
Rough notes for Maths 543

Please send corrections and comments to Conor Houghton: houghton@maths.tcd.ie

Lecture 5

The direct calculation of homology groups

It is obvious from the definition of the homology groups how the groups may be calculated
directly. All you need to do is take a general element of the chain group and work out it
cycles and the boundaries.

The first example is the circle S1 with triangulating simplicial complex

{〈a1a2〉, 〈a2a3〉, 〈a3a1〉, a1, a2, a3}. (1)

Since a 0-chain has no boundary, the three 0-cycles {a1, a2, a3} form a basis of the group of
0-cycles. However any two of these points are homologous and so H0(S

1) = Z.1 A general
1-chain is of the form

c = x〈a1a2〉+ y〈a2a3〉+ z〈a3a1〉 (2)

and, since
∂c = (x− z)a1 + (y − x)a2 + (z − y)a3 (3)

c is a 1-cycle provided x = y = z. There are no 2-chains and so the first holonomy group
is the group generated by this 1-cycle. Thus, H1(S

1) = Z as well.

a4

a3

a2a1

a4a4

Figure 1: A triangulation of the two-sphere.

1In fact, this is a particular case of a general feature: if M is a path-wise connect space then H0(M) = Z.
This is because any two points are path connected and that path provides a homology between the points.
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As the next example consider the 2-sphere. The 2-sphere is triangulated by thr faces of a
3-simplex, this is illustrated in Fig. 1. Since the 2-sphere is simply connected H0(S

2) = Z.
Next, consider a general 1-chain

c = x1〈a1a2〉+ x2〈a2a3〉+ x3〈a3a1〉+ x4〈a1a4〉+ x5〈a2a4〉+ x6〈a3a4〉. (4)

The boundary is

∂c = (x1 + x4 − x3)a1 + (−x1 + x2 + x5)a2 + (−x2 + x3 + x6)a3 − (x4 + x5 + x6)a4. (5)

For c to be a 1-cycle this must be zero. However, every variable appear in two equations,
once with one sign and once with the other and so the four equations add to zero: there are
only three independent constraints. Thus, the group is 1-cycles is four dimensional. This
means that {∂〈a1a2a3〉, ∂〈a1a4a2〉, ∂〈a1a3a4〉, ∂〈a2a3a4〉} is a basis for the cycles. Thus each
member of the basis set is a boundary and H1(S

2) is trivial. Finally, a general 2-chain is

c = x1〈a1a2a3〉+ x2〈a1a4a2〉+ x3〈a1a3a4〉+ x4〈a3a2a4〉. (6)

This has boundary

∂c = (x1 − x2)〈a1a2〉+ (x1 − x4)〈a2a3〉+ (x1 − x3)〈a3a1〉

+ (x2 − x3)〈a1a4〉+ (−x2 + x4)〈a2a4〉+ (x3 − x4)〈a3a4〉 (7)

and so, for c to be a cycle, x1 = x2 = x3 = x4 and therefore H2(S
2) = Z.

This example was done is an needlessly long-winded way, however, it should be obvious
that calculating the homology groups of some of the spaces we triangulated would be quite
a lengthy process. Luckily, it is not necessary to use the triangulation in calculating the
homology of a space. In fact, it is sufficient to find a ∆-complex which is homeomorphic
to the space.2

A ∆-complex is like a simplicial complex without such a strong intersection condition. It
is a set of simplices such that any face of any simplex in the ∆-complex is in the ∆-complex
and such that any two simplices intersect along faces. In other words, if two simplices in
the complex intersect, they must do so on some of the faces, but they are allowed to do so
on more than one face.3 Anyway, it seems that any ∆-complex can be subdivided to give
a homeomorphic simplicial complex and so homology can be defined using ∆-complexes
rather than simplicial complexes and the same groups will be the result.4

2The name ∆-complex reflects the fact that simplices are often called ∆, as opposed to σ, this is an
obvious choice of notation since ∆ looks like a triangle, I’m sorry I didn’t use it.

3There is also some understanding about being careful about orientation, the complex is regarded as
a set of oriented simplices, all the faces of an oriented simplex have an orientation, a face is the simplex
whose vertices are a subset of the vertices of the simplex, the orientation of the face is given by having the
vertices in the subset in the same order as in the simplex. In the ∆-complex, it is required that a face in
the intersection of two oriented simplices is an oriented face of each of them. This just means that, two
simplices can only be joined along faces that are oriented the same way.

