
1

2

r20
d2

(1 + 1 +O(ε2))

⇒ ϕ1 =
r0
d
ε

0 = −r0
d
ϕ2 + ε

1

r

r20
d2

(1 + 1 +O(ε2))

⇒ ϕ2 =
r0
d
ε

∴ ∆ϕ = ϕ1ϕ2 =
2r0t

d
=

4M

d

∆ϕ =
4GM

c2d
(total deflection angle (in standard units))

Take M = M�, d = R�, gives ∆ϕ = 1”.75. Observed in 1919 by Sir Arthur
Eddington during a solar eclipse.
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6 Black Holes

6.1 Radial In-falling Photons

Consider an observer at rest relative to the source of the Schwarzschild grav-
itational field. The observer’s world line is r = constant, θ = constant, ϕ =
constant and

dτ 2 =

(
1− 2M

r

)
dt2

where τ is proper time

∴
dτ

dt
=

(
1− 2M

r

) 1
2

For r � 2M , then along the observer is world line

dτ

dt
= 1 ⇒ t = τ(choosing τ(0) = 0)

Therefore, t corresponds to proper time measured by an observer at rest
at infinity. How does such an observer ‘see’ a radially in-falling photon as
r → 2M?

The world line of a radially in-falling photon satisfies(
1− 2M

r

)−1
dr2 =

(
1− 2M

r

)
dt2

⇒ dt

dr
= ±

(
1− 2M

r

)−1
where + represents an outgoing photon and - represents an ingoing pho-

ton.
Solving gives

t = ±(r + 2M log(r − 2M) + C)

⇒ u = t∓ (r + 2M log(r − 2M))

= constant along radially null geodisics.

Clearly, as r → 2M, t → ∞. i.e. an observer at infinity will never ‘see’
the photon cross the horizon (r = 2M), according to this observer, it takes
an infinite amount of time to reach r = 2M .

Note: As r →∞, we have dt
dr

= ±1⇒ t = ±r + c.
i.e. as r → ∞, ingoing and outgoing null rays are straight lines with angle
±45◦.
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6.2 Radially In-falling Particles

A radially in-falling particle will move on a timelike geodesic given by(
1− 2M

r

)
ṫ = E

−
(

1− 2M

r

)
ṫ2 =

(
1− 2M

r

)−1
ṙ2 = −1

If we consider a particle initially at rest at infinity

⇒ E = 1

Then the geodesic equations give

−
(

1− 2M

r

)−1
+

(
1− 2M

r

)−1
ṙ2 = −1

⇒
(
dτ

dr

)2

=
r

2M

⇒ dτ

dr
= −

( r

2M

) 1
2

(minus sign reflects the fact that the particle is ingoing.
Integrating, we obtain

τ =
2

3(2M)
1
2

(r
3
2
0 − r

3
2 )

where the particle is at r0 at τ = τ0. Now the proper time to reach the
singularity r = 0 is

τ = τ0 +
2

3(2M)
1
2

r
3
2
0

which is finite.
According to his clock, he passes through the coordinate singularity r =

2M continuously, and reaches the curvature singularity r = 0 in a finite
proper time.

If we now describe the motion in terms of coordinate time t (time mea-
sured by an observer at rest at infinity), then

dt

dr
=
ṫ

ṙ
=

√
r

2M

(
1− 2M

r

)
(E=1)

Integrating, we obtain
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t− t0 = − 2

3(2M)
1
2

(r
3
2 − r

3
2
0 + 6Mr−

1
2 − 6Mr

1
2
0 )

+ 2M log

(
(r

1
2 + (2M)

1
2 )(r

1
2
0 − (2M)

1
2 )

(r
1
2
0 + (2M)

1
2 )(r

1
2 − (2M)

1
2 )

)

t → ∞, as t → 2M . So again, an observer at infinity never ‘sees’ the
particle cross the horizon despite the fact that according to a clock attached
to the particle, it reaches the singularity in an infinite time. According to
his clock, he passes through the coordinate singularity r = 2M continuously,
and reaches the curvature singularity r = 0 in a finite proper time.

The path of a photon is always tangent to the local radial null cone and
here two photon paths passing through P define the local null. The paths of
massive particles are always inside the null cone. In there (t, r) coordinates,
the local radial null cones are closing as r → 2M . For r < 2M , the null cones
tip over and we can see that an observer cannot remain at rest but is forced
to move towards the singularity.

6.3 The Kruskal Extension of the Schwarzschild Man-
ifold

It is clear that the coordinates (t, r) are a bad choice for wollowing an in-
falling particle.

