
Rough notes for Maths 543

Please send corrections and comments to Conor Houghton: houghton@maths.tcd.ie

Lecture 3

The sine-Gordon Kink

Winding numbers are very important in the theory of solitons. The sine-Gordon kink is an
example of a soliton.1 The sine-Gordon model is a bosonic field theory in 1+1-dimensions
with a periodic Lagrangian2
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A field is in the vacuum state if it is constant in x and t and minimizes the potential.
In the sine-Gordon model the potential is (1− cos φ) and so the field is in its vacuum state
if it is equal 2nπ for n ∈ Z. In other words, there is a different degenerate vacuum for
each n.

Obviously, a finite energy solution must approach the vacuum as |x| becomes very large.
The interesting thing is that the field may approach a different vacuum in each of the two
spatial directions. If this is the case, the field may not be in the vacuum everywhere, it
must interpolate between the two vacuum values. This means the field must have some
potential energy: it is not in a zero energy state. However, there is a barrier between a
state of this type, with different vacua at the positive and negative spatial infinities, and
the vacuum itself. No dynamical process may occur which changes between these two
possibilities. This is because changing the field so that it is in the same vacuum state
everywhere requires that the field moves up and over the potential barrier all the way out
to infinity in one of the two directions. This takes an infinite amount of energy. The
difference in the vacuum state as x goes to positive and negative infinite is 2kπ where
k ∈ Z. This integer, k, is preserved by field evolution.

In fact this integer can be considered to be a winding number.3 The Lagrangian only
depends on the value of the field modulo 2π and so the field can be considered to be an
angle: a U1-valued field. If this is the case, then the finite energy condition requiring that

1The sine-Gordon model was invented by Tony Skyrme, the name is a joke because it sounds like
Klein-Gordon. The word soliton was invented by Martin Kruskal, though solitary waves themselves were
discovered in the first half of the nineteenth century by someone called Scott Rusell.

2If you don’t have any physics, don’t worry too much about this example, a bosonic field theory in
1+1-dimensions is a dynamical system for a field, that is a function of one space dimension and time. A
classical solution is one that minimizes the action for some Lagrangian L which is itself the space integral
of a Lagrangian density L. In quantum field theory, particles correspond to fluctuations of this space-time
function.

3In certain theories, including this one, it can also be considered to be a central charge, see the celebrated
paper by Witten and Olive.
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Figure 1: Plots of (i) the field and (ii) the energy of the static kink.

the field take a vacuum value at spatial infinity becomes a requirement that the field takes
the same value, zero, at both negative and positive spatial infinity. This means that the
field at a given time can be considered as a map from S1 to S1.4 This map has a winding
number and this winding number the integer mentioned above.

There is a known5 static solution to the sine-Gordon model. It is

φ = 4 arctan ex. (2)

This solution is known as the kink. It is plotted in Fig. 1. It has winding number one.
The solution with winding number minus one

φ = 4 arctan e−x (3)

is called an anti-kink. The kink is an exponentially localized lump of energy centered
around x = 0.6 Other static solutions can be obtained by translating this solution and
moving solutions can be obtained by Lorenz transform. Two of these kinks at different
positions can be superimposed and allowed to evolve, they will move away from each other.

4Space is not topologically S1; because the field has the same value at both x = −∞ and x = ∞ the
two ends of the real line can be considered as being joined up and so with this boundary condition it is
possible to add a point at infinity compactifying space.

5Don’t fail to be surprised by this, the Euler-Lagrange equations are non-linear, it is not surprising that
there is a solution but it is surprising that it is known analytically. This is very unusual and only occurs
because the sine-Gordon model is integrable: there is an infinite number of conserved quantities.

6Which can be considered to be the position of the kink.
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In many ways a kink behaves like a particle7 and is an example of what is called a soliton.8

In the quantized sine-Gordon model the field quanta behave like particles in the normal
way, what isn’t normal is that the solitons also behave like particles. This means there are
two different particle spectra: a soliton spectrum and a spectrum arising out of quantiza-
tion. There is another model called the Thirring model which also has two spectra and it
was discovered that the two spectra match the two spectra of the sine-Gordon model, but
only if they are switched. Thus, the soliton spectrum of the sine-Gordon model is the same
as the spectrum of field quanta in the Thirring model and visa versa. This phenomena is
surprising and deep and occurs elsewhere in field theory. It is similar to, and linked with,
the T-duality discussed in the string theory example.

