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Lecture 8

We would now like to study cohomology. Cohomology groups are dual to homology groups
and have many similar properties. The obvious difference is that the homomorphism in
the long exact sequences go in the other direction. However, it turns out that cohomology
is more powerful than homology because it is possible to multiply two cohomology classes.
This gives the cohomology groups of a space a ring structure. Furthermore, the operator
used to construct cohomology groups, the exterior derivative, is a local operator whereas
the boundary operator which was used to construct homology is a global one.

Before considering cohomology groups we define vectors, forms and exterior derivatives.
The de Rham cohomology will then be introducted in the next lecture.

Vectors and One-forms.

A real function, f , on a manifold, M , is a map

f : M → R (1)

If M is a differentiable manifold, it is easy to define a smooth function. The space of
smooth functions over M will be denoted FM .1 In the case of a function on R3, it is
useful to consider the directional derivative v · ∇ giving the derivative of the function in
the direction of some vector v. On a general manifold, it is not possible to define a vector
by say it is a directed line between one point and another.2 Instead, vectors at a point in
a manifold will be identified with directional derivatives at that point.

A curve is a map from an open line segment into a manifold

c : (a, b) → M (2)

If c(t) is a curve through a point x = c(t0) then the derivative of a smooth function f at
that point is

df

dt

∣

∣

∣

∣

t0

= lim
δt→0

f(c(t0 + δt))− f(c(t0))

δt
(3)

We know that this is the directional derivative of f in the direction of the tangent to c at
t = t0. The idea is to identify the tangent to c with this directional derivative. In other
words, the tangent vector to c at x is V with

V (f) =
df

dt
(4)

1This is not a universal notation, in fact, we will change between this notation and another one though
the course of this lecture.

2We want to define vectors at a point
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If (x1, x2, . . . , xn) are coordinates at x then

V (f) =
df

dt
=

dxi

dt

∂f

∂xi

(5)

where we sum on i and where the curve is given by (x1(t), x2(t), . . . , xn(t)) in the coordinate
neighbourhood of of x. Thus, we can write

V = Vi

∂

∂xi

(6)

where Vi = dxi/dt.
In other words, a basis for the tangent vectors at the point x is given by3

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

) (7)

Now, if we change coordinates from (x1, x2, . . . , xn) to (y1, y2, . . . , yn) the components of
the vector change

V = Vi

∂

∂xi

= Vi

∂yj

∂xi

∂

∂yj

(8)

as the components of a contravariant vector. This shows that our definition of a vector
coincides with the component bases definition sometimes used on Rn.4

The vector space of tangent vectors at a point x is often write TxM and called the
tangent space of M at p. A tangent vector field is a smooth assignation of a tangent
vector at each point in a manifold.5 The space of tangent vector fields is often denoted
XM .

Since TxM is a vector space, we can define its dual space T ∗

xM with ω ∈ T ∗

xM a map

ω : TxM → R. (9)

Of course, since TxM is an n-dimensional vector space, so is T ∗

xM . However, the tangent
space isn’t just an assignation of a vector space to each point in space, we know how a

3Of course, this makes a lot of sense because the coordinate map maps from an open neighbourhood
of x to a subspace of R

n and we can define a curve by taking the inverse image of straight line. By taking
the straight lines parallel to the Cartesian axes we get the basis vectors.

4The basis ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

) is sometimes called a coordinate basis because it is derived from a

coordinate system. Another basis Aij
∂

∂xj
with A ∈GLnR may not arise as a set of tangents to coordinate

curves.
5It should be intuitively clear what this is supposed to mean. Roughly speaking, near a point a manifold

looks like a subset U of R
n. Since the tangent space also looks like R

n the tangent vector field is a map
from U to R

n and this map is required to be smooth. In fact, later on we will see that a tangent vector
field is a smooth section of the tangent bundle TM . One convenient way of defining a smooth vector field
without first defining the tangent bundle is to require that the function V (f) is smooth for any smooth
f ∈ FM
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vector acts on a function. In fact, if f ∈ FX and V ∈ TxM then V (f) ∈ R. Thus, a
function defines an element of T ∗

xM which we call df :

df : V 7→ V (f) (10)

or, put another way, df(V ) = V (f).
The thing is, f need not be globally define. On a coordinate patch U there is a smooth

map φ : U → Rn. Restricting to one of the n coordinates gives a locally defined function
and hence, a locally defined element of T ∗

mM . In fact, not only is (dx1, dx2, . . . , dxn) a
coordinate basis for T ∗

mM , but, since

dxi

(

∂

∂xj

)