We look for new coordinates (u, v) in terms of which the local radial null
cones do not close as r → 2M . We employ Kruskal coordinates:

u =
( r

2M
− 1
) 1

2
e

r
4M cosh

(
t

4M

)

v =
( r

2M
− 1
) 1

2
e

r
4M sinh

(
t

4M

)
du =

r

8M2

( r

2M
− 1
)− 1

2
e

r
4M cosh

(
t

4M

)
dr+

1

4M

( r

2M
− 1
) 1

2
e

r
4M sinh

(
t

4M

)
dt

dv =
r

8M2

( r

2M
− 1
)− 1

2
e

r
4M sinh

(
t

4M

)
dr+

1

4M

( r

2M
− 1
) 1

2
e

r
4M cosh

(
t

4M

)
dt

⇒ du2 − dv2 =
r

32M3
e

r
2M

[
−
(

1− 2M

r

)
dt2 +

(
1− 2m

r

)−1
dr2
]
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⇒ ds2 =
32M3

r
e−

r
2M (du2 − dv2) + r2(dθ2 + sin2 θdϕ2)

where r = r(u, v) is defined implicitly by

u2 − v2 =
( r

2M
− 1
)
e

r
2M

Remarks:

1. The line element is singular only at r = 0.

2. r = 0 ⇐⇒ u2−v2 = −1 hyperbola with u, v as Cartesian coordinates.

r = constant > 2M ⇐⇒ u2 − v2 = positive constant
r = constant < 2M ⇐⇒ u2 − v2 = negative constant

3. Null radial geodesics are now defined by dv
du

= ±1. i.e. in R(u, v) are
Cartesian coordinates with local null cones as straight lines at 45◦. This
is because (u, v) was chosen to satisfy

−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 = F (u, v)(du2 − dv2)

4.

tanh

(
t

4M

)
=
v

u
.

t = constant ⇒ v = constant.u

5. r = 2M ⇐⇒ u = ±v.

Conclusions from Space-Time Diagram in Kruskal Coordinates

• r = 2M is a null-cone (null hypersurface) separating I and III from II
and IV respectively.

• Massive particles and photons can cross the radius r = 2M from I to II
but not from II to I. Hence, r = 2M is a ‘one-way membrane’ known as
the event horizon; it is the boundary of the Schwarzschild black hole.

• Region I corresponds to the exterior Schwarzschild solution (r > 2M),
describing the gravitational field outside a spherically symmetric object
of mass M .
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• Region II represents a black hole solution. Observers inside this region
cannot send signals to an observer in region I and all observers in this
region are destined for the future singularity r = 0.

• Region III is a universe whose geometry is identical to that of Region
I, though the two regions are causally disconnected, i.e. no communi-
cation either way is possible.

• Region IV is the Schwarzschild white hole, the time reversal of a black
hole. Generally not thought to be physical since “nature abhors naked
singularities.”

7 Cosmology

7.1 The Cosmological Principle:

Our position in the univers, with respect to the largest scales, is in no sense
preferred. Extends the familiar Copernician Principle which states that our
position in the solar system is in no sense preferred.

The cosmological principle is modelled by asserting that the universe is
globally spatially isotropic. (globally isotropy implies homogeneity.)

Definition Homogeneous: For each space-like hypersurface, there are no
privileged points, i.e. each point is a centre of spherical symmetry.

Definition Isotropy: For each space-like hyperspace, there are no privileged
directions about any point.

7.2 Kinematics of the Continuum

7.2.1 Connecting Vectors

We consider the spacetime of the universe to be filled with the trajectories of
massive particles (the galaxies) forming a congruence of timelike world lines
with one world line passing through each point of the space time.

Let Σ be a space like hypersurface, then the normal to Σ is timelike and
vectors tangent to Σ are spacelike.

Let {ξi}3i=3 be an intrinsic coordinate system on Σ. Since there is a line
of the congruence passing through every point of Σ, we can use the points of
Σ to label the lines of the congruence.
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The congruence is timelike, so we use proper time τ as parameter along
each worldline. Then for {xiµ}3µ=0 a chart on the manifold, the parametric
equations of the congruence are

xµ = xµ(τ, ξi); µ = 0, ..., 3; i = 1, ..., 3.

A particular line of the congruence is given by

ξi = constants; xµ = xµ(τ, ξi),

the unit tangent to this line is

uµ =
∂xµ

∂τ
; uµuµ = −1

the 4-velocity of particle with worldline ξi.
Consider now two neighbouring lines of the congruence ξi and ξi + δξi.

ζµ is an infinitesimal connecting vector defined along ξi.

ζµ connects points of equal parameter value τ on ξi and ξi + δξi

⇒ ζµ = xµ(τ, ξi + δξi)− xµ(τ, ξi)

Taylor expanding for small δξj.

