472 Tutorial Sheet 2 Solutions to q2: information audit ${ }^{1}$

11 Febuary 2008

Here I go through the solution to the 12 coin problem and try and track the information

(C\&T 2.7) Suppose that one has n coins, among which there is one counterfeit coin. If there is a counterfeit coin it will weight either less or more than the other coins. The coins are weighed using a balance.

1. Find an upper bound on the number of coins n so that k weighings will find the counterfeit coin, if any, and correctly declare it to be heavier or lighter.
2. What is the coin-weighing strategy for $k=3$ weighings and 12 coins?

Soln

Here I consider the second part. Lets start by numbering the coins from one to 12 . The three weighings are called Y_{1}, Y_{2} and Y_{3} and the outcomes are named l, r and n for left heavy, right heavy and neither heavy. I follow the strategy described in the PS2 solutions.

The first weighing Y_{1}

We weigh $\{1,2,3,4\}$ versus $\{5,6,7,8\}$; the three outcomes are equally likely so

$$
\begin{equation*}
p_{Y_{1}}(l)=p_{Y_{1}}(r)=p_{Y_{1}}(n)=1 / 3 \tag{1}
\end{equation*}
$$

and $H\left(Y_{1}\right)=\log 3$.
$Y_{1}=l$ or $Y_{1}=r$
In this case we weigh $\{1,2,5\}$ versus $\{3,4,6\}$ leaving $\{7,8\}$ aside. Since the bent coin is one of 1 to 8 and only 7 and 8 are left aside

$$
\begin{align*}
p_{Y_{2} \mid Y_{1}}(n \mid l) & =1 / 4 \\
p_{Y_{2} \mid Y_{1}}(l \mid l)=p_{Y_{2} \mid Y_{1}}(r \mid l) & =3 / 8 \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
H\left(Y_{2} \mid Y_{1}=l\right) & =-\frac{1}{4} \log \frac{1}{4}-2 \frac{3}{8} \log \frac{3}{8} \\
& =\frac{11}{4}-\frac{3}{4} \log 3 \tag{3}
\end{align*}
$$

$H\left(Y_{2} \mid Y_{1}=r\right)$ is the same.

[^0]What about $Y_{1}=n$?
In this case we weigh $\{9,10\}$ versus $\{11,1\}$; again, the bent coin must be one of 9 to 12 and only 12 is left aside. Hence

$$
\begin{align*}
p_{Y_{2} \mid Y_{1}}(n \mid n) & =1 / 4 \\
p_{Y_{2} \mid Y_{1}}(l \mid n)=p_{Y_{2} \mid Y_{1}}(r \mid n) & =3 / 8 \tag{4}
\end{align*}
$$

and, again

$$
\begin{align*}
H\left(Y_{2} \mid Y_{1}=n\right) & =-\frac{1}{4} \log \frac{1}{4}-2 \frac{3}{8} \log \frac{3}{8} \\
& =\frac{11}{4}-\frac{3}{4} \log 3 \tag{5}
\end{align*}
$$

The conditional entropy $H\left(Y_{2} \mid Y_{1}\right)$
Now

$$
\begin{equation*}
H\left(Y_{2} \mid Y_{1}\right)=p_{Y_{1}}(l) H\left(Y_{2} \mid l\right)+p_{Y_{1}}(r) H\left(Y_{2} \mid r\right)+p_{Y_{1}}(r) H\left(Y_{2} \mid r\right)=\frac{11}{4}-\frac{3}{4} \log 3 \tag{6}
\end{equation*}
$$

