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1. (4) Find the Killing vectors for flat space ds2 = dx2

1
+ dx2

2
+ dx2

3
. [Write out Killing’s

equation in flat space, differenciate it once and then solve the resulting differential equa-
tion].

Solution: The Killing’s equation in flat space is

ka,b + kb,a = 0 (1)

Clearly three solutions are given by (1, 0, 0), (0, 1, 0) and (0, 0, 1). Also, if a = b we have
ka,a = 0 where there is no sum on the a. Differenciating the above equation we find that

k
,a
a,b + k

,a
b,a = k

,a
b,a = 0 (2)

so the kb are all harmonic functions, ignoring the constant part, already mentioned, this
gives k = (a1y + a2z, a3x + a4z, a5x + a6y). Now, substitute this back into the Killing’s
equations, remembering that the three a = b equations have already been solve,

a1 + a3 = 0
a2 + a5 = 0
a4 + a6 = 0 (3)

Thus, a basis is given by (y,−x, 0), (−z, 0, x) and (0, z,−y).

2. (3) This question concerns the weak field limit. Let

gµν = ηµν + hµν (4)

where, by a choice of coordinates, hµν satisfies the harmonic gauge condition:

∂µh
µ
ν =

1

2
∂νh (5)

show that the Einstein equations reduce to

−
1

2
∂2hµν +

1

4
ηµν∂

2h = 8πTµν (6)
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where, as usual, h = hµ
µ is the trace. By taking the trace of both sides and solving for

∂2h, show that this can be written as

∂2hµν = −16π

(

Tµν −
1

2
ηµνT

)

(7)

where T = ηµνTµν . These are the linearized Einstein equations.

Solution: So the idea here is to work things out to first order in hµν and then simplify
using the harmonic gauge. Rememeber that to leading order the indices on hµν are raised
and lowered using ηµν . To leading order

Γλ
µν ≈

1

2
ηλρ (∂µhνρ + ∂νhµρ − ∂ρhµν)

=
1

2

(

∂µhλ
ν + ∂νh

λ
µ − ∂λhµν

)

(8)

The Riemann tensor is
R

ρ
µνλ ≈ ∂νΓ

ρ
µλ − ∂µΓρ

νλ (9)

and in fact we only need the Ricci tensor

Rµλ = R
ρ

µρλ ≈ ∂ρΓ
ρ
µλ − ∂µΓρ

ρλ (10)

Substituting from above, this gives

2Rµλ = ∂µ∂ρh
ρ
λ + ∂λ∂ρh

ρ
µ − ∂2hµλ − ∂µ∂λh (11)

and
2R = 2∂λ∂ρh

ρ
λ − 2∂2h (12)

Putting this together to form the Einstein tensor 2Gµν = 2Rµν−gµνR and again replacing
gµν with ηµν to leading order

2Gµλ = ∂µ∂ρh
ρ
λ + ∂λ∂ρh

ρ
µ − ∂2hµλ − ∂µ∂λh − ηµλ∂

ν∂ρh
ρ
ν + ηµλ∂

2h (13)

Now, recall the harmonic gauge condition:

∂µh
µ
ν =

1

2
∂νh (14)

Differenciating this and changing indices

∂λ∂νh
ν
µ =

1

2
∂µ∂λh (15)
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There is a similar equation with µ and λ interchanged and taken together the first two
terms in Gµλ cancel with the fourth term. Differenciating the harmonic relation with
respect to ∂ν gives

∂ν∂µh
µ
ν =

1

2
∂2h (16)

and so the second last term cancels half the last term. Putting all this together gives

−
1

2
∂2hµν +

1

4
ηµν∂

2h = 8πTµν (17)

as required.

Multiplying both sides by ηµν we get

−
1

2
∂2h + ∂2h = 8πT (18)

or
∂2h = 16πT (19)

and substituting this back in gives the linearized Einstein equations.

3. (4) Cosmic strings are long heavy string-like objects which are possibly formed in the
Universe during certain cooling transitions. They were once thought to be resposible for
structure formation. In Cartesian coordinates, the energy momentum tensor for a cosmic
string aligned along the z-axis may be approximated by

Tµν = µδ(x)δ(y)diag(1, 0, 0,−1) (20)

where µ is a small positive constant. Working to linear order in µ show, using the
linearized equations above that the change to the Minkowski metric is given by

h11 = h22 = −8µ log
r

r0

(21)

with all others perturbations zero. Here, r =
√

x2 + y2 and r0 is a length-scale which
cannot be determined here, physically it is related to the radius of validity of the thin
string approximation. By a change of variable in r

(

1 − 8µ log
r

r0

)

r2 = (1 − 8µ)r′2 (22)

and in the azimuthal angle φ, show that the metric can still be written in the cylindrical
form

ds2 = −dt2 + dz2 + dr′2 + r′2dφ′2 (23)

3

but, the new azimuthal angle φ′ does not have period 2π.