ζµ =
∂xµ(τ, ξi)

∂ξj
δξj

So see how ζµ varies along the line of congruence ξi, we differentiate with
respect to τ

∂ζµ

∂τ
=

∂

∂t

(
∂xµ(τ, ξi)

∂ξj

)
δξj

=
∂

∂ξj

(
∂xµ(τ, ξj)

∂τ

)
δξj

=
∂uµ

∂ξj
δξj
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But

∂uµ

∂ξj
=
∂uµ

∂xν
∂xν

∂ξj

⇒ ∂ζµ

∂τ
= uµ,ν

∂xν

∂ξj
δξj

= uµ,νζ
ν

⇐⇒ ∂ζµ

∂xν
∂xν

∂τ
= uµ,νζ

ν

⇐⇒ ζµ,νu
ν = uµ,νζ

ν

⇐⇒ [ζ, u]µ = 0

We also know that

Xµ
,νY

ν − Y µ
,ν X

ν = Xµ
;νY

ν − Y µ
;ν X

ν

∴ The propagation equation may be rewritten

ζµ;νu
ν = uµ;νζ

ν

⇐⇒ ζ̇µ = uµ;νζ
ν

where

ζ̇µ =
Dζµ

dτ
= ζµ;νu

ν

We may also define the orthogonal connecting vector

ηµ = hµνζ
ν

where hµν = δµν + uµuν is the projection tensor which projects vectors or-
thogonal to uµ.

hµν = δµν + uµuν

⇐⇒ hµν = gµν + uµuν

⇐⇒ hµν = gµν + uµuν

It is straight forward to verify that hµν satisfies

i. hµνu
ν = 0

ii. hµνh
ν
λ = hµλ
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iii. hµµ = 3

Arbitrary tensors may be projected onto the plane orthogonal to uµ, e.g. for
a ( 2

0 ) tensor Qµν , its projection orthogonal to uµ is

Q̃µν = hµλh
ν
ρQ

λρ

It is trivial to see that
uµQ̃

µν = 0 = uνQ̃
µν

7.2.2 Shear, Stress and Expansion

The 3-velocity of the line of congruence ξi + δξi relative to ξi is defined as

vµ = hµν η̇
ν

(3-velocity since vµuµ = 0 implies only 3 independent components)

Lemma 7.2(a)

vµ = Aµνη
ν where Aµν = uµ;λh

λ
ν
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Proof

vµ = hµν η̇
ν

ην = hνλζ
λ

= (δνλ + uνuλ)ζ
λ

= ζν + uνuλζ
λ

⇒ η̇ν = ζ̇ν + u̇νuλη
λ + uν(uλζ

λ).

= uν;λζ
λ + u̇νuλζ

λ + uν(uλζ
λ).

⇒ vµ = hµν η̇
ν

= hµνu
ν
;λζ

λ + hµν u̇
νuλζ

λ + hµνu
ν(uλζ

λ).

= (δµν + uµuν)u
µ
;λζ

λ + (δµν + uµuν)u̇
νuλζ

λ

= uµ;λζ
λ + uµ(uνu

ν
;λ)ζ

λ + uµ;ρu
ρuλζ

λ + uµuνu
ν
;ρu

ρuλζ
λ

= uµ;λζ
λ + uµ;ρu

ρuλζ
λ

= uµ;ρδ
ρ
λζ

λ + uµ;ρu
ρuλζ

λ

= uµ;ρ(δ
ρ
λ + uρuλ)ζ

λ

= uµ;ρh
ρ
λζ

λ

= uµ;ρη
ρ

= uµ;ρh
ρ
νη

nu

= Aµνη
ν

where Aµν = uµ;ρh
ρ
ν

⇐⇒ Aµν = uµ;ρh
ρ
ν �

Lemma 7.2(b)

Aµ may be written as

Aµν = uµ;λh
λ
ν = σµν + ωµν +

1

3
θhµν

where

σµν = u(µ;ν) + u̇(µuν) −
1

3
uλ;λhµν

is a symmetric, trace free ( 0
2 ) tensor known as the shear tensor.

ωµν = u[µ;ν] + u̇[µuν]

is an antisymmetric ( 0
2 ) tensor known as the vorticity tensor. θ = uλ;λ is the

expansion or contraction of the congruence.
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Proof

RHS = u(µ;ν) + u̇(µuν) −
1

3
uλ;λhµν + u[µ;ν] + u̇[µuν] +

1

3
uλ;λhµν

= uµ;ν + u̇µuν

= uµ;λδ
λ
ν + uλuµ;λuν

= uµ;λ(δ
λ
ν + uλuν)

= uµ;λh
λ
ν = Aµν �

Conclusion

In going from τ to τ + δτ along ξi, the 3-space of orthogonal connecting
vectors undergoes a linear transformation or

1. a shear, or distortion

2. a twist, or rotation

3. an expansion, or contraction.

7.3 The Friedman-Robertson-Walker (FRW) Metric

7.3.1 Isotropy

The model universe is a spacetime manifold (M, g) filled with a congruence
K of timelike worldlines k ∈ K. We assume spatial isotropy.

Definition: If (M, g) is isotropic with respect to a k ∈ K, then all
directions orthogonal to k at each point of k are equivalent, i.e. if Ω is a
hypersurface orthogonal to the tangent to k, then there are no preferred
directions in Ω.

