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1. (C&T 2.2) Entropy of functions. Let X be a random variable taking on a finite
number of values. What is the general inequality relating H(X) and H(Y ) if

(a) Y = 2X

(b) Y = cos X

Solution:The key point here is that if Y = g(X) then X determines Y but the
converse may or may not be true. This means that H(Y |X) = 0 since Y is not
random is the outcome of X is known. However H(X|Y ) may not be zero if the
function is not invertible.

In the first example it is true because the function is one-to-one. First, because
Y = 2X

p(Y = 2x|X = x) = 1 (1)

and so H(X, Y ) = H(X) + H(Y |X) = H(X); H(Y |X) = 0 because

H(Y |X) =
∑

p(x)H(Y |X = x) (2)

and all the terms in the sum in

H(Y |X = x) =
∑

p(y|x) log p(y|x) (3)

are zero, either because y = 2x so that p(y|x) = 1 and its log is zero, or y 6= 2x and
x log x goes to zero as x goes to zero. The converse is also true, X = log X and so

H(X, Y ) = H(Y ) + H(X|Y ) = H(Y ) (4)

and so H(X) = H(Y ). The situation is different for Y = cos X, this is not, in
general, an invertable function. Hence, it is still true that H(Y |X) = 0 because X
still determines Y ; however H(X|Y ) may not be zero, there may be y such that the
set cos−1y = {x ∈ X |cosx = y} may have more than one element and so knowing
Y = y tells you x ∈ cos−1 y, but it doesn’t tell you what X is. Hence

H(X) = H(X, Y ) = H(Y ) + H(X|Y ) ≥ H(Y ) (5)

where we know H(X|Y ) ≥ 0 because entropy is always positive.
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To illustrate this further, lets consider two examples, first, if X = {0, π} then the
function is invertible, Y = {1,−1} and if Y = 1, X = 0, if Y = −1, X = π. Here
the inequality will be sharp. On the other hand, say X = {0, π, 2π} and

pX(0) = pX(π) = pX(2π) = 1/3 (6)

now Y = {1,−1} with pY (1) = 2/3 and pY (−1) = 1/3. Hence

H(X) = log 3

H(Y ) = log 3 −
2

3
(7)

and H(Y ) < H(X); the point being that H(X|Y ) 6= 0, if Y = 1, X could be zero or
2π with equal probability so H(X|Y = 1) = 1 and

H(X|Y ) =
2

3
H(X|Y = 1) +

1

3
H(X|Y = −1) =

2

3
(8)

2. (C&T 2.4) Entropy of functions of a random variable. Let X be a discrete random
variable. Show that the entropy of a function of X is less than or equal to the entropy
of X by justifying the following steps

H(X, g(X)) = H(X) + H(g(X)|X)
= H(X),

H(X, g(X)) = H(g(X)) + H(X|g(X)) ≥ H(g(X)) (9)

and hence H(g(X)) ≤ H(X).

Solution:The key point here is that if Y = g(X) then X determines Y but the
converse may or may not be true. In the first example it is true because the function
is one-to-one. First, because Y = 2X

p(Y = 2x|X = x) = 1 (10)

and so H(X, Y ) = H(X) + H(Y |X) = H(X); H(Y |X) = 0 because

H(Y |X) =
∑

p(x)H(Y |X = x) (11)

and all the terms in the sum in

H(Y |X = x) =
∑

p(y|x) log p(y|x) (12)

are zero, either because y = 2x so that p(y|x) = 1 and its log is zero, or y 6= 2x and
x log x goes to zero as x goes to zero. The converse is also true, X = log X and so

H(X, Y ) = H(Y ) + H(X|Y ) = H(Y ) (13)
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and so H(X) = H(Y ). The situation is different for Y = cos X, this is not, in
general, an invertable function. Hence, it is still true that H(Y |X) = 0 because X
still determines Y ; however H(X|Y ) may not be zero, there may be y such that the
set cos−1y = {x ∈ X |cosx = y} may have more than one element and so knowing
Y = y tells you x ∈ cos−1 y, but it doesn’t tell you what X is. Hence

H(X) = H(X, Y ) = H(Y ) + H(X|Y ) ≥ H(Y ) (14)

where we know H(X|Y ) ≥ 0 because entropy is always positive.

