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Lecture 6

The long exact sequence of homology groups, continued

The first part of this lecture will be spent proving that

. . . −→ Hn(N)
i∗−→ Hn(M)

q∗
−→ Hn(M, N)

∂
−→ Hn−1(N)

i∗−→ Hn−1(M) −→ . . . (1)

is a long exact sequence, however, before we begin, it is useful to recall the construction of
the boundary operator ∂ : Hn(M, N) → Hn−1(N). The construction is summed up by the
diagram

b ∈ Cn(M)
q
−→ c = q(b) ∈ Cn(M, N)

↓ ∂

a ∈ Cn−1(N)
i

−→ ∂b = i(a) ∈ Cn−1(M)

(2)

c represents an equivalence class in Hn(M, N) and so is a relative cycle. Because q is onto,
there is a b in Cn(M) so that q(b) = c, however, b may have a boundary ∂b. This boundary
must be in im i because c is a relative cycle. a is also a cycle, but [a] isn’t necessarily trivial
in Hn−1(N), a only corresponds to a boundary in the Cn−1(M).

In proving the exactness of the long sequence, the first few inclusions are easy:

im i∗ ⊆ ker q∗ (3)

follows from the short exact sequence qi = 0. The

im q∗ ⊆ ker ∂∗ (4)

follows from the definition of ∂, because q is surjective, c ∈ Hn(M, N) can be written as
q(b) for some b, but if [c] is in the ker q∗ then b is a cycle and ∂b = 0.1 Finally,

im ∂ ⊆ ker i∗ (5)

because, from the definition of ∂, i∗∂[c] = [∂b] = 0
The inclusions going the other way are trickier. First, we will consider

ker q∗ ⊆ im i∗. (6)

1In other words, c is alway in ker q because q is surjective, however, b must be a cycle if [c] is in ker q∗.
Remember that q∗ maps homology classes of cycles whereas q maps chains.
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If b represents a homology class in ker q∗ then q(b) is a boundary. Thus, q(b) = ∂c′

for some c′ ∈ Cn+1(M, N). Since q is surjective, c′ = q(b′) for some b′ in Cn+1(M).
q(b − ∂b′) = q(b) − q(∂b′) = q(b) − ∂q(b′) and ∂q(b′) = ∂c′ = q(b) so q(b− ∂b′) = 0. Now,
we know im i =ker q so this means b− ∂b′ = i(a) for some a ∈ Cn−1(N). a is a cycle since
i(∂a) = ∂i(a) = ∂(b − ∂b′) = 0 and i is injective. Finally, i∗[a] = [b − ∂b′] = [b] and the
inclusion (??) is proved. 2

Next we consider
ker ∂ ⊆ im q∗. (7)

If c is in ker ∂ then the a ∈ Cn−1(N) in the construction of ∂ is a boundary a = ∂a′ with
a′ ∈ Cn(N). Now, b − i(a′) is a cycle because ∂(b − i(a′)) = ∂b − ∂i(a′) and commuting
the ∂ and i we get ∂(b − i(a′)) = ∂b − i(a), this is zero by the definition of a.3 Now
q(b− i(a′)) = q(b)− q(i(a′)) = q(b) = c and so q∗ maps [b− i(a′)] to [c]. This means [c] is
in im q∗ proving the inclusion (7).

We finish with
ker i∗ ⊆ im ∂. (8)

We consider an element of ker i∗: a ∈ Cn−1(N) such that i(a) = ∂b for some b ∈ Cn(M).
However, this means q(b) is a cycle since ∂q(b) = q(∂b) = q(i(a)) and ∂ takes [q(b)] to [a].4

In other words, the inclusions maps a to a chain which is a boundary of some b and the
image, q(b), of b under quotient must have a as a boundary and hence [q(b)] maps to [a]
This proves the inclusion (8) and completes the proof of exactness.