Consequence of isotropy of k

1. u̇µ = 0 along k, i.e. k is a geodesic.

Proof

uµuµ = −1

⇒ uµu̇µ = 0
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⇒ at each point of k, u̇µ is a special vector orthogonal to uµ.
Isotropy ⇒ no such vector exists ⇒ uµ = 0.

2. σµν = 0 along k.

Proof

σµν is a 4x4 symmetric trace-free matrix which is orthogonal to uµ in
both of its indices.

σµνu
µ = σµνu

ν = 0

σµν has 4 mutually orthogonal eigenvectors, one timelike and 3 space-
like, where uµ is the unit timelike eigenvector with eigenvalue 0. Hence,
the 3 unit spacelike eigenvectors constitute 3 unique directions orthog-
onal to uµ (i.e. lying in the hypersurface Ω) at each point of k. By
isotropy, no such directions ⇒ σµν = 0.

3. ωµν = 0 along k.

Proof

Let ε̃µνλρ be the Levi-Civita symbol and take εµνλρ =
√
−gε̃µνλρ as the

Levi-Civita tensor. We define the vorticity vector by

ωµ = εµνλρu
νωλρ

ωµu
µ = 0. There is a unique vector orthogonal to uµ.

Isotropy ⇒ ωµ = 0⇒ ωµν = 0.

4. hµθ,µ = 0 along k.

Proof

uµ(hµνθ,µ) = 0, hence hµνθ,µ is a unique vector orthogonal to uµ.
Isotropy ⇒ hµνθ,µ = 0.

Definition: Isotropic universe:(M, g) is spatially isotropic if it is isotropic
with respect to all k ∈ K. Since a worldline k passes through every
point of M , this implies:

u̇µ = 0

σµν = 0

ωµν = 0

hµνθ,µ = 0
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7.3.2 Comoving Coordinates

Isotropy implies
ωµν = u[µ;ν] + u̇[µuν] = 0

and
u̇µ = 0

⇒ u[µ;ν] = 0

⇐⇒ uµ,ν = uν,µ

⇐⇒ there exists a scalar function t(xµ) such that uµ = −t,µ
⇐⇒ uµdx

µ = −t,µdxµ = −dt

⇒ the worldlines k ∈ K intersect the t =constant hypersurfaces orthogonally.
Since

uµ =
∂xµ

∂τ

and

dt

dτ
=

∂t

∂xµ
∂xµ

∂τ
= t,µu

µ

= −uµuµ

= 1

⇒ τ = t (taking the integration constant to be zero)

Hence t is the proper time along each k ∈ K, this is known as cosmic
time.

Taking {xµ} = (t, xi) to be the coordinates on M , then xi =constant
label each k ∈ K. In these coordinates

uµ =
∂xµ

∂τ
=
∂xµ

∂t
= δµt

⇒ uµ = (1, 0, 0, 0).

Since the 4-velocity in these coordinates has no spatial components, we say
the coordinates are “co-moving” with the matter.

Galaxies move on integral curves of the vector field ∂
∂t

.
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7.3.3 The Spacetime Metric

We have shown that isotropy yields

uµgµνu
ν = −t,µ

which, in co-moving coordinates, implies

gµνδ
ν
t = −t,µ = −δtµ

⇒gµt = −δtµ
⇒gtt = −δtt = −1

gti = 0 i = 1, 2, 3.

The metric reads
ds2 = −dt2 + gij(t, x

i)dxidxj

Next we consider
hµνθ,µ = 0

where
hµν = δµν + uµuν

wich in comoving coordinates gives

(δµν − δ
µ
t δ

t
ν)θ,µ = 0

⇒θ,ν = δtνθ,t

⇒θ,i = 0

⇒θ = θ(t)

Finally, we have that
σµν = 0

The orthogonal connecting vector of two neighbouring galaxies xµ and xµ +
δxµ in comoving coordinates is

ηµ = (0, δxi).

Let l be the invariant length of this vector

l2 = gµνη
µην = gijδx

iδxj (i, j = 1, 2, 3)

⇒ 2ll̇ =
∂gij
∂t

δxi∂xj (A)
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We may also write ηµ = lnµ where nµ is a unit spacelike vector. Recall that

hµν η̇
ν = Aµνη

ν

where

Aµν = σµν + ωµν +
1

3
θhµν

In our case σµν = 0.

⇒ hµν η̇
ν = ωµνη

ν +
1

3
θhµνη

ν

⇒ hµν l̇n
ν + hµν lṅ

ν = ωµν ln
ν +

1

3
θhµν ln

ν

Multiplying by nµ and using nµnµ = 1 and nµuµ = 0

l̇ + (δµν + uµuν)lnµṅν = ωµν lnµnν +
1

3
θ(δµν + uµuν)lnµn

ν

δµν + uµuµ = 0 (since ṅνnν = 0)

ωµν lnµn
ν = 0 (since ωµν anti-symmetric, nµn

ν symmetric)

⇒ l̇ =
1

3
θl (B)

where θ = θ(t) in comoving coordinates.