4You might wonder then why we used simplicial complexes at all, well the nice thing about simplicial
complexes is that you can name a simplex in a simplicial complex by giving its vertices, that isn’t the case
for a ∆-complex. This means that it is nicer thinking about holonomy in terms of simplicial complexes
unless you are thinking about doing actual calculations. The question is, can you work out homotopy
groups using ∆-complexes, I haven’t thought about that yet.
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Figure 2: The ∆-complex for a torus, since the simplices are no longer uniquely determined
by their vertices it is neccessary to name them, the names should be read off this diagram,
the names for the two 2-simplices, U and L are chosen to demonstrate my debt to Hatcher
in this part of the course.
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Figure 3: The ∆-complex for the real projective plane.

The ∆-complex for the torus is given in Fig. 2. The two 2-simplices have the same
boundary, ∂U = ∂L = u+v+w and so U−L is a basis for the 2-cycles and H2(T

2) = Z. The
three 1-simplices u, v and w are all cycles and u+v +w is a boundary, so H1(T

2) = Z⊕Z.
H0(T

2) = Z in the usual way.
The ∆-complex for the real projective plane is given in Fig. 3. In this case ∂U = u+v+w

as before, but ∂L = w−u−v and so there are no 2-cycles. This means that H2(RP2) = 0.
The 1-cycles are w and u+ v whereas the 1-boundaries are u+ v +w and w−u− v. Thus,
w is homologous to u + v and 2w = (u + v + w) + (w − u − v) is homologous to zero:
H1(RP2) = Z2. The ∆-complex for the Klein bottle, K, is given in Fig. 4. It is easy to
see that H1(K) = Z⊕ Z2.

Another nice thing we can do easily with ∆-complexes is work out Hn(Sn). We can
make a ∆-complex for an n-sphere by identifying all the faces of two n-simplices. There is
only one n-cycle given by the difference of these two simplices. Thus, Hn(S

n) = Z.
An interesting example is the genus g surface, Γg. Unfortunately it is very difficult to
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Figure 4: The ∆-complex for the Klein bottle.

draw using xfig so I will refer you to Farkas and Kra and also to Hatcher. The important
point is that H1(Γg) = Z2g and there is a canonical basis for the holonomy cycles {ai, bi}
such that the only non-trivial intersection is ai ∩ bi. We may return to Riemann surfaces
later in the course.

Torsion, homology with real coefficients

A homology groups is a quotient of two free Abelian groups. This means that homology
groups have the general structure

Hr(M) = Z⊕ . . .⊕ Z⊕ Zk1
⊕ . . .⊕ Zkp

(8)

where the kis are all integers. The picture we have of homology is that the number of
Zs counts the number of holes in the space and the cyclic groups describe how the space
is twisted around. In fact, the part of the group made up of cyclic groups is called the
torsion group. The number of bfZ is the rth Betti number.5

It is possible to define homology with different coefficients, we can write an element c
of the chain group Cr with coefficients in some other Abelian group G,

c =
∑

giσi (9)

where the σis are r-simplices and the gis are in G. The boundary operator acts on simplices
and this action is extended to the whole chain group by linearity, this means it act in the
same way on chain groups with coefficents in some other group and so r-cycles and r-
boundaries can be defined. This leads to a homology group Hr(M ; G) which is generated
over G by homology classes of cycles. Since the homology depends on the homology classes
of cycles, using a different group doesn’t give us extra information, in fact, if G doesn’t have

5In Hatcher it is pointed out that the Betti numbers and the torsion coefficiants ki are older than the
homology groups, they were defined using simplicies and boundary operators without the homology groups
themselves begin considered.
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Figure 5: Everything in a kernel gets mapped to zero.

normal subgroup there can be no torsion. Put another way, R/R is the identity, whereas
Z/Z may be some Zk depending on how one Z is contained in the other. If Hr(M ;Z) in
(8) has br factors of Z then Hr(M ;R) = R⊕ . . .⊕R with br factors of R.

Although it is not sensitive to torsion, homology over R rather than Z is useful because
it is homology over R that is dual to cohomology.

A long exact sequence of homology groups

We will not see how homology groups of various dimensions and the homology of a space
and its subspaces can be related. To do this, we must first look at exact sequences and
we must also define relative homology.6

Introducing exact sequences

A sequence of group homeomorphisms

. . . −→ An+1

αn+1

−→ An
αn−→ An−1 −→ . . . (10)

is exact if
ker αn = im αn+1 (11)

This means that αnαn+1 = 0 but that the corresponding homology group is trivial. For
those of us who enjoy diagrams, exactness is illustrated in Fig. 5.

