
Rough notes for Maths 543
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Lecture 7

The higher homotopy groups

The higher homotopy groups have already been mentioned a few times. They are the
groups generated by homotopy classes of maps of the higher-dimensional generalization of
a loop. The first thing to do is define the higher-dimensional generalization of a loop. Recall
how, when we were studying the fundamental group, we defined the loop as an interval
with its end points identified. Well, in the same way, we start here with a unit n-cube:
[0, 1]n.1 The boundary ∂[0, 1]n is the obvious thing, it is made up of points (x1, x2, . . . , xn)
such that at least one of the xi is zero or one. An n-loop based at x0 is a map

α : [0, 1]n →M (1)

such that α(x) = x0 for all x ∈ ∂[0, 1]n. Homotopy generalizes in an obvious way: based
loops α and β are homotopic if there exists a continuous map H : [0, 1]n × [0, 1] → M
such that

H(x1, . . . , xn, 0) = α(x1, . . . , xn)

H(x1, . . . , xn, 1) = β(x1, . . . , xn)

H(x1, . . . , xn, t) = x0 if (x1, . . . , xn) ∈ ∂[0, 1]n (2)

Finally, we define the multiplication of two n-loops

αβ(x1, x2, . . . , xn) =

{

α(2x1, x2, . . . , xn) 0 ≤ x1 ≤
1

2

β(2x1 − 1, x2, . . . , xn) 1

2
≤ x1 ≤ 1

(3)

and the inverse
α−1(x1, x2, . . . , xn) = α(1− x1, x2, . . . , xn). (4)

The nth homotopy group, πn(M, x0), is now the quotient of the space of based n-loops
by homotopy equivalence. It is a group with group structure given by [αβ] = [α][β].

Properties and examples of higher homotopy groups

The higher homotopy groups are Abelian. There is a nice demonstration of this given in
Nash and Sen. You begin with the product of two loops αβ. You can then deform the

1This all seems a bit wasteful, maybe we would be better off using simplices to define higher homotopy
or n-cubes to define simplicial homology. Notice that Spivak uses singular n-cubes when he is defining
integration!
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loops so that more of the map maps to the base point. In other words, we thicken the
boundaries so that there is some region inside the boundary mapping to the base point.
The next step is to switch around the two insides and then thin the boundary again. If
you remember that there is a smooth function interpolating between zero and one over a
finite interval, it is easy enough to convince yourself that each of these steps is a homotopy.
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Figure 1: Higher homotopy is Abelian

Calculating higher homotopy is generally hard. Some examples are intuitively clear, a
n-sphere for example has πn(Sn) = Z because an n-loop is homotopically a n-sphere.

You shouldn’t be over confident, however. It may not be so clear that π3(S
2) = Z.

This charge is called the Hopf charge and has a very nice geometrical interpretation.
The equivalence classes in π3(S

2) are represented by maps of a two-sphere to a three-
sphere. Given a map from a three sphere to a two sphere, any point on the two sphere
has a one-dimensional inverse image, this inverse image will be homotopically a circle on
the three-sphere. Thus, any pair of points on the two-sphere correspond to a pair of closed
curves on the three-sphere. These will have a linking number which counts the number of

2



times they link each other and this number will be the same for any two points. It is the
Hopf charge.

Things don’t get much better as the numbers get higher, π6(S
2) = Z12 for example.

However, the lower homotopy groups for Lie groups are described by the Bott periodicity

theorem, which states, for example, that, for n ≥ (k + 1)/2

πk(Un) = πk(SUn) =

{

trivial if k is even
Z if k is odd

(5)

In physics, the higher homotopy group is often used to describe topological charges
like the winding number associated with the kink in Lecture 2. For example, in the O3

sigma-model the field is S2 valued. Thus, an O3 sigma-model configuration is a map from
space to the sphere. For the two-dimensional sigma model the Lagrangian requires that
the field approach a constant value at infinity, compactifying space to a two-sphere. This
means that the configuration is labeled by an integer in π2(S

2) = Z. Solutions with nonzero
charges look like particles known as sigma-model lumps. The lumps may play a role in
the physics of Quantum Hall conductors. Because of the Hopf charge, the O3 sigma-model
also has non-trivial solutions in three dimensions. These Hopf charged solitons are thought
by some people to play a role in QCD, but this is very controversial.

There is another sort of winding numbers associated with solitons. It is often called
winding numbers at infinity. One example is the Abelian-Higgs vortex. In the Abelian-
Higgs theory there is a C-valued scalar field in two dimensional space.2 The field equations
have potential term which vanishes if this field has length one. This means that in a finite
energy configuration the length of the field must be one at spatial infinity. Thus, on a
very large circle at a great spatial distance the field maps a circle onto something that is
topologically a circle.3 The winding number of this map at large distances is a topological
integer, in fact, it counts the number of zeros of the field. The soliton associated with
this integer are called Abelian-Higgs vortex and is related to the vortices occurring
in super-conductors. The solitonic monopoles occurring in gauge theories have a similar
topological structure with a winding number in π2(S

2).