Solution: First we apply the weak field equations. First T = ηµνTµν = −2µδ(x)δ(y) and
hence

∂2hµν = −16πµδ(x)δ(y)diag (0, 1, 1, 0) (24)

So the weak field equations are

∂2h11 = −16πµδ(x)δ(y)
∂2h22 = −16πµδ(x)δ(y) (25)

and ∂2hµν = 0 otherwise. There is a bit of difficulty in applying the boundary conditions,
but the arguement goes something like, if possible hµν should go to zero far from the
cosmic string and, since the cosmic string is invariant under z-translations, so should
the solutions. Hence hµν = 0 for all components except h11 and h22, these satisfy the
two-dimensional Laplace equation everywhere except at x = y = 0.

Now, the solution to the two-dimensional Laplace equation is a log, let

h11 = A log
r

r0

(26)

then
∂

∂x
h11 =

Ax

r2
(27)

and
∂2

∂x2
h11 =

A

r2
−

2Ax2

r4
(28)

Hence,
(

∂2

∂x2
+

∂2

∂y2

)

h11 = 0 (29)

everywhere except at r = 0.

Next, we have to check that that
∫

D

∂2h11dxdy = −

∫

D

16πµδ(x)δ(y)dxdy = −16πµ (30)

where D is a disc of radius ρ around x = y = 0. The left hand side integral can be
performed using Green’s theorem on the plane:

∫

D

(

∂f2

∂x
−

∂f1

∂y

)

dxdy =

∮

C

(f1dx + f2dy) (31)
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The integral we are interested in is of this form, with

f1 = −
∂h11

∂y
= −

Ay

r2

f2 =
∂h11

∂x
=

Ax

r2
(32)

so that
∫

D

∂2h11dxdy = −

∮

C

(

Aydx

r2
−

Axdy

r2

)

(33)

where C is a circle of radius ρ, on the circle, r = ρ, x = ρ cos φ and y = ρ sin φ,
substituting this back in we get

∫

D

∂2h11dxdy = A

∮

dφ = 2πAr0 (34)

and hence
A = −8µ (35)

as required.

Now, if we use polar coordinates for x and y we have

dx2 + dy2 = dr2 + r2dφ2 (36)

and the approximate cosmic string metric is

ds2 = −dt2 + dz2 +

(

1 − 8µ log
r

r0

)

(dr2 + r2dφ2) (37)

Now consider the change of variables,

(

1 − 8µ log
r

r0

)

r2 = (1 − 8µ)r′2 (38)

this gives

−
8µ

r
r2dr + 2

(

1 − 8µ log
r

r0

)

rdr = 2(1 − 8µ)r′dr′ (39)

or
(

1 − 4µ − 8µ log
r

r0

)

rdr = (1 − 8µ)r′dr′ (40)

and substituting for the r factor on the left hand side, this gives

(

1 − 4µ − 8µ log
r

r0

) [(

1 − 4µ − 8µ log
r

r0

)

(1 − 8µ)

]

−1/2

dr = dr′ (41)
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and then Taylor expand the left hand side to leading order in µ this gives
(

1 − 4µ log
r

r0

)

dr = dr′ (42)

or, again, by Taylor expansion,
(

1 − 8µ log
r

r0

)

dr2 = dr′2 (43)

If we use all of this in our metric, we get

ds2 = −dt2 + dz2 + dr′2 + (1 − 8µ)r′2dφ2 (44)

Finally, let φ = (1 − 4µ)φ and we have

ds2 = −dt2 + dz2 + dr′2 + r′2dφ′2 (45)

and the point is that this is just like ordinary flat space except that φ′ has a different
range: 0 ≤ φ′ ≤ (1 − 4µ)2π. If is like a wedge of angle 8πµ has been cut out of space.
This is called a conical singularity. As we will argue in the next question it causes image
doubling. This calculation first appeared in

A. Vilenkin, Gravitational field of vacuum domain walls and strings, Phys. Rev. D 23

(1981) 852. and can be downloaded from the PRD website http://prd.aps.org.

4. (2) We have seen in the last question that a cosmic string causes a conical singularity,
space is flat, but the azimuthal angle has period less than 2π. Argue that cosmic strings
cause double images of distant objects.

Solution: So we have seen the space-time far from a cosmic string is like flat space but with
a deficit angle 8πµ; the azimuthal angle doesn’t have the full range: 0 ≤ φ′ ≤ 2π− 8πµ.
This space time can be modelled as ordinary space-time but with a wedge missing of
angle 8πµ. Opposate points on each side of the wedge are identified. Another version of
this model is to join across the wedge to give a cone. There is a curvature singularity at
the point, in a real cosmic string this singularity would be resolved by the full non-linear
behaviour.

The figure show how this results in double images. There are two light rays that reach
the observer, one travels straight from the distant object to the eye, the other crosses
the wedge. Crossing the wedge deflect the ray by 4µπ and so exactly one other ray from
the distant object will reach the eye, causing a second image.
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 Cosmic String

Image of disant object

7