The excision theorem

Before going on to applications of the long exact sequence we state the excision theorem.
If L is a subset of N such that clo L ⊂int M 5 then

Hr(M, N) = Hr(M \ L, M \ L) (9)

2The inclusion is proved using the diagram

b′ ∈ Cn+1(M)
q
−→ c′ ∈ Cn+1(M, N)

↓ ∂ ↓ ∂

a ∈ Cn(N)
i
−→ b ∈ Cn(M)

q
−→ Cn(M, N)

The substance of the proof is this, [b] ∈ ker q∗ just means that the image of b under q is a boundary. By
taking this boundary away, we construct b−∂b′ which is in ker q and so we can use the short exact sequence
to construct a. a maps to b− ∂b′ under i, but the equivalence class of [b− ∂b′] is just [b].

3∂b = i(a) by definition. In this part of the proof we use the fact c is in ker ∂ to construct two elements
in Cn(M) which both map to the same element in Cn−1(M).

4Don’t get confused, there are two ∂s, the boundary operator on chains which sends q(b) to zero and
the boundary operator between holonomy groups which sends [q(b)] to [a].

5That is, the closure of L is in the interior of M , I think I am right in thinking the interior of a
space is the largest open set it contains, which means it is the union of all the open sets it contains. The
closure is the smallest closed set containing a set, this might be more difficult to define since taking the
intersection of closed sets doesn’t necessarily give a closed set, one guess would be that the closure is the
complement of the interior of the complement. Anyway, the idea is that L is sufficiently inside N .
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Thus, we can remove a part of the space without affecting the relative homology. This is
an important property of homology and part of why is easier to calculate homology than
it is to calculate homotopy. The proof of the excision theorem is quite technical and can
be found in Hatcher.

An equivalent statement of the excision theorem is

Hr(M, N) = Hr(L, L ∩ P ) (10)

where M =int L∪int P .

Two examples

We now look at examples where the long exact sequence is used to calculated homol-
ogy groups. The first involves the suspension of a manifold. If M is a manifold the
suspension is

ΣM = (M × [−1, 1])/ ∼ (11)

where ∼ identifies all of M×{−1} with a point and M×{1} with another point. A similar
construction to this one is the cone of a manifold:

ΓM = (M × [0, 1])/ ∼ (12)

where, here, ∼ identifies all the points in M × {1}. In fact, the suspension is the union of
two cones, the upper cone Γ+M and the lower cone Γ−M . The cone of a manifold has an
obvious deformation retract to the point:

r(t)(m, s) 7→ (m, s(1− t)) (13)

and so Hp(Γ
+M) = Hp(Γ

−M) = 0 for p > 0. This is exploited to prove

Hp(M) = Hp+1(ΣM) (14)

To do this we write down two long exact sequence, first Γ+M ⊂ ΣM and

. . . → Hp+1(Γ
+M) → Hp+1(ΣM) → Hp+1(ΣM, Γ+M) → Hp(Γ

+M) → . . .
= 0 = 0

(15)
is exact, so

Hp+1(ΣM) = Hp+1(ΣM, Γ+M) (16)

There is another exact sequence corresponding to the inclusion M ⊂ Γ−M :

. . . → Hp+1(Γ
−M) → Hp+1(Γ

−M, M) → Hp(M) → Hp(Γ
−M) → . . .

= 0 = 0
(17)

and this means
Hp+1(Γ

−M, M) = Hp(M). (18)
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Finally, the excision theorem implies

Hp+1(ΣM, Γ+M)) = Hp+1(ΣM \ {x}, Γ+M \ {x})) (19)

where the point that results from identifying all of M × {1} is x. Now, it is easy to see
that ΣM \ {x} has a deformation retract to Γ+M and M \ {x} has a deformation retract
to M . Thus

Hp+1(ΣM, Γ+M)) = Hp+1(Γ
−M, M)). (20)

proving (14).
The sphere example is similar, we choose two subsets of Sn: N = Sn \ {s} and S =

Sn \ {n} where n and s are two distinct points. They could be the north and south pole
for example. Both N and S have deformation retracts to the points, N retracts to n and
S to s. We can imagine these retracts by imagining a punctured soap bubble. N ∩ S has
a deformation retract to Sn−1. Now Sn = N ∪ S so

