
Rough notes for Maths 543

Please send corrections and comments to Conor Houghton: houghton@maths.tcd.ie.

Lecture 1

A useful place to begin a course on Topology and Geometry in Physics is the matrix
group SU2. This is the group of special unitary 2×2 matrices, in other words U ∈ SU2

if U †U = 12 and det U = 1. It is easy to verify that this is a group under the normal
matrix multiplication. The interesting thing is that the group is parameterized by the
three-sphere, S3.

A general 2×2 matrix has the form

U =

(

α β
γ δ

)

. (1)

Since U † = U−1, α = δ̄ and β = −γ̄. Thus, a general SU2 matrix has the form

U =

(

α β
−β̄ ᾱ

)

(2)

subject to the unit determinant constraint |α|2 + |β|2 = 1. Writing α = a1 + ia2 and
β = b1 + ib2, SU2 is parameterized by a point on the three-sphere

a2

1 + a2

2 + b2

1 + b2

2 = 1. (3)

This matrix group is an example of a Lie group. A Lie group is a space which is both
a group and a smooth manifold. A manifold, in turn, is a space which locally looks like Rn

for some n, thus it is covered by neighbourhoods each of which is homeomorphic to Rn.
A good example is the two-sphere. Near the north pole, the usual polar and azimuthal
angles map the two-sphere to R2 in an obvious way

f1 : (θ, φ) 7→ (θ cos φ, θ sin φ) (4)

but the map f1 ceases to be one-one at θ = π: f1 maps the south pole to the whole of the
circle of radius π. The map f1 is a homeomorphism from S2\{s} to the open disc of radius
π in R2.1 Another map from the two-sphere to R2 is given by

f2 : (θ, φ) 7→ ((π − θ) cos φ, (π − θ) sin φ) (5)

This map is a homeomorphism over all of S2 \ {n}. In this way, the two-sphere can be
covered with two open sets, S2 \ {s} and S2 \ {n} and on each of these open sets there is

1S2 \ {s} is the two-sphere minus the point s, the south pole. The open disc of radius 2π in R
2 might

be called B2

2π and for general radius is B2

r = {(x, y) ∈ R
2|x2 + y2 < r2} The reason to write B not D is

that the open disc is the two-dimensional open ball the same way the circle is a one-sphere and is called
S1. The closed ball is B̄2

r = {(x, y) ∈ R
2|x2 + y2 ≤ r2}.
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a homeomorphism onto an open subset of R2. This means that locally the two-sphere is
homeomorphic to R2 but globally it is not.

A neighbourhood along with a map from the neighbourhood onto a neighbourhood
in Rn is a coordinate patch. The existence of these coordinate patches is the defining
property of a manifold. The local coordinatization also allows properties like smoothness or
analyticity to be defined. In the two-sphere example above the local coordinatization gives
a map between punctured discs, a point in S2 \ {n, s} may be mapped to the punctured
disc B2

2π \ (0, 0) by either f1 or f2. Since f1 and f2 are invertible this means there is an
invertible map

f1f
−1

2 : B2

π \ (0, 0) → B2

π \ (0, 0) (6)

which is given by
f1f

−1

2 : (x, y) 7→ ((π/r − 1)x, (π/r − 1)y) (7)

and is a smooth map. This shows the two-sphere is a smooth manifold.
These ideas are made definite by some definition. A n-dimensional differentiable

manifold,2 M , is a topological space together with a set of pairs (Uα, fα) where the Uα

are open subsets of M such that ∪α∈ AUα = M and each fα is a homeomorphism onto an
open subset of Rn. Furthermore, if the intersection of Uα and Uβ is none empty fαf−1

β

is infinitely differentiable. The open subsets are sometimes called coordinate charts, or
just charts and the maps are called coordinate maps.3

Before going on to examine examples, it should be noted that there are two parts to the
definition, first, the topological space is required to be locally homeomorphic to Rn and
secondly this local homeomorphism is used to require that there is a differential structure.
The second condition can also be stregthned to give an analytic manifold or, though this
never happens in real life, it could be weakened to give a Cs manifold for some 0 < s < ∞.
The second condition also allows us to define a differentiable function: this is a map
between manifolds which is a differential map when extended by the coodinate maps to
give a map between Rn and Rm. A diffeomorphism is a differential one-one map whose
inverse is also differential.

Example 1 An easy example of this is the circle S1. For convenience the circle is taken
to have unit radius so that a point on the circle is (cos θ, sin θ). There is an obvious map
onto the real line given by

f1 : (cos θ, sin θ) 7→ θ (8)

however, this is only a single-valued function if the value of θ is restricted: θ = 0 and
θ = 2π correspond to the same point on the sphere. Thus, a point must be excised4 from
S1 and the coordinate chart is U1 = S1 \ {θ = 0}. Another coordinate chart can be found

2Differentiable, C∞ and smooth are being used to mean the same thing.
3The index set A is mostly a notational convenience, usually there is a small number of charts (Uα, fα),

in the two-sphere example above A = {1, 2}. When defining diffeomorphisms between differential manifolds
it is convenient to consider a maximal set of charts, in this case A becomes a much larger indexing set.
This nicety won’t concern us, but is well described in Spivak, for example.

