Some Geometry Definitions

Stephanie Hyland hylandst@tcd.ie

April 20, 2010

These seem to be some of the more commonly-asked definitions. My definitions here are by no means perfect; they're pretty much a hybrid of what we were given in class with existing definitions from previous course notes (namely 211 and 221). It's always hard to know how long a definition should be. I might update this with more definitions at some point, in which case the date will change.

velocity vector: Let $\alpha(t)$ be a sequence of real-valued functions (a curve). If f is a real-valued C^{∞} function on an open set in \mathbb{R}^n containing $\alpha(t)$, then the rate of change of f along α at t is...

$$\frac{df}{dt}(\alpha(t)) = \frac{df}{dt}(\alpha^{1}(t), \alpha^{2}(t), ..., \alpha^{n}(t))$$

$$= \left[\frac{d}{dt}\alpha^{1}(t) \cdot \frac{\partial}{\partial x_{\alpha(t)}^{1}} + ... + \frac{d}{dt}\alpha^{n}(t) \cdot \frac{\partial}{\partial x_{\alpha(t)}^{n}}\right] f$$

$$= \dot{\alpha}(t) f$$

 $\dot{\alpha}(t)$ is the velocity vector of $\alpha(t)$. Its components are $\frac{d}{dt}\alpha^{i}(t) = \frac{d}{dt}x^{i}(\alpha(t))$, ie the rate of change of x^{i} along $\alpha(t)$.

tangent space to V at a: (TaV). The set of linear combinations of $\frac{\partial}{\partial x_a^1}, ..., \frac{\partial}{\partial dx_a^n}$. (And these form a basis of an n-dimensional real vector space, called the tangent space to V at a.)

tangent bundle: If X is a manifold, the tangent bundle TX is

$$TX = \bigcup_{x \in X} T_x X$$

push-forward: Let ϕ be a map of manifolds, $\mathbb{R}^n \supset V \xrightarrow{\phi} W \subset \mathbb{R}^m$. Define the push-forward, $TV \xrightarrow{\phi_*} TW$ as, if $v \in TV$, then

$$[\phi_* v] f = v [f \circ \phi] = v [\phi^* f]$$

for each real-valued differentiable function f on a neighbourhood of $\phi(\alpha(t))$, where $v = \dot{\alpha}(t)$. (And TV is the tangent bundle of V).

$$[\phi_* v]f = \frac{d}{dt} f(\phi(\alpha(t))) = (\phi \circ \alpha)(t)f$$
$$\therefore \phi_* v \in T_{\phi(\alpha(t))}V$$

Or in other words,

$$\phi_*$$
[velocity vector of α at t] = [velocity vector of ($\phi \circ \alpha$) at t]

pull-back: Let $X \xrightarrow{\phi} Y$ be a map of manifolds. For each scalar field f on Y with domain V open in Y, define the pull-back;

$$\phi^*f = f \circ \phi$$

a scalar field on X with domain $\phi^{-1}V$ open in X.

If ω is a 1-form on Y with domain V, then the pull-back $\phi^*\omega$ is the 1-form on X with domain $\phi^{-1}V$, defined by

$$<(\phi^*\omega)_x, v>=<\omega_{\phi(x)}, \phi_*v>$$

for all $v \in T_x X$.

push-forward, pull-back (for linear forms): For each linear operator $M \xrightarrow{T} N$ on finite-dimensional real vector spaces M, N, and each integer $r \ge 1$, we define the push-forward $\otimes^r M \xrightarrow{T_*} \otimes^r N$, and pull-back $\otimes^r M^* \xleftarrow{T^*} \otimes^r N^*$ as follows;

r = 1

$$\otimes^1 M = M \xrightarrow{T_*} N = \otimes^1 N, \ T_* = T$$
$$\otimes^1 M^* = M^* \xleftarrow{T^*} N^* = \otimes^1 N^*, \ < T^* f, x > = < f, T_x > = < f, T_* x >$$

For all $f \in N^*, x \in M$.

 $r \ge 1$

$$(T_*S)(f_1, ..., f_r) = S(T^*f_1, ..., T^*f_r)$$

$$(T^*S)(x_1, ..., x_r) = S(T_*x_1, ..., T_*x_r) = S(Tx_1, ..., Tx_r)$$

n-dimensional coordinate system on a topological space X with domain U: is a homeomorphism $y = (y^1, y^2, ..., y^n)$ of an open set U in X onto an open set y(U) in \mathbb{R}^n , with the usual topology in \mathbb{R}^n .

 C^r -compatible: Let $y = (y^1, ..., y^n)$ with domain V, and $z = (z^1, ..., z^n)$ with domain W be two coordinate systems on X. They are C^r -compatible if each y^i is a C^r function of $z^1, ..., z^n$, and each z^i is a C^r functio of $y^1, ..., y^n$ on $V \cap W$. They are C^∞ compatible if they are C^r -compatible for all r.

smooth n-dimensional manifold: A topological space X is such if a collection (or atlas) of mutually C^{∞} -compatible coordinate systems is given on X whose domain covers X.

differential of f at a: If f is a scalar field at $a \in X$, X a manifold, then the differential of f at a is the linear functional

$$df_a: T_a X \to \mathbb{R}$$

whose value, $\langle df_a, v \rangle$ on $v \in TaX$ is vf.

 $\langle df_a, v \rangle = vf$ = rate of change of f along v

 df_a has components $\langle df_a, \frac{\partial}{\partial y_a^j} \rangle = \frac{\partial f}{\partial y^j}(a).$

$$\therefore df_a = \frac{\partial f}{\partial y^j}(a)dy_a^j$$

vector field: v, with domain V, is a function, $\forall a \in V$

$$a\longmapsto v_a\in T_aX$$

Where X is an n-dimensional manifold, V an open subset of X.

integral of ω **over** α (1-form): If ω is a 1-form on a manifold X, and $[t_1, t_2] \xrightarrow{\alpha} X, t \mapsto \alpha(t)$, is a parametrised path in X, then the integral of ω over α is

$$\int_{\alpha} \omega = \int_{t_1}^{t_2} < \omega_{\alpha(t)}, \dot{\alpha}(t) > dt$$

Thus if f, g are scalar fields on X, then

$$\int_{\alpha} f dg = \int_{t_1}^{t_2} \left[f(\alpha(t)) \cdot \frac{d}{dt} g(\alpha(t)) \right] dt$$

integral of ω (n-form): Let ω be an n-form on an oriented n-dimensional manifold X, and V be the domain of positively oriented coordinates y^1, \ldots, y^n . $\omega = f(y^1, \ldots, y^n) dy^1 \wedge \ldots \wedge dy^n$, say. Then

$$\int_{V} \omega = \int_{y(V)} f(x_1, ..., x_n) dx_1 ... dx_n$$

differential r-form: Let X be a smooth n-dimensional manifold, and V an open subset. Let $r \ge 1$. Then a differential r-form ω with domain V is a function on V;

$$\iota \longmapsto \omega_a \in \Lambda^r (T_a X)^*$$

С

If y_i are coordinates on X with domain V, for each $a \in V$, $dy_a^1, ..., dy_a^n$ are a basis for $(T_a X)^*$

$$\therefore \omega_a = \sum_{i_1 < \ldots < i_r} \omega_{i_1, \ldots, i_r}(a) dy_a^{i_1} \wedge \ldots \wedge dy_a^{i_r}$$

Where ω_{i_1,\ldots,i_r} are C^{∞} scalar-valued functions on V, called the components of ω with respect to the coordinates y^i .