Next, we consider some special cases,

0 −→ A
α
−→ B (12)

6It might initially seem that these are two different thing, they aren’t though, the relative homology
groups are related to group quotients and there are short exact sequences of groups, their subgroups and
their quotients.
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is exact if ker α = 0,7 in other words, if α is injective.8

A
α
−→ B −→ 0 (13)

on the other hand, is exact if im α = B, in other words, if α is surjective.9 Putting these
together

0 −→ A
α
−→ B −→ 0 (14)

is exact if α is an isomorphism.
We can now define a short exact sequence. Consider

0 −→ A
α
−→ B

β
−→ C −→ 0 (15)

If this sequence is exact, α is injective so im α is homeomorphic to A. β is surjective, so C
is homeomorphic to B/im α. This is a short exact sequence. In particular, if A is a normal
subgroup of B and i is the inclusion of A in B then

0 −→ A
i

−→ B
q

−→ B/A −→ 0 (16)

is a short exact sequence with i the inclusion map and q the quotient map which identifies
all the elements in an equivalence class.

Relative homology

The short exact sequence will be used to define an exact sequence of homology groups.
Before doing this, we need to define the relative homology. If N ⊂ M then Cn(N) is a
subgroup10 of Cn(M). TThe boundary operator

∂ : Cn(M) → Cn−1(M) (17)

acts on the chain groups of N :

∂ : Cn(N) → Cn−1(N) (18)

because any chain on N has its boundary on N . This means the boundary operator is well
defined on the quotient

∂ : Cn(M, N) → Cn−1(M, N) (19)

where Cr(M, N) = Cr(M)/Cr(N). The cycles in Cn(M, N) include chains with boundaries
in N , the boundaries in Cn(M, N) are not necessarily boundaries in Cn(M), however, it is
still true that ∂2 = 0 and so the relative homology group can be defined

Hn(M, N) = ker ∂/im ∂. (20)

70 is include, so 0 maps to 0, the image of the first map being trivial means the kernel of the second
one must be trivial as well.

81 to 1 in english.
9Onto in english.

10A normal subgroup, but everything is Abelian so this isn’t such a delicate issue.
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The long exact sequence of homology groups

There is a short exact sequence of chain groups given by

0 −→ Cn(N)
i

−→ Cn(M)
q

−→ Cn(M, N) −→ 0 (21)

Furthermore the squares

Cn(N)
i

−→ Cn(M)
↓ ∂ ↓ ∂

Cn−1(N)
i

−→ Cn−1(M)

(22)

and
Cn(M)

q
−→ Cn(M, N)

↓ ∂ ↓ ∂

Cn−1(M)
q

−→ Cn−1(M, N)

(23)

commute.11 This means that i and q induce maps on the homology groups, called i∗ and
q∗.

Before defining the long exact sequence we need to define an operator which maps a
relative cycle to its boundary. This map is called ∂ and

∂ : Hn(M, N) → Hn−1(M) (24)

To see how to construct the image, ∂[c], of the homology class of some relative cycle c, we
stack two short exact sequences on top of one another:

0 −→ Cn(N)
i

−→ Cn(M)
q

−→ Cn(M, N) −→ 0
↓ ∂ ↓ ∂ ↓ ∂

0 −→ Cn−1(N)
i

−→ Cn−1(M)
q

−→ Cn−1(M, N) −→ 0

(25)

and extract the sub-diagram

Cn(M)
q

−→ Cn(M, N)
↓ ∂

Cn−1(N)
i

−→ Cn−1(M)

(26)

where, as usual, q is surjective and i is injective. Now, consider a cycle, c, in Cn(M, N).
Because q is surjective, there is a b in Cn(M) such that q(b) = c. This b can be mapped to
element ∂b in Hn−1(M). Now, the relevant square commutes and q(∂b) = ∂q(b) = ∂c = 0
since c is a cycle. This means that ∂b is in the ker q and, since by exactness ker q =im i,
∂b ∈ im i. Thus, there is an a ∈ Cn−1(N) such that i(a) = ∂b. This a is a cycle: by
commutativity of the relevant square i(∂a) = ∂i(a) = ∂∂b = 0 and, because i is injective,

11That is, ∂i = i∂ and ∂q = q∂ acting on the appropriate groups, to say a square commutes means that
the two routes from the corner with all the arrows leaving to the kitty corver with all the arrows arriving
give the same answer.
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this implies ∂a = 0. Thus, we have associated a cycle in Cn−1(N) with a cycle in Cn(M, N)
and, so, we define the map

∂ : [c] 7→ [a] (27)

Obviously we should check this map is well defined, this is easy, interesting and fun, it is
also done in Hatcher. By tracing the construction of a as it moves back along the diagram
we see the meaning of the map: since c is a cycle in the relative chain group, it may have
a boundary, but this boundary must lie in N . However, this boundary must by a cycle. ∂
maps the homology class of the relative cycle c to the homology class of its boundary.

These maps are used to define the long exact sequence of homology groups

. . . −→ Hn(N)
i∗−→ Hn(M)

q∗
−→ Hn(M, N)

∂
−→ Hn−1(N)

i∗−→ Hn−1(M) −→ . . . (28)

The exactness of this sequence will be established next week.
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