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There’s already a list of geometry theorems out there, but the course has changed since, so here’s a
new one. They’re in order of ‘appearance in my notes’, which corresponds reasonably well to chronolog-
ical order. 24 onwards is Hilary term stuff.

The following theorems have actually been asked (in either summer or schol papers):
5,7,8,17, 18, 20, 21, 22, 26, 27, 30 a), 31 (associative only), 35, 36 a), 37, 38, 39, 43, 45, 47, 48.

Definitions are also asked, which aren’t included here.
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On a finite-dimensional real vector space, the statement ‘V is open in M’ is independent of the
choice of norm on M.

Let R 5 V L. R™ be differentiable with f = (f1,..., f). Then R* 2= R™, and f' = (gg)

Let M DV ER N,a € V. Then f is differentiable at a = f is continuous at a.
f=(f...f") continuous < f* continuous, and same for differentiable.

The chain rule for functions on finite-dimensional real vector spaces.

The chain rule for functions of several real variables.

Let R®* DV ER R, V open. Then f is C! % exists and is continuous, for ¢ =1, ..., n.

Let R" 5V LR, V open. fis C2. Then 52 = 721
(po1)x = px 01y, where ¢, 1) are maps of manifolds, and ¢, is the push-forward of ¢.

Something about the components of the push-forward. Doubt this’ll come up.
By (a,r) is open in X.

M>X Ly C N, M, N normed, finite-dimensional vector spaces. Then f is continuous at a <
for each open NBD V of f(a) in Y, there exists an open NBD W of a in X, such that f(W) C V.

Let X C M, M a finite-dimensional normed space. Then any union of open sets is open, any finite
intersection of open sets is open, and a set V' C X is open in X < there exists W open in M such
that V =WnX.

Let X,Y be topological spaces, with f : X — Y. Then f is continuous < V open in Y = f1V
open in X.

f, g continuous = f o g continuous.

The mean value theorem for vector-valued functions.
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The inverse function theorem.
The implicit function theorem.

Something about coordinate systems, the statement of the theorem is literally 8 times the length
of the proof.

If u; is a basis for M, then the coordinate functions u’ are the basis for the dual space M*.
The pull-back commutes with the differential.
The chain rule for maps of manifolds (identical to theorem 9).

Properties of the operator norm. (Anachronistic - I didn’t have it down as a theorem when I first
made up my notes.)

If w is an exact one-form on X, then f w is path-independent.
Integration by parts.
Let u; be a basis for M. Then, for example, u’ ® u; ® u is a basis for M* @ M @ M*.
Contraction is well-defined independent of choice of basis.
The group S, acts on the vector space @ M* by linear transformations.
If T € ® M*, then ) g €70 - T is skew-symmetric.
Let S € @ M*, T € @ M*. Then
a) a[(aS)@T)=a[S®T] = a[S ® (aT)]
b) a[S®T] = (-1)*a[T ® S]
The wedge product is bilinear, associative, and super-commutative.

Let uq, ..., un be a basis for M. And let iy < ... < iy, j1 < ... < jr. Then u A Au[uj,, ..., u;] =1
if i = jk, and 0 otherwise.

Let A"M™ be the vector space of skew-symmetric tensors of type M x ... x M — R. Let u;, ..., un,
—_——

T

be a basis of M. Then

a) A"M* = {0} if r > n.

b) The tensor Qi . 0w A Au' has components «;, i, for iy < ... <ip.

11 <...<ip

¢) {u A ... A} <. < is a basis for A"M*, so its dimension is #lr),
T.,T* preserve commutative diagams, ie (UT). = U, Ty, and (UT)* = T*U*.
The pullback/pushforward preserve the tensor product, skew-symmetry, and wedge product.

If M is an n-dimensional, real, oriented vector space with non-degenerate symmetric scalar product,
then

a) The volume form u' A ... A u™ is independent of choice of standard basis u1, ..., u, of M.
b) For any positively oriented basis w, ..., w,, we have vol(ws, .., w,) = /| det(w;|w;)]|.

Let uy, ..., u, be a standard basis with (u;|u;) = § = +1. Then *(u! A ... Au") = Gp41...00u" L A
VA TAL

Defining the linear operator Q7 (V) % Q+1(V'), and then

a) The Leibniz rule: d(w An) = (dw) An+ (1)"w A (dn) if w is an r-form.
b) ddw = 0.
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¢) The definition of dw is independent of the choice of coordinates on V.

The pull-back of differential forms is a linear operator, preserves wedge products, and commutes
with the differential.

fv w is independent of choice of coordinates on V. (In my notes, there are quotation marks around
this being a theorem, so it may not be examinable.)

Let X %Y bea diffeomorphism of n-dimensional oriented manifolds, preserving orientations, and
V a coordinate domain on X,w an n-form on Y, then... fd)V w= [, ¢*w.

/ + w is independent of the choice of partition of unity. (Another potentially fake theorem.)
Stokes’ Theorem.

Solutions to the Laplace equation on a region are unique. (This is almost certainly not a proper
theorem we did, but hey, it might come up in methods.)

Poincare’s Lemma.

Let uy,...,u, be a moving frame on a Riemannian n-dimensional manifold. Then there exists a
unique skew-symmetric n x n matrix Q = (wj) of 1-forms such that du® = —w} A u/.

Z1, ..., T, are linearly independent if any only if 21 A... Az, # 0. (This and the next ‘theorem’ came
up in a problem set.)

z1,...,x, generate the same subspace as yj...,y, if and only if x; A ... A x, is a scalar multiple of
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