Subbing (B) into (A)

2

3
θ(t)l2 =

∂gij
∂t

δxiδxj

⇒ 2

3
θ(t)gijδx

iδxj =
∂gij
∂t

δxiδxj

⇒ 2

3
θ(t)gij =

∂gij
∂t

A separable solution of the form gij = hij(x
i)l2(t) satisfies this equation, so

the metric now reads

ds2 = dt2 + l2(t)hij(x
i)dxidxj

where l(t) satisfies

l̇ =
1

3
θ(t)l

and hij is a positive definite metric on a Riemannian 3-manifold which is
isotropic at each of its points. This is consistent with asserting that hij is
a positive definite 3-metric of constant curvature. There are only 3 distinct
possibilities: R3,S3,H3.
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1. Flat Space R3: This is the familiar infinite Euclidean geometry

(3)dx2 = hijdx
idxj

= dx2 + dy2 + dz2

= dr2 + r2(dθ2 + sin2 θdϕ2)

2. Three-Sphere S3: The compact space of constant curvature. To visu-
alise this, we embed S3 in R4 with points on S3 satisfying

x2 + y2 + z2 + w2 = a2

⇒(3) ds2 = dx2 + dy2 + dz2 + dw2

= dx2 + dy2 + dz2 +
(xdx+ ydy + zdz)2

a2 − x2 − y2 − z2

which, in spherical polar coordinates, yields

(3)ds2 = dr2 + r2(dθ2 + sin2 θdϕ2) +
r2dr2

a2 − r2

=
dr2

1− r2

a2

+ r2(dθ2 + sin2 θdϕ2)

0 ≤ r ≤ a

0 ≤ θ ≤ π

0 ≤ ϕ ≤ 2π

3. Hyperbolic Space H3: The infinite space of constant negative curvature.
To visualise this, we embed H3 in a 4 dimensional Lorentzian space

x2 + y2 + z2 − w2 = −a2

which yields

(3)ds2 =
dr2

1 + r2

a2

+ r2(dθ2 + sin2 θdϕ2)

Scaling the ‘radial’ variable

r → ra

then we may rewrite the general form of the 3pmetric of constant cur-
vature as

(3)ds2 = a2
[ dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
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where

k = +1 S3 (closed)

0 R3 (flat,open)

−1 H3 (open)

The 4D metric in comoving coordinates is therefore

ds2 = −dt2 + l2(t)a2
[ dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
Finally, taking a(t) = l(t)a

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
The Friedmann-Robertson-Walker metric, where a(t) satisfies

ȧ

a
=

1

3
Θ(t)

and is known as the scale factor.

Another particularly useful form of the FRW metric is obtained by the
transformation

dχ2 =
dr2

1− kr2

⇒ ds2 = −dt2 + a2(t)[dχ2 + f 2(χ)(dθ2 sin2 θdϕ2)]

where

f(χ) = sinχ 0 < χ < π S3

χ 0 ≤ χ∞ R3

sinhχ 0 ≤ χ <∞ H3

The scale factor a(t) is determined by the Einstein field equations.

7.4 Cosmological Red-Shift and Hubble’s Law

Consider light emitted by a galaxy with world line

r + r0, θ = θ0, ϕ = ϕ0
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Suppose this light is received by our galaxy whose world line is

r + r1, θ = θ1, ϕ = ϕ1

Along photon worldline P0P1 and Q0Q1

ds = 0, θ = θ0, ϕ = ϕ0

⇒ dt2

a2(t)
=

dr2

1− kr2

Assuming, without loss of generality, that r1 > r0 and a(t) > 0

⇒ dt

a(t)
=

dr√
1− kr2

If n photons are emitted by r = r0 in proper time dt0, and received by r = r1
in proper time dt, then the emitted frequency is ν0 = n

dt0
while the received

frequency is ν1 = n
dt1

∴
ν0
ν1

=
λ1
λ0

=
dt1
dt0

Integrating along P0P1 and Q0Q1 gives∫ t1

t0

dt

a(t)
=

∫ r1

r0

dr√
1− kr2

and ∫ t1+dt1

t0+dt0

dt

a(t)
=

∫ r1

r0

dr√
1− kr2

⇒
∫ t1

t0

dt

a(t)
=

∫ t1+dt1

t0+dt0

dt

a(t)

writing

a−1(t) =
df(t)

dt

⇒ f(t1)− f(t0)− f(t1 + dt1) + f(t0 + dt0) = 0

Taylor expanding, keeping only first order terms(
df

dt

)
t=t1

dt1 +

(
df

dt

)
t=t0

dt0 = 0

⇒ dt1
dt0

=
a(t1)

a(t0)
=
λ1
λ0

43



Observations of distant galaxies⇒ a red-shift

λ1 > λ0

⇐⇒ a(t1) > a(t0)