Triangulation and homotopy

Triangulation is a powerful and rigorous method of calculating homotopy. It is a useful
idea which has applications beyond homotopy and will be used for defining homology. The
idea behind triangulation is to simplify the manifold to something more finite: a collection
of triangles, tetrahedrons and their higher dimensional generalizations. The generalization
of a tetrahedron to any dimension is the m-simplex:9

σm = {λ1x1 + λ2x2 + . . . + λm+1xm+1|λi ≥ 0,

m+1
∑

i=1

λi = 1} (4)

Obviously the simplex depends on a set of distinct points {x1, x2, . . . , xm+1}, these are the
corners of the simplex. A useful notation is to write 〈x1x2 . . . xm+1〉 to denote the simplex
defined by that set of points.

The subspace of the m-simplex defined by setting one of the λi’s to zero is a (m − 1)-
simplex. This is a face of the m-simplex. In fact, it is convenient to define the k-face as the
k-simplex derived by setting m− k of the λi’s to zero. Thus, a 3-simplex is homeomorphic
to a tetrahedron, it has four 2-faces each of which is a triangle, or 2-simplex. The 3-simplex
also has six 1-faces and each of these is a line segment, or 1-simplex. Finally, it has four
0-faces, each of these is a point, or 0-simplex.

A space of dimension n is triangulable if it is homeomorphic to a collection of n-
simplices satisfying the condition that the intersection of two of the simplices is either

7Nice animations of kink-kink and kink-anti-kink interactions can be found on the web, the nicest I
have seen is http://www.math.h.kyoto-u.ac.jp/ takasaki/soliton-lab/gallery/solitons/sg-e.html

8The kink cannot decay even if it is perturbed, this is guaranteed by the winding number. In fact,
the sine-Gordon model is peculiar in that a kink-anti-kink configuration does not decay to the vacuum
either, in short, if a kink is superimposed with an anti-kink at a different position they will move towards
each other but they will not annihilate, they will pass through each other. In fact, there is an oscillating
solution known as a breather. This solution has winding number zero but is stable, at least to small
perturbations. Kink-anti-kink annihilation is allowed by the conservation of winding number and occurs in
similar models. It does not occur in the sine-Gordon model because the sine-Gordon model is integrable.

9That is, an m-dimensional simplex
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Figure 2: The triangulation of a circle.

empty or itself a simplex.10 This means that if two simplices intersect they intersect along
a single shared face. The idea here is to calculate a fundamental group of the triangulable
space11 by calculating the fundamental group of the corresponding collection of n-simplices.
This is a useful method because we have replaced something which is differentiable by
something finite: the triangulation.

The collection of n-simplices making up the triangulation along with all the faces of
those simplices is called a simplicial complex; more generally, a simplicial complex, K, is
a set of simplices satisfying the intersection property above along with the closure condition
that the face of any simplex in K is also in K.12

The triangluation of a circle is given in Fig. 2. The corresponding simplicial complex
is

K = {〈a1a2〉, 〈a2a3〉, 〈a3a1〉, 〈a1〉, 〈a2〉, 〈a3〉}. (5)

The set {〈a1a2〉, 〈a2a1〉, 〈a1〉, 〈a2〉} is not a simplicial complex because the intersection of
〈a1, a2〉 and 〈a2, a1〉 is not a simplex. If the circle is replaced by a disc the triangulation
corresponds to the complex

K = {〈a1a2a3〉, 〈a1a2〉, 〈a2a3〉, 〈a3a1〉, 〈a1〉, 〈a2〉, 〈a3〉}. (6)

A triangulation of the 2-torus is given in Fig. 3. It is surprisingly complicated, but anything
simpler does not satisfy the intersection rule.13 An example of something simpler which
does not satisfy the triangulation rule is given in Fig. 4.

Since a triangulable manifold is homeomorphic to its triangulation, its fundemental
group can be calculated by calculating the fundemental group of the triangulation. This
is less troublesome than it sounds because the fundemental group of a triangulation is
isomorphic to another group called the edge group. The edge group is a group generated
by the 1-simplices of a triangulation, modulo certain relations which will be described

10That is, if σ1 ∩ σ2 is n-dimension it is an n-simplex.
11According to Spivak it is a difficult theorem that every differentiable manifold has a triangulation.
12Throughout this discussion I am slightly vague about what I mean by a triangulation, do I mean the

the homeomorphic set of n-simplices or do I mean the corresponding simplicial complex. In fact, it should
be clear by context.

13Simpler is a subjective term, there is a triangulation of the torus in Nash and Sen with fewer triangles,
however, it is harder to draw. I saw this one in Nakahara.
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Figure 3: The triangulation of a torus. Remember, the opposite sides are identified and so
there are no unlabelled points.

below. The isomorphism itself is apparently to be found in a book called Basic Topology by
M.A. Armstrong, a copy of which it is on its way from Santry. However, a nice explaination
of how the proof works is given in Nash and Sen and repeated below.

