
442 Tutorial Sheet 3 Solutions1

1. (3) What is the curvature on a cylinder?

Solution: So the best thing is to go to cylindral coördinates,

x = r cos φ
y = r sin φ
z = z (1)

lies on a cylinder of radius r for all values of z and φ. Work our dx, dy and dz, Fix r so
dr = 0 and substitute back into ds2 = dx2 + dy2 + dz2 to get

ds2 = r2dφ2 + dz2 (2)

and, since r is a constant, the metric coefficients are all constants and hence the connec-
tion coefficients are all zero.

2. (4) The Weyl tensor is described as being the trace-free part of the Riemann tensor. It
is a (0,4) tensor with the same symmetries as the Riemann tensor, linear in the Riemann
tensor, having no dependence on derivatives of the metric except through the Riemann
tenson and with all traces vanishing. Find a formula for the Weyl tensor in terms of the
Riemann tensor, the Ricci tensor and the Ricci scalar. [The easiest way to do this is
to write the most general expression with the correct symmetries and the determine any
arbitrary constants by contracting and using the defining quality of the Weyl tensor: it
has zero traces].

Solution: This is done by writing down a general expression with the right symmetries
and then imposing the tracefree conditions which define the Weyl tensor. Now, the Weyl
tensor has the same symmetries as the Riemann tensor and depends only on the metric
and linearly on the Riemann tensor, the Ricci tensor and the Ricci scalar. The only
possible Ricci terms are of the form Rabgcd and Rgabgcd so applying the symmetries tell
us that

Wabcd = Rabcd + A(Racgbd + Rbdgac − Radgbc − Rbcgad) + BR(gacgbd − gbcgad) (3)

Now, we know that
gacWabcd = 0 (4)
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so
Rbd + ARgbd + 4ARbd − ARbd − ARbd + 4BRgbd − BRgbd = 0 (5)

or
Rbd + ARgbd + 2ARbd + 3BRgbd = 0 (6)

and hence A = −1/2 and B = 1/6.

3. (3) Find the time-like geodesics for the metric

ds2 =
1

t2
(

−dt2 + dx2
)

(7)

You might want to use the integral

∫

dt

t
√

1 + C2t2
=

1

2
log

(√
1 + C2t2 − 1√
1 + C2t2 + 1

)

(8)

[Rather than writting out the geodesic equations, it may be easier to note that x is
ignorable and then use proper time as the parameter. This resulting equation is an
integral of the geodesic equation and can be solved to give t(τ) and x(τ).]

Solution: So, for a time like geodesic we have

ds2 = −dτ 2 = − 1

t2
dt2 +

1

t2
dx2 (9)

for real proper time dτ . Using dots for differenciation with respect to τ this gives

−1 =
1

t2
(ẋ2 − ṫ2) (10)

Now, the corresponding Lagrangian L = gabẋ
aẋb is

L =
1

t2
(ẋ2 − ṫ2) (11)

and, since this is independant of x one of the Euler-Lagrange equations is a conservation
equation:

d

dτ

2ẋ

t2
= 0 (12)

Integrating, this means that ẋ = ct2 for some constant c. Substituting back into the
proper distance formula (10)

ṫ2 = t2(1 + c2t2) (13)
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or

dτ =
dt

t
√

1 + c2t2
(14)

and, using the integral given in the question, this means that

e2τ =

√
1 + c2t2 − 1√
1 + c2t2 + 1

(15)

where we have set the integration constant to zero, basically this is saying that t = 0
corresponds to τ = −∞. Solving for

√
1 + c2t2 gives

√
1 + c2t2 = −eτ + e−τ

eτ − e−τ
(16)

or

t =
±1

c sinh τ
(17)

4. (2) Poisson’s fomulation of Newtonian gravity is

∇2φ = 4πρ
g = −∇φ (18)

where ρ is the matter density, φ is the gravitational potential and g is the accelleration
due to gravity. Show this gives the usual Newtonian formula for a point-like source.

Solution: The normal Newtonian formula is that the accelleration due to gravity in the
field of a point like source of strength M is

g = −Mr

r3
(19)

Now, away from r = 0 we have

−∇ · g = ∇2φ = −M∇ r

r3
(20)

and
∂

∂x

x

r3
=

1

r3
− 3x2

r5
(21)

so
∂

∂x

x

r3
+

∂

∂y

y

r3
+

∂

∂z

z

r3
= 0 (22)

and ρ = 0 except at r = 0, in fact, for a point source we expect ρ = δ(x)δ(y)δ(z)M so,
if S is a 2-sphere around the origin and B the ball it contains, we expect

∫ ∫ ∫

B

ρdxdydz = M (23)
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Now,
∫ ∫ ∫

B

∇2φdxdydz = −
∫ ∫ ∫

B

∇ · gdxdydz = −
∫ ∫

S

g · r

r
r2dΩ (24)

by the Gauß theorem. Hence
∫ ∫ ∫

B

∇2φdxdydz =

∫ ∫

S

MdΩ = 4πM (25)

as required.

5. (1) What is the value of φ on the surface of the Earth.

Solution: Well, g = −∇g so

φ =
M

r
(26)

and in this case M is the mass of the earth and r is its radius. Rather than working in
Planck units, notice the overall units, φ is a potential for accelleration, so it should be
L2T−2, M is M and r is L so we need L3M−1T−2, hence a G, that is,

φ =
GM

r
(27)

and the mass of the earth is 6.0 × 1024kg, the radius of the earth is 6.4 × 106 m and
G = 6.7 × 10−11m3kg−1s−2 thus

φ = 7.1 × 10−28 (28)

I think.

6. (3) Find the Newtonian limit of Einstein gravity with cosmological constant.

Solution: So, working with usual approximate solution from the notes, we have the
Einstein equation

R00 −
1

2
Rg00 + Λg00 = 8πρ

Rij −
1

2
Rgij + Λgij ≈ 0 (29)

Now, we can use the spatial equation to eliminate R:

R = g00R00 + gijRij = −R00 +
3

2
R − 3Λ (30)

where we have used gijgij = 3. Now R00 = ∇2φ and R = 2R00 − 6Λ. Finally g00 =
−1 − 2φ so we get

(∇2 − 4Λ)φ = 4πρ +
1

2
Λ (31)
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