MA3466 Tutorial Sheet 3, outline solutions ${ }^{1}$

22 March 2010

1. (C\&T 2.2) Entropy of functions. Let X be a random variable taking on a finite number of values. What is the general inequality relating $H(X)$ and $H(Y)$ if
(a) $Y=2^{X}$
(b) $Y=\cos X$

Solution:The key point here is that if $Y=g(X)$ then X determines Y but the converse may or may not be true. This means that $H(Y \mid X)=0$ since Y is not random is the outcome of X is known. However $H(X \mid Y)$ may not be zero if the function is not invertible.
In the first example it is true because the function is one-to-one. First, because $Y=2^{X}$

$$
\begin{equation*}
p\left(Y=2^{x} \mid X=x\right)=1 \tag{1}
\end{equation*}
$$

and so $H(X, Y)=H(X)+H(Y \mid X)=H(X) ; H(Y \mid X)=0$ because

$$
\begin{equation*}
H(Y \mid X)=\sum p(x) H(Y \mid X=x) \tag{2}
\end{equation*}
$$

and all the terms in the sum in

$$
\begin{equation*}
H(Y \mid X=x)=\sum p(y \mid x) \log p(y \mid x) \tag{3}
\end{equation*}
$$

are zero, either because $y=2^{x}$ so that $p(y \mid x)=1$ and its \log is zero, or $y \neq 2^{x}$ and $x \log x$ goes to zero as x goes to zero. The converse is also true, $X=\log X$ and so

$$
\begin{equation*}
H(X, Y)=H(Y)+H(X \mid Y)=H(Y) \tag{4}
\end{equation*}
$$

and so $H(X)=H(Y)$. The situation is different for $Y=\cos X$, this is not, in general, an invertable function. Hence, it is still true that $H(Y \mid X)=0$ because X still determines Y; however $H(X \mid Y)$ may not be zero, there may be y such that the set $\cos ^{-1} y=\{x \in \mathcal{X} \mid \cos x=y\}$ may have more than one element and so knowing $Y=y$ tells you $x \in \cos ^{-1} y$, but it doesn't tell you what X is. Hence

$$
\begin{equation*}
H(X)=H(X, Y)=H(Y)+H(X \mid Y) \geq H(Y) \tag{5}
\end{equation*}
$$

where we know $H(X \mid Y) \geq 0$ because entropy is always positive.

[^0]To illustrate this further, lets consider two examples, first, if $\mathcal{X}=\{0, \pi\}$ then the function is invertible, $\mathcal{Y}=\{1,-1\}$ and if $Y=1, X=0$, if $Y=-1, X=\pi$. Here the inequality will be sharp. On the other hand, say $\mathcal{X}=\{0, \pi, 2 \pi\}$ and

$$
\begin{equation*}
p_{X}(0)=p_{X}(\pi)=p_{X}(2 \pi)=1 / 3 \tag{6}
\end{equation*}
$$

now $\mathcal{Y}=\{1,-1\}$ with $p_{Y}(1)=2 / 3$ and $p_{Y}(-1)=1 / 3$. Hence

$$
\begin{align*}
H(X) & =\log 3 \\
H(Y) & =\log 3-\frac{2}{3} \tag{7}
\end{align*}
$$

and $H(Y)<H(X)$; the point being that $H(X \mid Y) \neq 0$, if $Y=1, X$ could be zero or 2π with equal probability so $H(X \mid Y=1)=1$ and

$$
\begin{equation*}
H(X \mid Y)=\frac{2}{3} H(X \mid Y=1)+\frac{1}{3} H(X \mid Y=-1)=\frac{2}{3} \tag{8}
\end{equation*}
$$