Covering spaces

If M and M̃ are connected manifolds then M̃ is a covering space for M if there is a
continuous surjection p so that if U is an connected open set in M , p−1(U) is a disjoint
union of open sets, each of which is homeomorphic to U under p. This is easy to understand
by thinking about the covering of a circle by a line

p : R → S1

x 7→ x mod2π (6)

2It is a (2+1)-dimensional relativistic field theory, thus, there is a field defined over 2-dimensional space
at any given time.

3In other words, the field may have some complicated behavior, but for very large r, where r
2 = x

2

1
+x

2

2
,

the field approach length one in some regular way.

3



so any open interval in the circle is the image of open intervals strung out every 2π along
the line.

The useful thing about covering spaces is that they have the same higher homotopy. If
M̃ is a cover for M and x̃ maps to x under p then the homomorphism

p∗ : πn(M̃, x̃) → πn(M, x) (7)

induced by p is a isomorphism for n > 1. The fundamental groups need not be the same,
in the circle example they aren’t. If the covering space has trivial fundamental group then
it is called a universal cover. In this way, R is the universal cover of S1 and SU2 is the
universal cover of SO3.

4

Relative homotopy

Relative homotopy is a similar idea to relative homology, treated earlier. Relative homotopy
groups are generated by relative homology classes of relative loops. A loop is a map of a
cube with the faces mapping to a point; for a relative loop, all but one of the faces map to
a point and the image of the remaining, exceptional, face is restricted to lie in a specific
submanifold of the target manifold. Thus, if N is a closed manifold in M and x0 is a point
in N then a relative n-loop is a continuous map α : [0, 1]n →M such that α(x) ∈ N is x
is one the exceptional face and α(x) = x0 if x is on any of the other faces.5 The exceptional
face is taken to be open, and, so, the faces of the exceptional face are mapped to the base
points. This mimics the relative cycle in homology which, considered as a chain in M has
a boundary in N .

When we defined a homotopy we required that the base point be fixed throughout
the deformation, a relative homotopy is the obvious variant of this, it fixes the base
point and fixes the fact that the exceptional face maps into N . Thus, taking F to be the
exceptional face, two relative n-loops, α and β are homotopic if there exists a continuous
map

H(x1, . . . , xn, 0) = α(x1, . . . , xn)

H(x1, . . . , xn, 1) = β(x1, . . . , xn)

H(x1, . . . , xn, t) =

{

y ∈ N if (x1, . . . , xn) ∈ F
x0 if (x1, . . . , xn) ∈ ∂[0, 1]n \ F

(8)

The relative homotopy group πn(M, N, x0) is the group of homotopy classes of relative
n-loops. There are all sort of ways you might worry this would go wrong, how, for example,
do you choose which of the faces of a product of loops is the exceptional face. In fact, the
relative homotopy define ensures everything works out.

4If a manifold is a Lie group, you often refer to the covering group to mean the group whose manifold
is the universal covering space. These groups, the original group and its cover, have the same Lie algebra
because, by the definition of the cover, they are locally identical.

5My notation is a bit of a mess, I am using x’s and y’s both for points in the n-cube and points in the
manifold. sorry.
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As with homology, the relative homotopy leads to an exact sequence. The sequence is

. . . −→ πn(N, x0)
i∗−→ πn(M, x0)

j∗
−→ πn(M, N, x0)

∂
−→ πn−1(N, x0)

i∗−→ . . . (9)

The inclusion map i∗ : πn(N, x0) → πn(M, x0) is obvious, since N ⊂ M a loop in N is a
loop in M . The map j∗ : πn(M, x0) → πn(M, N, x0) is also an inclusion map: a loop based
at x0 ∈ N can be regarded as a relative loop since the exceptional face is trivially mapped
into N . finally, a relative n-loop has its exceptional face mapped into N . The boundary
map ∂∗ : πn(M, N, x0) → πn−1(N, x0) maps a relative n-loop to the (n−1)-loop in N given
by the map of the exceptional face. It is easy and instructive to prove the sequence is
exact.

In Nash and Sen this exact sequence is used to prove that πk(S
n) is homeomorphic to

πk+1(S
n+1). Nash and Sen should be consulted for further details about the calculation

of higher homotopy groups. It should be noted that there is no excision theorem for
homotopy, this is what makes the calculations more difficult.
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