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1. (3) Find the Robinson-Walker solution with positive cosmological constant and no matter
for all three values of k.

Solution: So, from what we did in lectures, the accelleration and Freidmann equations
for a matter-free Universe with non-zero Λ are

3ä

a
= Λ

3ȧ2

a2
+

3k

a2
= Λ (1)

Now, the accelleration equation can be solved explicitely to give

a = A cosh κt + B sinh κt (2)

where κ =
√

Λ/3. All we have to do is substitute this into the Freidman equation and
solve for A and B. In fact, there is some ambiguity, the Freidmann equation is only one
equation, so lets start by imposing some initial conditions at t = 0. Obviously changing
t → t = t0 is just a change of A and B. Now suppose we assume t = 0 corresponds to
a = 0 as before, then A = 0 and the Freidman equation gives

κ2 coth2 κt +
k

A2 sinh2 κt
= κ2 (3)

Next, using coth2 κt − 1 = 1/ sinh2 κt, we see that A = 1/κ is a solution provided that
k = −1 and that there is no solution if k = 1 or k = 0. However, we must ask, can we
choose t = 0 so that a(0) = 0 and the answer is that we can, provided there is a t0 such
that a(t0) = 0, if there is then t → t − t0 gives the desired initial condition, however
a(t0) = 0 gives

0 = A + B tanhκt0 (4)

and so this can only be the case if |A| < |B|.

Alternatively we could apply the boundary condition

da

dt
= 0 (5)
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at t = 0. This would mean that B = 0 and we would end up with

κ2 tanh2 κt +
k

B2 cosh2 κt
= κ2 (6)

which is a solution with B = 1/κ provided k = 1. However, the same sort of arguement
as before shows that a solution of this sort only exists when |B| < |A|. Finally, for
|A| = |B| we have

a = Ce±κt (7)

which is a solution provided k = 0.

In short, the accelleration equation is solved by the hyperbolic functions and the acceller-
ation equation is used to find A and B, if |A| < |B| we can take A = 0 by choice of
t0 and we get the k = 1 solution, if |B| < |A| we can take B = 0 and get the k = −1
solution and if |A| = |B| we get the k = 0 solutions. There are solutions for all three
values of k.

2. (2) The particle horizon is the radius of the sphere of all particles that could be seen by
us. It is the maximum straight line distance that could have been travelled by a light ray
since the begining of the universe. Obviously, in a static universe this would be t0. What
is is for a k = 0 dust universe?

Solution: So, if a photon is emitted it recedes for two reason; it is travelling through
space and space is itself expanding. For photons ds2 = 0 so, if a photon is emmitted in
the past at the begining of the universe

dt2 = a2ds2

III (8)

and so the present distance to the photon measured in the fixed 3-space metric is

sIII =

∫ t0

0

dt

a
(9)

where we have chose the positive root. The physical distance at fixed times is given by
asIII so the particle hotizon is

hp = a0

∫ t0

0

dt

a
(10)

For a dust universe a = Ct2/3 for some C and so

hp = 3t0 (11)
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3. (2) What is the particle horizon for an inflating universe.

Solution: For an inflating universe a = CeAt for positive constant A. Thus,

hp = eAt0

∫

dt

eAt
≈ 1

A
eAt0 (12)

where we are now taking t = 0 to correspond to the start of inflation.

4. (1) Find an integral formala for the age of the universe with general k and Λ 6= 0. This
integral is elliptic and can be integrated explicitely in terms of elliptic functions. This is
not required here.

Solution: So, following along like in the next question we have

H2 = ΩMH2 + ΩΛH2 − k

a2
(13)

and using the same substitutions as below we get

H2a2 = ȧ2 =
BM

a
+ BΛa2 − k (14)

where BM is what is called B0 below and BΛ = H2ΩΛ which is a constant since ΩΛ =
Λ/(3H2). Hence, the age of the Universe is given by the elliptic integral

t0 =

∫ a

0

da
√

B2
Λ

+ BM/a − k
(15)

5. (3) Calculate the leading order correction to the age of a dust universe with Ω0 = 1 + ε
and ε > 0. We previously looked at Ω0 = 1 − ε.

Solution: So, the k = 1 this time and so the Freidmann equation is

H2 = ΩH2 − 1

a2
(16)

Evaluating at t = t0 gives

a0 =
1

H
√

Ω0 − 1
(17)

Next, for a dust universe

ρ =
ρ0a

3
0

a3
(18)

or

H2Ω =
Ω0

H0(Ω0 − 1)3/2

1

a3
(19)
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or, substituting back into the Freidmann equation and defining B0 to simplify the con-
stants

H2a2 = B0

1

a
− 1 (20)

and H = ȧa so this gives

t0 =

∫ a0

0

da
√

B0/a − 1
(21)

To do the integral, let a = B0 sin2 θ so da = 2B0 cos θ sin θ and hence

t0 = 2B0

∫ θ0

0

sin2 θdθ = −B0[sin θ cos θ − θ]θ0

0
(22)

where, of course,

θ0 = sin−1

√

a0

B0

= sin−1

√

Ω0 − 1

Ω0

(23)

From this we can use Pythagorous to show

cos θ0 =

√

1

Ω0

(24)

Putting all this together gives

t0 =
1

H0

Ω0

(Ω0 − 1)3/2

[

sin−1

√

Ω0 − 1

Ω0

−
√

Ω0 − 1

Ω0

]

(25)

Now, let
Ω0 = 1 + ε (26)

with small ε and use the well know expansion for arcsin:

sin−1 x = x +
1

6
x3 +

3

40
x5 + O(ε7) (27)

This gives

t0 =
1

H0

1 + ε

ε

[

1√
1 + ε

+
1

6

ε

(1 + ε)3/2
+

3

40

ε2

(1 + ε)5/2
− 1

1 + ε

]

=
2

3

(

1 − 1

5
ε

)

+ O(ε2) (28)
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