MA3466 Tutorial Sheet 6: solutions to q1-3 ${ }^{1}$

6 April 2010

1. (C\& T 3.2) AEP and mutual information. Let $\left(X_{i}, Y_{i}\right)$ be i.i.d with joint distributions $p(x, y)$. We form the \log likelhood ration of the hypothesis that X and Y are independent versus the hypothesis that they are dependent. What is the limit of

$$
\begin{equation*}
\frac{1}{n} \log \frac{p(\mathbf{X}) p(\mathbf{Y})}{p(\mathbf{X}, \mathbf{Y})} \tag{1}
\end{equation*}
$$

Solution:This is done in a way that mimics the original proof of the AEP; first we use independence

$$
\begin{equation*}
\frac{1}{n} \log \frac{p(\mathbf{X}) p(\mathbf{Y})}{p(\mathbf{X}, \mathbf{Y})}=\frac{1}{n} \log \frac{\prod_{i} p\left(X_{i}\right) p\left(Y_{i}\right)}{\prod_{i} p\left(X_{i}, Y_{i}\right)}=\frac{1}{n} \sum_{i} \log \frac{p\left(X_{i}\right) p\left(Y_{i}\right)}{p\left(X_{i}, Y_{i}\right)} \tag{2}
\end{equation*}
$$

Now, if the X_{i} and the Y_{i} are i.i.d. then is the expression in the sum; so, in the sense of the law of the large numbers

$$
\begin{equation*}
\frac{1}{n} \log \frac{p(\mathbf{X}) p(\mathbf{Y})}{p(\mathbf{X}, \mathbf{Y})} \rightarrow E \log \frac{p(X) p(Y)}{p(X, Y)}=-I(X, Y) \tag{3}
\end{equation*}
$$

2. (C\& T 3.3) A piece of cake. A cake is sliced roughly in half and the largest piece selected each time, the other bits being discarded. Assume $p(2 / 3,1 / 3)=3 / 4$ and $p(2 / 5,3 / 5)=1 / 4$. How large, to the first order in the exponent, is the piece of cake after n cuts.
Solution:So here if there are $b 2 / 3$ cuts and $s 3 / 5$ cuts the size of the remaining piece will be

$$
\begin{equation*}
S=\left(\frac{2}{3}\right)^{b}\left(\frac{3}{5}\right)^{s} \approx\left(\frac{2}{3}\right)^{3 n / 4}\left(\frac{3}{5}\right)^{n / 4} \tag{4}
\end{equation*}
$$

to leading order.
3. (C\& T 3.6) AEP-like limit. Let X_{1}, X_{2} and so on be i.i.d., drawn with distribution $p(x)$, what is

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[p\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]^{1 / n} \tag{5}
\end{equation*}
$$

For this you need to know the strong law of large numbers: to prove the AEP we used the weak law:

$$
\begin{equation*}
\frac{1}{n} \sum X_{i} \rightarrow E X \tag{6}
\end{equation*}
$$

in probability, the strong law states that it approaches it almost surely.

[^0]Solution:So the trick here is to use a \log so as to be able to change a product into a sum

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left[p\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]^{1 / n} & =\lim _{n \rightarrow \infty} 2^{\log \left[p\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]^{1 / n}} \\
& =\lim _{n \rightarrow \infty} 2^{\frac{1}{n} \sum \log p\left(X_{i}\right)}=2^{E \log p(X)}=2^{-H(X)} \tag{7}
\end{align*}
$$

[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

