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1. (1) Show that T abSb is a tensor, where T and S are tensors.

Solution: So, since they are tensors, if

xa
→ xa′

(1)

then

T ab
→ T a′b′

= Aa′

a Ab′

b T ab

Sa → Sa′ = Aa
a′Sa (2)

hence
T abSb → T a′b′

S ′
b = Aa′

a Ab′

b T abAc
b′Sc (3)

but we know that
Ab′

b Ac
b′ = δc

b (4)

so
T abSb → T a′b′

S ′
b = Aa′

a T abSb (5)

as required.

2. (1) Show that T (ab)V[a|c|b] vanishes, where T and V are tensors.

Solution: Well, remember that

V[a|b|c] =
1

2
(Vabc − Vcba) (6)

and so V[a|b|c] = −V[c|b|a]. Furthermore

T (ab) =
1

2
(T ab + T ba) (7)

and T (ab) = T (ba). Thus
T (ab)V[a|c|b] = −T (ab)V[b|c|a] (8)
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and changing dummy indexes and then using the symmetry of T (ab)

T (ab)V[a|c|b] = −T (ba)V[a|c|b] = −T (ab)V[a|c|b] (9)

3. (1) Show that T ab
e = T abc

deδ
d
c is a tensor.

Solution: So, this is very long to write out, but here goes, under

xa
→ xa′

(10)

we have
T abc

de → T a′b′c′

d′e′ = Aa′

a Ab′

b Ac′

c Ad
d′Ae

e′T abc
de (11)

Thus
T abd

de → T a′b′d′

d′e′ = Aa′

a Ab′

b Ad′

c Ad
d′Ae

e′T abc
de = Aa′

a Ab′

b Ae
e′T abd

de (12)

where we have used
Ad′

c Ad
d′ = δd

c (13)

Alternatively, observer that δb
a is a tensor, say T b

a = δb
a in some coördinate system, then,

under a coördinate transformation

T b
a 7→ T b′

a′ = Aa
a′Ab′

b T b
a = Aa

a′Ab′

b δb
a = Aa

a′Ab′

a = δb′

a′ (14)

Thus, the Kronecker delta is a tensor. The contraction and multiplication properties of
tensors can now be invoked.

4. (1) Show that T ab = −T ba in one coördinate system implies that T a′b′

= −T b′a′

in
another coördinate system.

Solution: Well
T a′b′

= Aa′

a Ab′

b T ab (15)

and hence
T b′a′

= Ab′

a Aa′

b T ab (16)

then changin the dummy indices and then using the antisymmetry of T we have

T b′a′

= Ab′

b Aa′

a T ba = −Ab′

b Aa′

a T ab = −T a′b′

(17)

2



Solution: Well
T a′b′

= Aa′

a Ab′

b T ab (18)

and hence
T b′a′

= Ab′

a Aa′

b T ab (19)

then changin the dummy indices and then using the antisymmetry of T we have

T b′a′

= Ab′

b Aa′

a T ba = −Ab′

b Aa′

a T ab = −T a′b′

(20)

5. (3) Write 4f in two-dimensional polar coordinates using the torsion free metric connec-
tion..

Solution: So,
4f = DaD

af = Da∂
af (21)

where we have used the fact that f is a scalar. Now, from the formula for the covariant
derivative

4f = ∂a∂
af + Γa

ab∂
bf (22)

Hence, we need to work out the connection coefficients with the up index equal to the
first down index. Now, for polar coördinates

ds2 = dr2 + r2dθ2 (23)

or

[gab] =

(

1 0
0 r2

)

(24)

and
[

gab
]

=

(

1 0
0 1/r2

)

(25)

Using the fact that this is diagonal, we have

Γr
rr =

1

2
grr,r = 0

Γr
rθ =

1

2
grr,θ = 0

Γθ
θθ =

1

2r2
gθθ,θ = 0

Γθ
rθ =

1

2r2
gθθ,r =

1

r
(26)

So the only nonzero entry is Γθ
rθ and so we conclude

4f =
∂2

∂r2
f +

1

r2

∂2

∂θ2
f +

1

r

∂

∂r
f (27)
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6. (3) Show that torsion is a tensor.

Solution: So,
det ga′b′ = det

(

Aa
a′Ab

b′ga′b′

)

= (det Aa
a′)2det gab (28)

Solution: So, to recall, the transformation property of the connection coefficients is

Γa
bc → Γa′

b′c′ = Ab
b′Ac

c′Aa′

a Γa
bc − Ab

b′Ac
c′(∂bA

a′

c ) (29)

Now, torsion is the anti-symmetric part of the connection

T a
bc =

1

2
(Γa

bc − Γa
cb) (30)

Using the tranformation law above, this means that

2T a′

b′c′ = Ab
b′Ac

c′Aa′

a Γa
bc − Ab

b′Ac
c′(∂bA

a′

c ) − Ab
c′Ac

b′Aa′

a Γa
bc + Ab

c′Ac
b′(∂bA

a′

c )
= Ab

b′Ac
c′Aa′

a 2T a
bc + Ab

c′Ac
b′(∂bA

a′

c ) − Ab
b′Ac

c′(∂bA
a′

c ) (31)

Now, expanding out the notation,

∂bA
a′

c =
∂2xa′

∂xb∂xc
(32)

is symmetric in b and c, this allows us to cancel the two non-tensor terms in the trans-
formation law, proving the result.

7. (1) Find the transformation law for detgab.

Solution: So
det ga′b′ = det

(

Aa
a′Ab

b′ga′b′

)

= (det Aa
a′)2det gab (33)

8. (3) Show that ∇ag
bc = 0 for a torsion free metric connection.

Solution: First, from the Leibnitz rule

∇a

(

gbcgcd

)

= ∇aδ
b
d
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=
(

∇ag
bc
)

gcd + gbc
∇agcd (34)

and ∇agcd = 0 for a metric connection. Furthermore, since gbc is defined as the inverse
of gcd we must be assuming that the metric is invertible and so, we need only to show
∇aδ

b
d = 0. From the action of the covariant derivative on a (1,1) tensor we know

∇aδ
b
d = ∂aδ

b
d + Γd

aeδ
e
b − Γe

abδ
d
e (35)

but, the first term is zero since the delta is constant and the other two terms cancel.
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