=
∂xi

∂xj

= δij (11)

it is the dual basis under the natural inner product

T ∗

mM × TmM → R

(ω, V ) 7→ ω(V ). (12)

The notation is partly justified by noting that the coordinate independence of the contrac-
tion ω(V ) implies6

ω = ωidxi = ωi

∂xi

∂yj

dyj. (13)

An element of the cotangent space T ∗

xM is sometimes called a cotangent. However,
it is more common to refer to them as one-forms. We will see why in the next section.
We will define what are called p-forms and it will turn out that a p-form with p = 1 is a
cotangent. Before going on to p-forms, we will look at an important map between different
cotangent spaces: the pullback.

A map between two manifolds induces a map between their tangent bundles. For the
moment we are restricting our attention to the tangent space at a point, so we note that,
given a smooth map f : Mm → Nn there is a map

f∗ : TmM → Tf(m)N (14)

defined by
(f∗V )(g) = V (g ◦ f) (15)

In other words, if g is a function on N then g ◦f is a function on M and so we can evaluate
V (g ◦ f). If m has coordinates (x1, x2, . . . , xn) this means

V = Vi

∂

∂xi

(16)

6Of course, there is no real need to justify the notation, after a while and especially after we have
considered integration, it will seem very natural. In fact, dxi is a modern formulation of the classical idea
of a small increment in xi.
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and if f(x1, x2, . . . , xm) = (y1, y2, . . . , yn) then

f∗V = (f∗V )i

∂

∂yi

(17)

Taking g = yj

(f∗V )j = Vi

∂yj

∂xi

. (18)

p-forms.

We will start this section by defining a tensor. We’ll then go on to discuss p-forms: p-forms
are an important class of tensors.

A tensor, T , of type (q, r) is a multilinear map which takes q cotangents and r vectors
and maps them to the real numbers. At a point x

T : (⊗qT ∗

xM)⊗ (⊗rTxM) → R (19)

Thus, if ω1, . . . ωq are q cotangents and V1, . . . , Vr are r vectors

T : (ω1, . . . , ωq, V1, . . . , Vr) 7→ T (ω1, . . . , ωq, V1, . . . , Vr) ∈ R (20)

In this notation, a cotangent is a type (0,1) tensor because it maps a vector to R. In the
same way a vector is a type (1,0) tensor.7

Furthermore, we can write a tensor in terms of components

T = Ti...jk...l

∂

∂xi

⊗ . . .⊗
∂

∂xj

⊗ dxk ⊗ . . .⊗ dxl (21)

and, under a change of variables the components of a type (q, r) tensor transforms as you
might expect. Finally, a tensor field is defined in the obvious way.

A p-form is a totally antisymmetric tensor of type (0, p). Thus, if ω is a p-form at x

ω : ⊗pTxM → R

(V1, V2, . . . , Vp) 7→ ω(V1, V2, . . . , Vp) ∈ R (22)

such that

ω(Vi, Vj, . . . , Vk) = sign

(

i j . . . k
1 2 . . . p

)

ω(V1, V2, . . . , Vp) (23)

7The notation is very bad here and it isn’t really worth sorting it out since it is usually obvious what
is meant. The problem is we have defined a vector as a differential operator on a function: V : f 7→ V (f).
We then defined the cotangent, or one-form, as a vector in the dual space, so T ∗M 3 ω : V 7→ ω(V ) ∈ R.
Furthermore, we noted that a function f defines a one-form, df where df : V 7→ df(V ) = V (f). However,
the dual of the dual of a finite-dimensional vector space is itself, so V can also be thought of as acting on
the space of cotangents, V : ω 7→ V (ω) = ω(V ). This is precisely the attitudes taken when pointing out
that a vector is a type (1,0) tensor, the problem is you end up with V (df) = V (f), the point being that
the action denoted by the brackets is different in each case. Ah well.
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So, for example, if ω is a two-form and V1 and V2 are both vectors then ω(V1, V2) is a real
number with ω(V1, V2) = −ω(V2, V1).

The space of p-forms at x is commonly called Ωp
xM . Since the anti-symmetry holds

trivially for maps with one argument Ω1
xM = T ∗

xM . The space of p-form fields is called
ΩpM .