. . . → Hp+1(N) → Hp+1(S
n) → Hp+1(S

n, N) → Hp(N) → . . .
= 0 = 0

(21)

so Hp+1(S
n) = Hp+1(S

n, N) and

. . . → Hp+1(S) → Hp+1(S, S ∪N) → Hp(S ∪N) → Hp(S) → . . .
= 0 = 0

(22)

so Hp+1(S, S ∪N) = Hp(S ∪N). Finally, the excision theorem means that Hp+1(S
n, N) =

Hp+1(S
n \ n, N \ n and by deformation retract this means Hp+1(S

n, N) = Hp+1(S, N ∪ S).
Putting all this together proves

Hp+1(S
n+1) = Hp(S

n) (23)

where once again the theorem doesn’t apply to p = 0 since the zeroth homology group of
the point isn’t trivial.6

The Mayer-Vietoris sequence.

The Mayer-Vietoris sequence is another exact sequence of homology groups. It is
similar to the long exact sequence discussed above and one or other is more useful depending
on the precise problem being studied. The Mayer-Vietoris sequence is defined using the
short exact sequence of chain groups

0 → Cr(N ∩ L)
α
−→ Cr(N)⊕ Cr(L)

β
−→ Cr(N + L) → 0 (24)

6In fact, it is often convenient to use reduced homology groups where ∂0 is replaced by ε : C0(M) →
Z with ε : (Σiniσi) 7→ Σini. The advantage of this is that the reduced homology group of a point is trivial
for all dimensions, including zero.
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where N and L are two subsets of M such that M = int N ∪ int L and Cr(N + L) is the
subgroup of Cr(M) consisting of chains which are a sum of a chain in N and a chain in
L. This subgroup forms a chain complex because ∂ : Cr(N + L) → Cr−1(N + L).7 The
correspond homology groups are actually Hr(M) because, as can be proved, any cycle in
Cr(M) is homologous to a cycle of the form a + b where a ∈ Cr(N) and b ∈ Cr(L). The
two maps α and β above are

α : Cr(N ∩M) → Cr(N)⊕ Cr(L)

c 7→ (c,−c) (25)

and

α : Cr(N)⊕ Cr(L) → Cr(N + L)

(a, b) 7→ a + b. (26)

Now elements of the homology group Hr(M) are represented by cycles c in Cr(M). A
cycle in Cr(M) can alway be written c = a + b with a a chain in N and b a chain in L.
However, while a + b is a cycle, a and b are not, they may have boundaries so long as
∂a = −∂b. ∂a is a cycle because it is a boundary in Cr−1(N), however, it is not in general
a boundary in Cr−1(N ∩ L). Thus, it defines a homology class in Hr−1(N ∩ L). This gives
us the boundary map:

∂ : Hr(M) −→ Hr−1(N ∩ L)

c 7→ ∂a (27)

We now have a sequence

. . . → Hr(N ∩ L)
α∗−→ Hr(N)⊕Hr(L)

β∗
−→ Hr(M)

∂
−→ Hr−1(N ∩ L) → . . . (28)

It is not too hard to prove that this is an exact sequence.
As as example of applying the Mayer-Vietoris sequence, consider the formula for the

homology of the n-sphere derived above. Splitting the n-sphere up into the same subsets as
before and substituting into the Mayer-Vietoris sequence gives the same formula without
any need to use excision.

Singular Homology

The idea behind singular homology is to define homology in a way that is manifestly
homeomorphism invariant and in a way that applies to spaces that have no triangulation.

7Now I am loosing track, did I define a chain complex? A chain complex is the sequence

. . . → Cr+1

∂
−→ Cr

∂
−→ Cr−1 → . . .

that is used to define homology.
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A singular n-simplex is a continuous map8 of an n-simplex into the space

λr : σr → M (29)

and the chain group is the free Abelian group generated by the singular n-simplices. Obvi-
ously this group can be very large since there can be uncountably many singular n-simplices
in a manifold. However, the boundary operator can be defined as before, the boundary
of a singular simplex λ is the image under λ of the boundary of the n-simplex σ being
mapped.9 This boundary map still squares to zero and so the singular chain group defined
homology groups. These homology groups are the singular homology. It can be shown that
the singular homology group of a triangular space is the same as the simplicial homology.

8but not necessarily invertible, hence the ‘singular’ in the name.
9In other words, it is the sum of the images of the faces of σ with the usual plus and minus ones.
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