4excise: ‘to cut out from’
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by using the same map but with a different range:

f2 : (cos θ, sin θ) 7→ θ (9)

and U2 = S1 \ {θ = π}, in other words,

f2 : U2 → (−π, π) (10)

Now the the intersection is made up of two disjoint sets5 {S1|y > 0} and {S1|y < 0}. Thus
the map f1f

−1

2 is made up of two parts

f1f
−1

2 : (−π, 0) ∪ (0, π) → (0, π) ∪ (π, 2π) (11)

with

f1f
−1

2 :

{

θ 7→ θ θ ∈ (0, π)
θ 7→ 2π + θ θ ∈ (−π, 0)

(12)

Clearly this is a differentiable map.
Example 2. Another obvious example is the two-torus T 2 = S1 × S1. Since the torus

is just a Cartesian product of circles, the coordinatization is like the coordinatization of
the circle. In the torus case there are two angles instead of one and to ensure the map is
single valued and continuous, two circles must be removed instead of a point.

Example 3. A useful example is the Riemann sphere, this might seem repetitive
since the two-sphere was already treated as the preliminary example, however, finding the
stereographic coordinates of a sphere is a useful thing to do. For definiteness we consider
the sphere in R3 given by x2 + y2 + z2 = 1 and we will stereographically project onto the
plane z = 0. It is convenient to use the complex coordinate ζ = x + iy on this plane. The
stereographic projection from the north pole of a point on the sphere is found by joining
that point and the sphere by a straight line and continuing the line until it intersects
the plane. The coordinate of that intersection point is the coordinate for the point on
the sphere under stereographic projection. It is shown in Fig. (1) that the stereographic
coordinate of the point (cos θ cos φ, cos θ sin φ, sin θ) is

ζ = eiφ cot
θ

2
. (13)

The chart corresponding to this coordinate map is S2 \ {n}, the north pole is projected to
the point at infinity, which, of course, is not in R2. There is another coordinate map given
by projection from the south pole, the stereographic coordinate for this projection is given
by

ζ ′ = e−iφ tan
θ

2
(14)

5Don’t let this confuse you, you just deal with each bit separately. Each bit is an open set so the gaps
between them don’t affect differentiability
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and corresponds to the coordinate map S1\{s}.6 On the intersection of the two coordinate
charts the two coordinates are related by

ζ ′ =
1

ζ
. (15)

This is a differentiable relation.

n

β

α
α

θ

|ζ|
z = 0

Figure 1: The steregraphic projection of the sphere from n. |ζ| = cot θ/2 follows from
θ + 2α = π and α + β + π/2 = π and hence β = θ/2.

Example 4. Next we look at complex projective space. The complex projective
line, CP1, is the space of lines in two-dimensional complex space. It is the quotient space
{(z1, z2) ∈ C2|(z1, z2) 6= (0, 0)}/ ∼ where ∼ denotes the relation (z1, z2) ∼ (λz1, λz2)
with λ ∈ C×.7 z = z1/z2 is a good coordinate for CP1 since it different for different
equivalence classes and the same for every element of an equivalence class. It is a good
coordinate for every point in CP1 except [(1, 0)]8 Another coordinate is z′ = z2/z1 and this
is a good coordinate everywhere except [(0, 1)]. In the intersection, when neither z1 nor z2

is zero, the two coordinates are related by z ′ = 1/z. This demonstrates that the complex
projective line and the Riemann sphere are identical manifolds. Of course the complex
projective line can be generalized to n complex dimensions to give

CPn = ((z1, z2, . . . , zn+1) ∈ Cn+1|(z1, z2, . . . , zn) 6= (0, 0, . . . , 0)/ ∼ (16)

where ∼ is the equivalence relation (z1, z2, . . . , zn+1) ∼ (λz1, λz2, . . . , λzn+1). Coordi-
nates for a complex projective space are found the same way as the coordinates for
the complex projective line: (z2/z1, z3/z1, . . . , zn+1/z1) are coordinates provided z1 6= 0,
(z1/z2, z3/z2, . . . , zn+1/z2) are coordinates provided z2 6= 0 and so on.

6One possible confusion is that the phase of ζ ′ is the conjugate of the phase of ζ. The point is that
the complex coordinate for the projection from the south pole is x− iy because the projection is onto the
z = 0 plane from below. This choice is justified by the result: a holomorphic relation between the two
coordinates.