⇐⇒ ȧ > 0 (in the present epoch)

∴ Θ =
3ȧ

a
> 0

⇒ the universe is expanding.
Galaxies are receeding away from one another at a rate proportional to

the distance between them-Hubble’s Law (1929).
Hubble Parameter

H(t) =
ȧ(t)

a(t)

7.5 Einstein’s Equations

The scale factor a(t) is determined by considering Einstein’s field equations
with a cosmological constant term

Rµν −
1

2
Rgµν + Λgµν = 8πTµν

7.5.1 Matter Content of the Universe

Consistent with spatial homogeneity and isotropy in a comoving frame with
nµ = (1, 0, 0, 0) the e.m.s. tensor takes the form of a perfect fluid

Tµν = (ρ+ p)uµuν + pgµν

Also, isotropy ⇒ ρ = ρ(t), p = p(t).
Conservation of e.m. T µν,ν = 0 gives constraint

ρ̇+
3ȧ

a
(ρ+ p) = 0

where

ρ = proper energy density

p = isotropic pressure

To solve this, we further require an equation of state, we assume a barotropic
fluid of the form

P = (γ − 1)ρ (γ= a constant)

Two common cases are matter/radiation domination:
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1. Dust: γ = 1, p = 0, i.e. pressureless not interacting matter

⇒ ρ̇

ρ
=
−3ȧ

a

⇒ ρ ∝ a−3

⇒ ρ =
ρ0a

3
0

a3

2. Radiation: γ = 4
3
, p = ρ

3

⇒ ρ̇

ρ
=
−4ȧ

a

⇒ ρ ∝ a−4

⇒ ρ =
ρ0a

4
0

a4
(dilution of energy to expansion and redshift)

7.5.2 The Friedman and Raychauduri Equations

Non-zero components of the FRW-metric:

Rtt = −3
ä

a

Rij =
[ ä
a

+ 2

(
ȧ

a

)2

+ 2
k

a2

]
gij

R = gttRtt + gijRij

= 6
[ ä
a

+ 2

(
ȧ

a

)2

+
k

a2

]
• The tt-component of Einstein’s equations

RH −
1

2
Rgtt + Λgtt = 8πTtt

⇒ −3
ä

a
+ 3
[( ä

a

)
+

(
ȧ

a

)2

+
k

a2

]
− Λ = 8πρ

⇒
(
ȧ

a

)2

+
k

a2
− Λ

3
=

8πρ

3
(Friedman Equation)
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• ij-component

2
ä

a
+

(
ȧ

a

)2

+
k

a2
− Λ = −8πp

Subtracting Friedman’s equations

ä

a
− Λ

3
=
−4π

3
(ρ+ 3p) (Raychauderi Equation)

Standard cosmological models are obtained by solving these for some equa-
tion of state.

7.6 Cosmological Models with Vanishing Λ(
ȧ

a

)2

+
k

a2
=

8πρ

3(
ä

a

)
=
−4π

3
(ρ+ 3p)

7.6.1 Geometry of the Universe

Critical density ρc: energy density of flat universe

ρc =
3

8π

(
ȧ

a

)2

=
dH2

8π
(in theory, H0 is measurable)

If we now define the density parameter of the universe to be

Ω =
ρ

ρc

Friedman

⇒ k

a2H
= Ω− 1

k = +1 Ω > 1 (closed)

0 Ω = 1 (flat,open)

−1 Ω < 1 (open)

The actual geometry is still hotly debated.
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7.6.2 Big Bang Singularities

Assuming the matter content of the universe obeys the strong energy condi-
tion (SEC)

Tµνu
µuν ≥ −1

2
T

for any time-like vector uµ and T = T µµ .
In our FRW metric with perfect fluid matter distribution, this implies

ρ+ 3P ≥ 0

This in turn implies (from the Raychaudhuri equation)

ä

a
≤ 0

⇐⇒ Ḣ +H2 ≤ 0

⇒
∫
dH

H2
≤ −

∫
dt

⇒ −1

H
+

1

H0

≤ −(t− t0)

⇒ H ≤ 1

H−10 + (t− t0)

Using the fact that H = ȧ
a

and integrating again, we get∫
da

a
≤
∫

1

H−10 + (t− t0)
dt

⇒ a(t) ≤ a(t0)

(
H−10 + (t− t0)

H−10

)
i.e. a(t) is bounded above by a linear function of t, which has t-intercept at
t = t0 − h−10 .
For some finite time t > t0 − H−10 , we must have a(t) = 0. But as a(t) →
0, ρ → ∞, we have an infinite energy state, and all known laws of physics
breaks down. (Singularity Theorems-Hawking,Penrose,Geroch)
All FRW moels with Γ = 0 with a matter distribution satisfying the SEC
predict a ‘Big Bang’ singularity at some finite time in the past.
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7.6.3 The Fate of the Universe (Eschatology)