A basis for Ωp
xM can be constructed from the basis for T ∗

xM using the totally antisym-
metric product of the basis one-forms. This totally antisymmetric product is called the
wedge product. The wedge product of one-forms {dx1, dx2, . . . , dxp} is

dx1 ∧ dx2 ∧ . . . ∧ dxp =
∑

Sp

sign

(

i j . . . k
1 2 . . . p

)

dx1 ⊗ dx2 ⊗ . . .⊗ dxp (24)

where the sum is over all permutations. Thus, for example,

dx1 ∧ dx2 ∧ dx3 = dx1 ⊗ dx2 ⊗ dx3 + dx2 ⊗ dx3 ⊗ dx1 + dx3 ⊗ dx1 ⊗ dx2

−dx1 ⊗ dx3 ⊗ dx2 − dx2 ⊗ dx1 ⊗ dx3 − dx3 ⊗ dx2 ⊗ dx1. (25)

Now, if (dx1, dx2, . . . , dxn) is a basis for T ∗

xM then all the p-forms constructed by wedging
together p of these one-forms gives a basis for Ωp

xM . Because there is an independent p-form
of this type for every selection of p different one-forms from the set {dx1, dx2, . . . , dxn},

8

it follows that

dimΩp
xM =

(

n
p

)

(26)

For convenience, we define Ω0
xM = R.9 Note that Ω0

xM = R as well: all n-forms are
proportional to dx1 ∧ dx2 ∧ . . . ∧ dxn.

Anyway, this means that a p-form is given locally as

ω =
1

p!
ωij...kdxi ∧ dxj ∧ . . . ∧ dxk (27)

The factorial prefactor is included so that the components ωij...k are also the components
of the corresponding tensor as given above. We could get rid of it by only including each
basis vector once

ω =
∑

i<j<...<k

ωij...kdxi ∧ dxj ∧ . . . ∧ dxk. (28)

If (y1, y2, . . . , yn) is another basis the antisymmetry means that

ω =
1

p!
ωij...kdxi ∧ dxj ∧ . . . ∧ dxk =

1

p!
ωij...k

∂(xi, xj, . . . , xk)

∂(yi, yj, . . . , yk)
dyi ∧ dyj ∧ . . . ∧ dyk (29)

8Obviously dxi∧dxj∧. . .∧dxk = 0 is some one-form dxl appears twice. If dxi∧...∧dxj and dxk∧. . .∧dxl

contain the same one-forms but in a different order, then they are either equal or one is equal to minus
the other, depending on weather the reordering is even or odd.

9This means that a function is a zero-form field, that is, FM = Ω0M .
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Of course, the definition of the wedge product need not be restricted to basis one forms,
we can define the wedge (or exterior) product of two forms in a basis independent way:
if ζ ∈ Ωq

xM and η ∈ Ωr
xM then ζ ∧ η ∈ Ωq+r

x M is defined by10

(ζ ∧ η)(V1, V2, . . . , Vq+r) =
1

q!r!

∑

Sq+r

sign

(

i . . . l
1 . . . q + r

)

ζ(Vi, . . . , Vj)η(Vk, . . . , Vl) (30)

The wedge product is associative: (ζ ∧ η) ∧ ξ = ζ ∧ (η ∧ ξ). It has graded commutativity
properties, if ζ ∈ ΩqM and η ∈ ΩrM then ζ ∧ η = (−)qrη ∧ ζ. It follows that ζ ∧ ζ = 0 if
q is odd.

Thus, there is a graded algebra of forms

Ω∗

xM = Ω0
xM ⊕ Ω1

xM ⊕ . . .⊕ Ωn
pM (31)

with multiplication given by the wedge product.
Notice that a vector V defines a map Ωp

xM → Ωp−1
x M by partial evaluation: V :

ω 7→ iV ω where iV ω(V1, . . . , Vp−1) = ω(V, V1, . . . , Vp−1). This map is called the interior

product.

The exterior derivative

The exterior derivative is a differential operator which maps p-forms to (p+1)-forms. It is
usually defined in terms of its action on components, once we have done that and calculated
some of its properties, we will see that these properties define the action of the exterior
derivative. In other words, the component based definition is actually basis independent.

Given ω ∈ ΩpM , in a coordinate neighbourhood

ω =
1

p!
ωij...kdxi ∧ dxj ∧ . . . ∧ dxk. (32)

and we define the exterior derivative d : Ωp → Ωp+1 by

dω =
1

p!

∂ωij...k

∂xl

dxl ∧ dxi ∧ dxj ∧ . . . ∧ dxk. (33)

Thus, if f ∈ Ω0M = FM then

df =
df

dxi

dxi. (34)

We can see from this that the exterior derivative of a function is df , you could think that
this justified the notation used for df , it is better though to think of the exterior derivative
as generalizing the construction of df from f to general p and p + 1 forms.