2. (C\&T 2.4) Entropy of functions of a random variable. Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps

$$
\begin{align*}
H(X, g(X)) & =H(X)+H(g(X) \mid X) \\
& =H(X) \\
H(X, g(X)) & =H(g(X))+H(X \mid g(X)) \geq H(g(X)) \tag{9}
\end{align*}
$$

and hence $H(g(X)) \leq H(X)$.
Solution:The key point here is that if $Y=g(X)$ then X determines Y but the converse may or may not be true. In the first example it is true because the function is one-to-one. First, because $Y=2^{X}$

$$
\begin{equation*}
p\left(Y=2^{x} \mid X=x\right)=1 \tag{10}
\end{equation*}
$$

and so $H(X, Y)=H(X)+H(Y \mid X)=H(X) ; H(Y \mid X)=0$ because

$$
\begin{equation*}
H(Y \mid X)=\sum p(x) H(Y \mid X=x) \tag{11}
\end{equation*}
$$

and all the terms in the sum in

$$
\begin{equation*}
H(Y \mid X=x)=\sum p(y \mid x) \log p(y \mid x) \tag{12}
\end{equation*}
$$

are zero, either because $y=2^{x}$ so that $p(y \mid x)=1$ and its \log is zero, or $y \neq 2^{x}$ and $x \log x$ goes to zero as x goes to zero. The converse is also true, $X=\log X$ and so

$$
\begin{equation*}
H(X, Y)=H(Y)+H(X \mid Y)=H(Y) \tag{13}
\end{equation*}
$$

and so $H(X)=H(Y)$. The situation is different for $Y=\cos X$, this is not, in general, an invertable function. Hence, it is still true that $H(Y \mid X)=0$ because X still determines Y; however $H(X \mid Y)$ may not be zero, there may be y such that the set $\cos ^{-1} y=\{x \in \mathcal{X} \mid \cos x=y\}$ may have more than one element and so knowing $Y=y$ tells you $x \in \cos ^{-1} y$, but it doesn't tell you what X is. Hence

$$
\begin{equation*}
H(X)=H(X, Y)=H(Y)+H(X \mid Y) \geq H(Y) \tag{14}
\end{equation*}
$$

where we know $H(X \mid Y) \geq 0$ because entropy is always positive.
To illustrate this further, lets consider two examples, first, if $\mathcal{X}=\{0, \pi\}$ then the function is invertible, $\mathcal{Y}=\{1,-1\}$ and if $Y=1, X=0$, if $Y=-1, X=\pi$. Here the inequality will be sharp. On the other hand, say $\mathcal{X}=\{0, \pi, 2 \pi\}$ and

$$
\begin{equation*}
p_{X}(0)=p_{X}(\pi)=p_{X}(2 \pi)=1 / 3 \tag{15}
\end{equation*}
$$

now $\mathcal{Y}=\{1,-1\}$ with $p_{Y}(1)=2 / 3$ and $p_{Y}(-1)=1 / 3$. Hence

$$
\begin{align*}
H(X) & =\log 3 \\
H(Y) & =\log 3-\frac{2}{3} \tag{16}
\end{align*}
$$

and $H(Y)<H(X)$; the point being that $H(X \mid Y) \neq 0$, if $Y=1, X$ could be zero or 2π with equal probability so $H(X \mid Y=1)=1$ and

$$
\begin{equation*}
H(X \mid Y)=\frac{2}{3} H(X \mid Y=1)+\frac{1}{3} H(X \mid Y=-1)=\frac{2}{3} \tag{17}
\end{equation*}
$$

3. (C\&T 2.8) Drawing with and without replacement. An urn contains r red, w white and b black balls. Which has higher entropy, drawing $k \geq 2$ balls from the urn with replacement or without replacement?

Solution:So the answer to this question relies on the fact that the probability distribution for the n drawing is the same irrespive of whether there is replacement or not. Lets use X to denote drawing from an urn with r red balls, w white balls and b black balls, so, with $n=b+r+w$

$$
\begin{align*}
p_{X}\left(c_{r}\right) & =\frac{r}{n} \tag{18}\\
p_{X}\left(c_{w}\right) & =\frac{w}{n} \\
p_{X}\left(c_{b}\right) & =\frac{b}{n}
\end{align*}
$$

whre c_{r} is red and so on. Now, if X_{i} is the i th drawing with replacement, then clearly the X_{i} are independent and $p_{X_{i}}(x)=p_{X}(x)$ for $x \in \mathcal{X}=\left\{c_{r}, c_{b}, c_{w}\right\}$.
Now, let Y_{i} be the i th drawing with replacement: although the Y_{i} are not independent $p_{Y_{i}}(x)=p_{X}(x)$ for $x \in \mathcal{X}$. To see this, note $Y_{1}=X$ and assume it is true for Y_{i} and consider Y_{i+1} :