Inside any triangluation it is possible to find a maximal tree. A tree is a connected set
of 1-simplices with no loops: it looks like a tree.14 A tree inside a triangulation is maximal
if it is not possible to add another 1-simplex without creating a loop. Clearly, a maximal
tree contains all the 0-simplices in the triangulation.

To obtain the edge group of a triangulation,15 K, a maximal tree, T , is chosen and a
group generator gij is assosiated to each ordered 1-simplex 〈aiaj〉 with the opposite ordering
giving the inverse: gij = g−1

ji . To form the edge group, generators assosiated to a 1-simplex
in T are set equal to the idenity and the 2-simplex relation is imposed: if 〈a1a2a3〉 ∈ K

then g12g23g31 = 1. Thus, the edge group is generated by edges in K which are not in T

modulo the 2-simplex relation.
In the edge group there is a generator assosiated with each edge that is not in the tree.

Since the tree is maximal each edge in K\T defines a loop and so the edge group assosiates
a generator to a loop. It seems clear that every loop is homotopic to a loop of this sort:
one that runs along the 1-simplices. However, there may be homotopies between different
loops of this sort, this is accounted for by the 2-simplex relation.

This process of calculating edge groups becomes clear by considering examples. In the
case of the circle in Fig. 5, g13 = 1 and g12 = 1 because both of these are in the tree. Thus,
the edge group is the group generated by g23. There are no further relations because there
are no 2-simplices in the triangulation. The group with a single generator and no further

14In winter.
15The edge group is calculated using the 2-simplices and 1-simplices inside the simplicial complex cor-

responding to a triangulation, since the spaces considered are all two dimensional, I haven’t paid much
attention to this distinction.
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Figure 4: This is not a triangulation of a torus: note, for example, that 〈a1a2a4〉∩〈a4a5a1〉 =
{a1, a4} and that is not a simplex.
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Figure 5: The triangulation of the circle with the maximal tree marked by thick lines.

relations is Z. This is what we might have expected. The triangulation of the disc is the
same, but with the addition of the 2-simplex 〈a1a2a3〉. This adds a relation g12g23g31 = 1.
Substituting g13 = 1 and g12 = 1 into this relation, we find g23 = 1 and so the edge group
is trivial, again, as we might have expected.

The torus is a more complicated example. Refering to Fig. 6 and starting from the top
righthand corner, g13g61 = 1 so writing h = g13 then h = g16 also. The next 2-simplex is
g46h

−1 = 1 so g46 = h as well. In fact, moving down the righthand column g49 = g79 = h.
Starting at the bottom left, g17g81 = 1 so k := g17 = g18. Moving along the bottom column
gives k = g28 = g29 = g39. That uses up all the relations except the two 2-simplices on the
bottom right corner. The 〈a3a7a9〉 2-simplex gives kh−1g73 = 1 and the 〈a1a3a7〉 2-simplex
gives hg37k

−1 = 1. Eliminating g37 gives kh = hk and so the group is Z⊕ Z.
The projective plane is easier than you might fear. From the 〈a1a4a5〉 2-simplex g :=

g14 = g15, from the 2-simplices to each side g = g24 and g = g35 and from the 〈a2a3a4〉
2-simplex g = g23. Finally the 〈a2a3a5〉 2-simplex gives g = g32. This means g2 = 1 and so
the group is Z2.

The fundemantal group of the plane with two punctures is the non-Abelian group with

6



a1

a2 a3

a4

a5 a6

a7

a8 a9

Figure 6: The maximal tree is marked by the solid thick line. Remember that opposite
sides are identified so it is connected. If two edges on a 2-simplex have trivial generators,
for example, if they are in the maximal tree, the 2-simplex relation means the generator
corresponding to the third edge is also trivial. Edges of this sort are marked with dashed
lines.

two generators and no relations. The triangluation of the twice punctured plane is given
in Fig. 8. The two generators are g13 and g24 and since there are no 2-simplices there are
no relations between them.

The obvious example that I’ve left out is S2, this is an easy example, the triangulation
is a tetrahedron. the Klein bottle is done in Nash and Sen and is quite entertaining. It is
quite like the torus example, obviously.
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Figure 7: A triangulation of RP2 with the maximal tree marked along with the edges that
are obviously trivial. Remember that opposite points are idenitified.
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Figure 8: A triangulation of the plane with two puncures with the maximal tree marked.
The punctures are marked with crosses
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