10The factorial factors are convenient, but note, this isn’t a universal convention, most people put them
in, some people don’t, lots of people can never quite remember weather they do or not.
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As another example, consider M = R3. An element of FR3 is just an ordinary function
in space. Ω1

xR
3 is three dimensional and so we can identify a one-form ζ ∈ Ω1

xR
3 with a

3-vector at that point

ζ = ζ1dx1 + ζ2dx2 + ζ3dx3 ↔





ζ1

ζ2

ζ3



 (35)

With this identification d acts on functions over space as grad:

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 (36)

Furthermore, Ω2
xR

3 is also three dimensional and we can also identify two-forms with
vectors11

η = η1dx2 ∧ dx3 + η2dx3 ∧ dx1 + η3dx1 ∧ dx2 ↔





η1

η2

η3



 (37)

If ζ is a one-form with the components above

dζ =

(

∂ζ3

∂x2

−
∂ζ2

∂x3

)

dx2 ∧ dx3 +

(

∂ζ1

∂x3

−
∂ζ3

∂x1

)

dx3 ∧ dx1 +

(

∂ζ2

∂x1

−
∂ζ1

∂x2

)

dx1 ∧ dx2 (38)

and so it is the curl. Finally, Ω2
xR

3 is one-dimensional and elements are of the form
fdx1 ∧ dx2 ∧ dx3 . They can be identified with functions in the obvious way. If η is a
two-form with the components given above, then

dη =

(

∂η1

∂x1

+
∂η2

∂x2

+
∂η3

∂x3

)

dx1 ∧ dx2 ∧ dx3 (39)

and this is div.
Thus, d is defined as a map d : ΩpM → Ωp+1M but in the case of R3 both the one-

form fields and two-form fields can be identified with vector fields and, if this is done, the
exterior derivative gives us the sequence of maps

0 −→ Ω0R3 grad
−→ Ω1R3 curl

−→ Ω2R3 div
−→ Ω3R3 −→ 0 (40)

This sequence is a complex because curl grad f = 0 and div curlv = 0. In fact, it is
clear from the definition of the exterior derivative that d2 = 0. This is what is used to
define the de Rham cohomology. R3 isn’t such a good example in this context, both
because it has trivial cohomology and because it isn’t compact. It is a good example of
calculating the exterior derivative though and an interesting example because it shows that
the different operators in vector calculus are all just examples of one structure. It might

11I’m leaving out the half for convenience, thus, in the previous notation η1 = 1

2
η23 and so on.
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also be interesting to note that the wedge product on Ω1R3 coincides with the usual cross
product of vectors.

Our next task is to list the important properties of the exterior derivative and then to
observe, after Spivak, that these actually define a unique operator.

We noted above that the exterior derivative sends a function f to df . It is clearly linear
and it is easy to see that it acts on exterior products as a graded derivation:

d(η ∧ ζ) = dη ∧ ζ + (−)pη ∧ dζ (41)

where eta is a p-form. Finally, as noted above, since differentiation is symmetric and the
wedge product of one-forms is skew-symmetric

d(dω) = 0. (42)

If d′ is another linear graded derivation with d′2f = 0 and d′f = df then d′ω = dω.
This is proven by induction. By linearity we need only consider ω = fdx1 ∧ . . . ∧ dxp.
Acting with d′,

d′ω = d′f ∧ dx + f ∧ d′(dx1 ∧ . . . ∧ dxp) = df ∧ dx + f ∧ d′(dx1 ∧ . . . ∧ dxp) (43)

If we assume that dη = d′η for ω a (p− 1)-form then

d′dx = d′(dx1 ∧ dx2 ∧ . . . ∧ dxp) = −d′x1 ∧ d′(dx2 ∧ . . . ∧ dxp) = 0 (44)

and so the second term in the expression for d′ω vanishes and so the equality holds for p-
forms, giving the induction step, proving the theorem and demonstrating that the definition
we have used is actually coordinate independent.

The exterior derivative is only one of the differential operators we should be considering
on a smooth manifold. Another very common and very important operator is the Lie

derivative. Unfortunately we need to press on and so the next lecture will start with the
de Rham cohomology. This is defined by the complex

. . .
d
−→ ΩpM

d
−→ Ωp+1M

d
−→ Ωp+2M −→ . . . (45)
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