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. (C& T 3.2) AEP and mutual information. Let(X;,Y;) be i.i.d with joint distribu-
tions p(z,y). We form the log likelhood ration of the hypothesis that X and Y are
independent versus the hypothesis that they are dependent. What is the limit of
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Solution:This is done in a way that mimics the original proof of the AEP; first we
use independence
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Now, if the X; and the Y; are i.i.d. then is the expression in the sum; so, in the sense
of the law of the large numbers
L pX)p(Y) p(X)p(Y)
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. (C& T 3.3) A piece of cake. A cake is sliced roughly in half and the largest piece
selected each time, the other bits being discarded. Assume p(2/3,1/3) = 3/4 and
p(2/5,3/5) = 1/4. How large, to the first order in the exponent, is the piece of cake
after n cuts.

Solution:So here if there are b 2/3 cuts and s 3/5 cuts the size of the remaining piece
will be . sn/d P
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. (C& T 3.6) AEP-like limit. Let X3, X5 and so on be i.i.d., drawn with distribution
p(x), what is

to leading order.

lim [p(X1, X, ..., X))/ (5)
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For this you need to know the strong law of large numbers: to prove the AEP we
used the weak law:
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in probability, the strong law states that it approaches it almost surely.
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Solution:So the trick here is to use a log so as to be able to change a product into a
sum
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