(Matter Domination P = 0).
We define a conformal time τ by

dτ =
dt

a

and we denote derivatives with respect to conformal time by ’, i.e.

a′ =
da

dτ

Defining H = a′

a
, then

H =
ȧ

a
=
a′

a

dτ

dt
=
H
a

The Friedmann equation in conformal time becomes

H2 + k =
8πρa2

3

and the Raychaudhuri equation becomes

H′

a2
=
−4πρ

3
(for dust P = 0)

Combining the two to eliminate ρ, we obtain

2H′ +H2 + k = 0

For an open universe, k = −1: We have∫
dH

1−H2
=

1

2

∫
dτ

This may be solved with the substitution

H = coth
(u

2

)
⇒ H = coth

(τ
2

)
⇒ H′ = −1

2 sinh2

(τ
2

)
=

1

1− cosh τ

From the Raychaudhuri equation

H′

a
=
−4πρ

3
=
−4πρ0a

3
0

3a3
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⇒ a(τ) =
−4π

3
ρ0a

3
0(1− cosh τ)

We have

Ω0 =
8πρ0
3H2

0

⇒ a(τ) = −1

2
Ω0H

2
0a

3
0(1− cosh τ)

We also have

a20H
2
0 =

k

Ω0 − 1

⇒ a30 = H−30 (1− Ω)−
3
2 )

a(τ) =
1

2
Ω0H

−1
0 (1− Ω0)

− 3
2 (cosh τ − 1) (A)

We also have
dt = adτ

⇒ t =
1

2
Ω0H

−1
0 (1− Ω0)

− 3
2

∫
(cosh τ − 1)dτ

t =
1

2
Ω0H

−1
0 (1− Ω0)

− 3
2 (sinh τ − τ) (B)

(A) and (B) together form a parametric solution for an open k = −1 universe.
As t → ∞, the k = −1 universe expands forever. As a(t) gets larger and
larger, in the Friedmann equation(

ȧ

a

)2

− 1

a2
=

8πρ0a
3
0

3a3

the curvature term 1
a3

dominates the matter term

ρ ∝ a−3 � |k|
a2

(for a→∞)

⇒ ȧ

a
∼ 1

a2

⇒ a(t) ∝ t

The universe undergoes a period of free expansion as the density drops off
rapidly.

ρ ∝ t−3
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8 The Linear Approximation

8.1 The Einstein Equations in the Linear Approxima-
tion

We begin with the assumption that there exists coordinates in which the
metric of a weak gravitational field can be written as

gµν = ηµν + hµν

where
|hµν | � 1

Introduce a fictitious ‘book-keeping’ parameter

gµν = ηµν + εhµν

We neglect all O(ε2) and higher terms. We further assume the boundary
condition

lim
r→∞

hµν = 0

i.e. the spacetime is asymptotically flat.
If we think of hµν as a tensor on ηµν , then we can raise indices of hµν by

contracting with ηµν , e.g.
hµν = ηµνηνσhλσ

It is easy to verify that the metric inverse (to first order) is

gµν = ηµν − εhµν

To see this, we check that

gµνgνλ = δµλ +O(ε2)

. The Christoffell symbols in the linear approximation are

Γµνλ =
1

2
gµσ(gσν,λ + gλσ,ν − gνλ,σ)

=
1

2
(ηµσ − εhµσ)(εhσν,λ + εhλσ,ν − εhνλ,σ)

=
1

2
ε(hµν,λ + hµλ,ν − h

µ
νλ, ) +O(ε2)
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The Riemann curvature tensor is given by

Rµνλσ = gµρR
ρ
νλσ

= (ηµρ + εhµρ)(Γ
ρ
νσ,λ − Γρνλ,σ + ΓανσΓραλ − ΓανλΓ

ρ
ασ)

= ηνρ

[1

2
ε(hρν,σλ + hρσ,νλ − h

ρ
νσ, λ)−

1

2
ε(hρν,λσ + hρλ,νσ − h

ρ
νλ, σ)

]
=

1

2
ε(hµσ,νλ + hνλ,νσ − hµλ,νσ − hνσ,µλ) +O(ε2)

The Ricci tensor components in the linear approximation are

Rνσ = gµλRµνλσ

= ηµλ
1

2
ε(hµσ,νλ + hνλ,νσ − hµλ,νσ − hνσ,µλ) +O(ε2)

=
1

2
ε(hλσ,νλ + hµν,µσ − h,νσ −�h,νσ) +O(ε2)

where h = ηµνhµν and

� = ηµν∂µ∂ν = ∂µ∂
µ =
−∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

The Ricci scalar in the linear approximation is

R = (ηµν − εhµν)1

2
ε(hλν,µλ + hρµ,ρν − h,µν −�hµν) +O(ε2)

= ε(hµν,µν −�h)