To illustrate this further, lets consider two examples, first, if X = {0, π} then the
function is invertible, Y = {1,−1} and if Y = 1, X = 0, if Y = −1, X = π. Here
the inequality will be sharp. On the other hand, say X = {0, π, 2π} and

pX(0) = pX(π) = pX(2π) = 1/3 (15)

now Y = {1,−1} with pY (1) = 2/3 and pY (−1) = 1/3. Hence

H(X) = log 3

H(Y ) = log 3 −
2

3
(16)

and H(Y ) < H(X); the point being that H(X|Y ) 6= 0, if Y = 1, X could be zero or
2π with equal probability so H(X|Y = 1) = 1 and

H(X|Y ) =
2

3
H(X|Y = 1) +

1

3
H(X|Y = −1) =

2

3
(17)

3. (C&T 2.8) Drawing with and without replacement. An urn contains r red, w white
and b black balls. Which has higher entropy, drawing k ≥ 2 balls from the urn with
replacement or without replacement?

Solution:So the answer to this question relies on the fact that the probability dis-
tribution for the n drawing is the same irrespive of whether there is replacement or
not. Lets use X to denote drawing from an urn with r red balls, w white balls and
b black balls, so, with n = b + r + w

pX(cr) =
r

n
pX(cw) =

w

n

pX(cb) =
b

n
(18)

whre cr is red and so on. Now, if Xi is the ith drawing with replacement, then clearly
the Xi are independent and pXi

(x) = pX(x) for x ∈ X = {cr, cb, cw}.

Now, let Yi be the ith drawing with replacement: although the Yi are not independent
pYi

(x) = pX(x) for x ∈ X . To see this, note Y1 = X and assume it is true for Yi and
consider Yi+1:

pYi+1
(cr) = p(Yi+1,Yi)(cr, cr) + p(Yi+1,Yi)(cr, cw) + p(Yi+1,Yi)(cr, cb)
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= pYi+1|Yi
(cr|cr)pYi

(cr)
+pYi+1|Yi

(cr|cw)pYi
(cw) + pYi+1|Yi

(cr|cb)pYi
(cb)

=
r − 1

n − 1

r

n
+

r

n − 1

w

n
+

r

n − 1

b

n
=

r

n
= pX(cr) (19)

This means, using the chain rule and the conditioning theorem

H(Y1, Y2, . . . , Yn) = H(Y1) + H(Y2|Y1) + H(Y3|Y2, Y1) + . . . + H(Yn|Yn−1, . . . , Y1)

≤
∑

H(Yi) = nH(X) = H(X1, X2, . . . , Xn) (20)

with equality if and only if the Yi were independent which they aren’t, hence

H(Y1, Y2, . . . , Yn) < H(X1, X2, . . . , Xn) (21)

4. (C&T 2.14) Enropy of a sum. Let X and Y be random variables that take on values
x1, x2, . . ., xr and y1, y2, . . . , ys respectively. Let Z = X + Y .

(a) Show that H(Z|X) = H(Y |X). Argue that if X and Y are independent then
H(Y ) ≤ H(Z) and H(X) ≤ H(Z). Thus the addition of independent random
variables add uncertainy.

(b) Give an example of random variables for which H(X) > H(Z) and H(Y ) >
H(Z).

(c) Under what conditions does H(Z) = H(X) + H(Y ).

Solution:So, given X, Y determines Z and visa versa, so H(Z|X) = H(Y |X). Now,
we know that

H(Y |X) = H(Z|X) ≤ H(Z) (22)

but, if X and Y are independent, H(Y |X) = H(Y ), so H(Y ) ≤ H(Z); H(X) ≤ H(Z)
follow by a similar arguement. Thus, if we want H(X) > H(Z), we need X and Y
dependent. In fact, we want X and Y to be dependent in such a way that adding
them gives something less uncertain; as an example, let Y = −X so Z = 0 always
and so, H(Z) = 0 and is less than H(X) = H(Y ) for any non-trivial choice of X.
Finally,

H(X + Y ) = H(X, Y ) (23)

if the addition is invertible, that is, if there are unique X and Y for any X + Y ; this
would happen, for example, if X = {1, 2} and Y = {1, 3} since the possible values
of the sum are 2, 3, 4 and 5 and each correponds to a different choice of X and Y ;
however, if X = {1, 2} and Y = {1, 2} then X = 1, Y = 2 and X = 2, Y = 1 both
give X + Y = 3. Now

H(X, Y ) = H(X) + H(Y |X) (24)

and H(Y |X) + H(Y ) if X and Y are independent.
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