7
C
× means the none zero complex numbers, the idea being that multiplication is an invertible operation

on C
×

8[(1, 0)] is the equivalence class of (z1, z2) = (1, 0), that is, it is the point in CP
1 corresponding to the

points in C
2 of the form (λ, 0).
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Example 5 Real projective space is like complex projective space except everything is
real rather than complex. Thus

RPn = {(x1, x2, . . . , xn+1) ∈ Rn+1|(x1, x2, . . . , xn+1) 6= (0, 0, . . . , 0)}/ ∼ (17)

with ∼ being the equivalence relation (x1, x2, . . . , xn+1) ∼ (λx1, λx2, . . . , λxn+1) and this
time λ ∈ R×. Coordinates are found in just the same way that coordinates are found for
CPn, the reason for introducing RPn is not really to talk about coordinates again, but
rather, to give an example of a space with non-trivial homotopy.9

The non-trivial homotopy is easy to understand if you first understand what the man-
ifold looks like. For definiteness we consider the two-dimensional example of RP2. This is
the space of lines through the origin in R3, two points are on the same line through the
origin precisely when they are equivalent under ∼. Now, every point in R3 is equivalent
under ∼ to a point on the sphere

x2

1 + x2

2 + x2

3 = 1 (18)

and so a point on the sphere represents an equivalency class in R3. However, requiring
x2

1 + x2
2 + x2

3 = 1 does not fix λ: on the sphere the two antipodal points (x1, x2, x3) and
(−x1,−x2,−x3) are equivalent. Thus

RP2 = S2/ ∼ |S2 (19)

where ∼ |S2 is the antipodal map. This is all a way of saying that the space of lines through
the origin is the same as the space of directions in space quotiented by the identification
of opposite directions.

It is convenient to remove many of the repeated points, by replacing the sphere by the
hemisphere with x3 ≥ 0. It should be noted though that the equivalence relation still acts
on the circle x3 = 0. Finally, under projection onto the x1x2-plane the closed hemisphere
with x3 ≥ 0 is homeomorphic to the closed ball B̄2

1 . Thus RP2 is homeomorphic to the
closed ball with points on the boundary identified. In other words,

RP2 ≡ {(x1, x2) ∈ R2|x2

1 + x2

2 ≤ 1, antipodal points on the boundary identified}. (20)

With this model for RP2 it is easy to see that it has non-trivial homotopy. Consider a
loop in RP2, if the loop doesn’t touch the boundary it can be continuously deformed to a
point. If it does touches the boundary at one pair of antipodal point, it can’t be deformed
to a point. This is illustrated in Fig. 2. A loop that touches the boundary at two pairs of
antipodal points can be deformed to a point, this is illustrated in Fig.3. Thus it is in the
same class under deformation as the loop that never touches the boundary, but the loop
that touches the boundary once is in a separate class. Two loops that can be deformed into
each other are called homotopic loops and a group whose elements are homotopy classes
of loops may be defined. This group is called the fundamental group.

9I haven’t said what homotopy is yet, the idea is to give an example, then explain what it is and then
define it.
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(ii)(i) (iii)

Figure 2: The loops in (i) and (ii) can be deformed into each other and indeed can be
deformed continuously to a point. However, the loop in (iii) is of a different type and
cannot be deformed continuously to a point.

(ii)(i) (iii)

Figure 3: A loop which touches the boundary at two different points can be deformed to
a point.

Before giving a more formal definition of homotopy and defining the group structure on
the fundamental group, it is interesting to find that the group manifold of SO3, the group
of rotations, is RP3 and the non-triviality of its fundamental group can be easily observed
using a cup and your arm.

SO3 is the group of special orthogonal 3×3 matrices and is obviously the group of
rotations because, if R ∈ SO3 and v ∈ R3 then |Rv|2 = vT RT Rv = vTv = |v|2. In the
same way that RP2 is homeomorphic to the closed two-ball with an antipodal identification
on the boundary, RP3 is homeomorphic to the closed three-ball with antipodal points on
the bounding two-sphere identified. A point in this three-ball can written in the form
(θ/2π)n where n is a unit vector. The correspondence between SO3 and RP3 can be given
by mapping this point to a clockwise rotation by θ around the line given by n. Since a
clockwise rotation of π around n is the same as a clockwise rotation of −π around n this
mapping is consistent with the identification of points on the boundary.10

The loops in RP3 fall into two homotopy classes, the same as for RP2. This means

10Explicitly, a rotation by π about n = (n1, n2, n3) is given by the matrix

Rij(n, θ) = εijknk sin θ + (δij − ninj) cos θ + ninj .
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that there are two types of loops in SO3. This is what is demonstrated using the cup.
In fact, since RP3 = S3/ ∼ there is a map from SU2 to SO3 which identifies antipodal

points in SU2. Explicitely this map is

R(U)ij =
1

2
trace (σiUσjU

−1) (21)

and U and −U have the same image in SO3.
11 In fact, SU2 and SO3 have the same local

group structure12 but the have different topology: there is only one homotopy class of loops
in SU2, there are two homotopy classes in SO3. The striking thing is that electrons and
other fermions, represent the group SU2 not SO3, there is a celebrated discussion of this
phenomena given by Feynman in his Dirac memorial lecture.

11If U is written

U = cos
θ

2
+ i sin

θ

2
n · σ

then the double covering map recovers the parameterization of SO3 given in the previous footnote.
12Or rather, the have the same Lie algebra.
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