Finally, the Einstein tensor in the linear approximation is

Gµν = Rµν −
1

2
Rgµν

=
1

2
ε(hλν,µλ + hλµ,λν − h,µν −�hµν)−

1

2
ηµνε(h

λρ
,λρ −�h) +O(ε2)

⇒ Gµν =
1

2
ε(hλν,µλ + hλµ,λν − h,µν −�hµν − ηµνh

λρ
,λρ + ηµν�h)

The linearised vacuum field equations would involve setting this to be zero
and solving for hµν . It is convenient to write the Einstein tensor in terms of
a new dependent tensor. the “star conjugate” of hµν

h∗µν = hµν −
1

2
ηµνh (1)

h∗µν = h∗νµ
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Note that

h∗ = ηµνh∗µν = h− 1

2
(4)h = −h

Using this to invert (1)

hµν = h∗µν −
1

2
ηµνh

∗

Note also, we can perform a double star conjugate

h∗∗µν = hµν

In terms of h∗µν , the Einstein tensor reads

Gµν =
1

2
ε
[
(h∗λν −

1

2
δλνh

∗),µλ + (h∗λµ −
1

2
δλµh

∗),λν + h∗,µν

−�(h∗µν
1

2
ηµνh

∗)− ηµν(h∗λρ −
1

2
ηλρh∗),λρ − ηµν�h∗)

]
⇒ Gµν =

1

2
ε
[
−�h∗µν + h∗λµ,λν + h∗λν,λµ − ηµνh∗λρ,λρ

]
8.2 Gauge Transformations

Let us consider coordinate transformations of the form

xµ → x̂µ = xµ + εξµ

(Sacrificed general covariance, considering only coordinate transformations
close to the identity).
Under this transformation

ĝµν =
∂xλ

∂x̂µ
∂xσ

∂x̂ν
ġλσ

But

xµ = x̂µ − εξ(xν)
= x̂λ − εξ(x̂µ − εξ(xµ))

= x̂µ + εξµ(x̂) +O(ε2)

∴
∂xµ

∂x̂ν
= δµν − εξµ,ν +O(ε2)

⇒ ĝµν = gµν − εξµ,ν − εξν,µ +O(ε2)
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and since

ĝµν = ηµν + εĥµν

= ηµν + ε(hµν − ξµ,ν − ξν,µ)

i.e.

ĥµν = hµν − 2ξ(µ,ν) (Gauge Transformation of hµν)

We can check that
R̂µνλσ = Rµνλρ

i.e. the Riemann curvature tensor (and hence the Einstein tensor) are gauge
invariant (to first order).

8.3 The Newtonian Limit

8.4 Gravitational Waves

8.4.1 The Linearised Vacuum Solutions

8.4.2 Energy Transfer

9 Einstein-Maxwell Theory

9.1 The Field Equations

The variables of Einstein-Maxwell theory are:

• The metric gµν

• Maxwell tensor Fµν

• Stress-energy tensor Tµν

• Current 4-vector Jµ

If ρ is the proper electric density and uµ the 4-velocity of the charge, then

Jµ = ρuµ

At each point p ∈M , we construct an orthonormal tetrad

{λ µ
(a) }

3
a=0
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where

λµ(0)λ(0)µ = −1

λµ(0)λ(i)µ = −0 (i = 1, 2, 3)

λµ(i)λ(j)µ = δ(i)(j) (i, j = 1, 2, 3)

Then λµ(a)λ(b)µ = η(a)(b) = diag(−1, 1, 1, 1). The orthonormal tetrad of the
Maxwell tensor are

F(a)(b) = Fµνλ
µ
(a)λ

ν
(b) = −F(b)(a)

These components define the electric and magnetic 3-vectors

F(a)(b) =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 −B1

E3 B2 −B1 0


~E = (E1, E2, E3)
~B = (B1, B2, B3)

Maxwell’s equations in flat space are

~∇× ~B − ∂t ~E = ~J

~∇ · ~E = ρ

~∇× ~E − ∂t ~B = 0

~∇ · ~B = 0

These may be written in tensor notation as

F µν
,ν = Jµ (i)

Fµν,λ + Fλµ,ν + Fνλ,µ = 0 (ii)

where Jµ = (ρ, ~J)
F 0i = Ei (i = 1, 2, 3)

Fij = εijkBk (i, j, k = 1, 2, 3)

The covariant generalisations of these equations are obtained by the “comma
goes to semi-colon” rule:
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F µν
;ν = Jµ

Fµν,λ + Fλµ,ν + Fνλ,µ = 0
(Maxwell’s equations in curved spacetime)

It is easy to prove that the second equation above is equivalent to (ii) and
hence there exists a 4-potential Aµ such that

Fµν = Aµ,ν − Aν,µ = Aµ;ν − Aν;µ

For source-free regions (Jµ = 0) in a vacuum, we still have a contribution to
the energy-momentum tensor coming from the Maxwell tensor. The electro-
magnetic Lagrangian density is defined by

9.2 The Reissner-Nordstrom Solution
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