MA3466 Tutorial Sheet 4, outline solutions, q2 ${ }^{1}$

22 March 2010

1. (C\&T 2.16) Bottleneck. Given a Markov chain $X_{1} \rightarrow X_{2} \rightarrow X_{3}$ where the sets of outcomes have cardinalities $\left|\mathcal{X}_{1}\right|=n,\left|\mathcal{X}_{2}\right|=k$ and $\left|\mathcal{X}_{3}\right|=m$ with k is less than both m and n.
(a) Show that the dependence of X_{1} and X_{3} is limited by the bottleneck by proving that $I\left(X_{1} ; X_{3}\right) \leq \log k$.
(b) Evaluate $I\left(X_{1} ; X_{3}\right)$ for $k=1$ and conclude that no dependence can survive such a bottleneck.

Solution:Well by the data processing inequality $I\left(X_{1} ; X_{3}\right) \leq I\left(X_{1} ; X_{2}\right)$ but

$$
\begin{equation*}
I\left(X_{1} ; X_{2}\right) \leq H\left(X_{2}\right)-H\left(X_{2} \mid X_{1}\right) \leq H\left(X_{2}\right) \leq \log k \tag{1}
\end{equation*}
$$

where the second inequality replaces the entropy by its maximum. Now, if $k=1$ then $I\left(X_{1} ; X_{3}\right)=0$ since $\log 1=0$.
2. Consider the game of $\&^{\mathrm{TM}}$: a board game with numbered squares, the idea being to race your token along the square by flipping a coin, heads you advance one place, tails you stay put. Let Y_{1}, Y_{2} and Y_{3} be you position after one, two and three turns. Clearly $Y_{1} \rightarrow Y_{2} \rightarrow Y_{3}$, show this by calculating the conditional probabilites and showing

$$
\begin{equation*}
p(x, y, z)=p(x) p(x \mid y) p(z \mid y) \tag{2}
\end{equation*}
$$

Calculate $I\left(Y_{1} ; Y_{2}\right)$ and $I\left(Y_{1} ; Y_{3}\right)$.
3. (C\&T 2.43b) A fair six-sided dice is rolled. What is the mutual information between the top face of the dice and the side most facing you?
Solution:Well

$$
\begin{equation*}
I(X ; Y)=H(X)-H(X \mid Y) \tag{3}
\end{equation*}
$$

Here we use X to denote the front of the dice and Y the front. Obviously

$$
\begin{equation*}
H(X)=\log 6=1+\log 3 \tag{4}
\end{equation*}
$$

since all possibilities are equally likely and six is the number of possibilities. On the other hand, if the top has a given value, say one, the front has four equally likely values, so,

$$
\begin{equation*}
H(X \mid Y=1)=\log 4=2 \tag{5}
\end{equation*}
$$

[^0]and $H(X \mid Y)$ is the average of the $H(X \mid Y=y)$ values; since they are all equally likely
\[

$$
\begin{equation*}
H(X \mid Y)=2 \tag{6}
\end{equation*}
$$

\]

so

$$
\begin{equation*}
I(X ; Y)=H(X)-H(X \mid Y)=\log 3-1 \tag{7}
\end{equation*}
$$

4. (C\&T 2.29) For random variables X, Y and Z prove the following inequalities and find conditions for equality
(a) $H(X, Y \mid Z) \geq H(X \mid Z)$
(b) $I(X, Y ; Z) \geq I(X ; Z)$
(c) $H(X, Y, Z)-H(X, Y) \leq H(X, Z)-H(X)$
(d) $I(X ; Z \mid Y) \geq I(Z ; Y \mid X)-I(Z ; Y)+I(X ; Z)$

Solution:For $H(X, Y \mid Z) \geq H(X \mid Z)$ we have

$$
\begin{equation*}
H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z) \geq H(X \mid Z) \tag{8}
\end{equation*}
$$

using the chain rule. There is equality if $H(Y \mid X, Z)=0$, that is, Y is a function of X and Z. Next $I(X, Y ; Z) \geq I(X ; Z)$; now

$$
\begin{equation*}
I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X) \geq I(X ; Z) \tag{9}
\end{equation*}
$$

with equality if $I(Y ; Z \mid X)=0$, that is, if Y and Z are conditionally independent given X. For $H(X, Y, Z)-H(X, Y) \leq H(X, Z)-H(X)$ well, using the chain rule

$$
\begin{equation*}
H(X, Y, Z)-H(X, Y)=H(Z \mid X, Y) \tag{10}
\end{equation*}
$$

and, similarily

$$
\begin{equation*}
H(X, Z)-H(X)=H(Z \mid X) \geq H(Z \mid X, Y) \tag{11}
\end{equation*}
$$

with equality when $H(Z \mid X)-H(Z \mid X, Y)=I(Z ; Y \mid X)=0$ which happens when Z and Y are conditionally independent given X. Finally $I(X ; Z \mid Y) \geq I(Z ; Y \mid X)-$ $I(Z ; Y)+I(X ; Z)$; well, by the chain rule for mutual information in different orders

$$
\begin{align*}
& I(X, Y ; Z)=I(X ; Z \mid Y)+I(Z ; Y) \\
& I(X, Y ; Z)=I(Y ; Z \mid X)+I(Z ; X) \tag{12}
\end{align*}
$$

so $I(X ; Z \mid Y)+I(Z ; Y)=I(Y ; Z \mid X)+I(Z ; X)$ and moving the $I(Z ; Y)$ over the equals we see that the inequality in the question is actually an equality.

[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

