MA3466 Tutorial Sheet 4, outline solutions, except q2

22 March 2010

2 Consider the game of $\&^{\mathrm{TM}}$: a board game with numbered squares, the idea being to race your token along the square by flipping a coin, heads you advance one place, tails you stay put. Let Y_{1}, Y_{2} and Y_{3} be you position after one, two and three turns. Clearly $Y_{1} \rightarrow Y_{2} \rightarrow Y_{3}$, show this by calculating the conditional probabilites and showing

$$
\begin{equation*}
p(x, y, z)=p(x) p(x \mid y) p(z \mid y) \tag{1}
\end{equation*}
$$

Calculate $I\left(Y_{1} ; Y_{2}\right)$ and $I\left(Y_{1} ; Y_{3}\right)$.
Solution:Well $p(x, y, z)$ has eight elements but they are all the same since the actual coin flips are independent, hence

$$
\begin{align*}
p(0,0,0) & =p(0,0,1)=p(0,1,1)=p(0,1,2) \\
& =p(1,1,1)=p(1,1,2)=p(1,2,2)=p(1,2,3)=\frac{1}{8} \tag{2}
\end{align*}
$$

Now the thing is the marginal distributions aren't so evenly distributioned, just looking above

$$
\begin{equation*}
p_{Y_{3}}(0)=\frac{1}{8}, p_{Y_{3}}(1)=\frac{3}{8}, p_{Y_{3}}(2)=\frac{3}{8}, p_{Y_{3}}(1)=\frac{1}{8} \tag{3}
\end{equation*}
$$

for example. However, the marginal distributions are also all the same; given Y_{2} for example, there are two possilibities for Y_{3}, it can be the same as Y_{2} for tails and one greater than Y_{2} for heads, so

$$
\begin{equation*}
p_{Y_{2} \mid Y_{3}}(y, z)=\frac{1}{2} \tag{4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
p(x, y, z)=p(x) p(x \mid y) p(z \mid y) \tag{5}
\end{equation*}
$$

simply reduces to

$$
\begin{equation*}
\frac{1}{8}=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \tag{6}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