$$
p_{Y_{i+1}}\left(c_{r}\right)=p_{\left(Y_{i+1}, Y_{i}\right)}\left(c_{r}, c_{r}\right)+p_{\left(Y_{i+1}, Y_{i}\right)}\left(c_{r}, c_{w}\right)+p_{\left(Y_{i+1}, Y_{i}\right)}\left(c_{r}, c_{b}\right)
$$

$$
\begin{align*}
= & p_{Y_{i+1} \mid Y_{i}}\left(c_{r} \mid c_{r}\right) p_{Y_{i}}\left(c_{r}\right) \\
& +p_{Y_{i_{i+1}} \mid Y_{Y^{\prime}}}\left(c_{r} \mid c_{w}\right) p_{Y_{i}}\left(c_{w}\right)+p_{Y_{i+1} \mid Y_{i}}\left(c_{r} \mid c_{b}\right) p_{Y_{i}}\left(c_{b}\right) \\
= & \frac{r-1}{n-1} \frac{r}{n}+\frac{r}{n-1} \frac{w}{n}+\frac{r}{n-1} \frac{b}{n}=\frac{r}{n}=p_{X}\left(c_{r}\right) \tag{19}
\end{align*}
$$

This means, using the chain rule and the conditioning theorem

$$
\begin{align*}
H\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) & =H\left(Y_{1}\right)+H\left(Y_{2} \mid Y_{1}\right)+H\left(Y_{3} \mid Y_{2}, Y_{1}\right)+\ldots+H\left(Y_{n} \mid Y_{n-1}, \ldots, Y_{1}\right) \\
& \leq \sum H\left(Y_{i}\right)=n H(X)=H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \tag{20}
\end{align*}
$$

with equality if and only if the Y_{i} were independent which they aren't, hence

$$
\begin{equation*}
H\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)<H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \tag{21}
\end{equation*}
$$

4. (C\&T 2.14) Enropy of a sum. Let X and Y be random variables that take on values $x_{1}, x_{2}, \ldots, x_{r}$ and $y_{1}, y_{2}, \ldots, y_{s}$ respectively. Let $Z=X+Y$.
(a) Show that $H(Z \mid X)=H(Y \mid X)$. Argue that if X and Y are independent then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus the addition of independent random variables add uncertainy.
(b) Give an example of random variables for which $H(X)>H(Z)$ and $H(Y)>$ $H(Z)$.
(c) Under what conditions does $H(Z)=H(X)+H(Y)$.

Solution:So, given X, Y determines Z and visa versa, so $H(Z \mid X)=H(Y \mid X)$. Now, we know that

$$
\begin{equation*}
H(Y \mid X)=H(Z \mid X) \leq H(Z) \tag{22}
\end{equation*}
$$

but, if X and Y are independent, $H(Y \mid X)=H(Y)$, so $H(Y) \leq H(Z) ; H(X) \leq H(Z)$ follow by a similar arguement. Thus, if we want $H(X)>H(Z)$, we need X and Y dependent. In fact, we want X and Y to be dependent in such a way that adding them gives something less uncertain; as an example, let $Y=-X$ so $Z=0$ always and so, $H(Z)=0$ and is less than $H(X)=H(Y)$ for any non-trivial choice of X. Finally,

$$
\begin{equation*}
H(X+Y)=H(X, Y) \tag{23}
\end{equation*}
$$

if the addition is invertible, that is, if there are unique X and Y for any $X+Y$; this would happen, for example, if $\mathcal{X}=\{1,2\}$ and $\mathcal{Y}=\{1,3\}$ since the possible values of the sum are 2, 3, 4 and 5 and each correponds to a different choice of X and Y; however, if $\mathcal{X}=\{1,2\}$ and $\mathcal{Y}=\{1,2\}$ then $X=1, Y=2$ and $X=2, Y=1$ both give $X+Y=3$. Now

$$
\begin{equation*}
H(X, Y)=H(X)+H(Y \mid X) \tag{24}
\end{equation*}
$$

and $H(Y \mid X)+H(Y)$ if X and Y are independent.

[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