In fact this is approximately $1.56, \log 3 \approx 1.59$, so, although

$$
\begin{equation*}
H\left(Y_{2}, Y_{1}\right)=H\left(Y_{1}\right)+H\left(Y_{2} \mid Y_{1}\right)<2 H\left(Y_{1}\right) \tag{7}
\end{equation*}
$$

the difference is only about .03 bits.
$Y_{1}=l$ and $Y_{2}=l$ and similar
If $Y_{1}=l$ and $Y_{2}=l$ then for Y_{3} we weigh 1 against 2 knowing that the bent coin is 1,2 or 6. Each is equally likely, so

$$
\begin{equation*}
p_{Y_{3} \mid Y_{2}, Y_{1}}(l \mid l, l)=p_{Y_{3} \mid Y_{2}, Y_{1}}(r \mid l, l)=p_{Y_{3} \mid Y_{2}, Y_{1}}(n \mid l, l)=\frac{1}{3} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(Y_{3} \mid Y_{2}=l, Y_{1}=l\right)=\log 3 \tag{9}
\end{equation*}
$$

You get the same for other combinations of Y_{1} and Y_{2} each being l or r.
$Y_{1}=l$ and $Y_{2}=n$ and similar
If $Y_{1}=l$ and $Y_{2}=n$ then we know 7 or 8 is bent and we weigh them against each other, the result cannot be n so

$$
\begin{align*}
p_{Y_{3} \mid Y_{2}, Y_{1}}(l \mid n, l)= & p_{Y_{3} \mid Y_{2}, Y_{1}}(r \mid n, l) \\
& =\frac{1}{2} \tag{10}\\
p_{Y_{3} \mid Y_{2}, Y_{1}}(n \mid n, l) & =0
\end{align*}
$$

and

$$
\begin{equation*}
H\left(Y_{3} \mid Y_{2}=n, Y_{1}=l\right)=\log 2=1 \tag{11}
\end{equation*}
$$

Y_{3} when $Y_{1}=n$
This actually works in a similar way to the $Y_{1}=l$ cases: if $Y_{2}=l$ we know the coin is either 10 or 11 heavy or it is 12 and light: this is the same as the ($Y_{1}=l, Y_{2}=l$) case. If $Y_{2}=n$ we have only 12 left and we weigh it against the coin 1 which is known to not be bent; here there is no possibility of $Y_{3}=n$, like the ($Y_{1}=l, Y_{2}=n$) case.

The joint distribution $p_{Y_{2}, Y_{1}}\left(y_{2}, y_{1}\right)$

To work out $H\left(Y_{3} \mid Y_{2}, Y_{2}\right)$ we need the joint distribution for Y_{1} and Y_{2}; we can work that out from what we have above; for example

$$
\begin{align*}
& p_{Y_{2}, Y_{1}}(l, l)=p_{Y_{2} \mid Y_{1}}(l) p_{Y_{1}}(l)=\frac{3}{8} \frac{1}{3}=\frac{1}{8} \\
& p_{Y_{2}, Y_{1}}(r, l)=p_{Y_{2} \mid Y_{1}}(r) p_{Y_{1}}(l)=\frac{3}{8} \frac{1}{3}=\frac{1}{8} \\
& p_{Y_{2}, Y_{1}}(n, l)=p_{Y_{2} \mid Y_{1}}(n) p_{Y_{1}}(l)=\frac{1}{4} \frac{1}{3}=\frac{1}{12} \tag{12}
\end{align*}
$$

and, in fact, the same pattern is found for the $Y_{1}=r$ and the $Y_{1}=n$ probabilities.

The conditional entropy $H\left(Y_{3} \mid Y_{2}, Y_{1}\right)$

Well this is a long sum over all the possibilities but it is actually quite easy, for $Y_{1}=l$ for example, we have $Y_{2}=l$ or $Y_{2}=r$ each with probability $1 / 8$ with corresponding

$$
\begin{equation*}
H\left(Y_{3} \mid Y_{2}=l, Y_{1}=l\right)=H\left(Y_{3} \mid Y_{2}=r, Y_{1}=l\right)=\log 3 \tag{13}
\end{equation*}
$$

and $Y_{2}=n$ with probability $1 / 12$ and

$$
\begin{equation*}
H\left(Y_{3} \mid Y_{2}=n, Y_{1}=l\right)=1 \tag{14}
\end{equation*}
$$

The same repeats for $Y_{1}=r$ and, less obviously, for $Y_{1}=b$. Hence

$$
\begin{align*}
H\left(Y_{3} \mid Y_{2}, Y_{1}\right) & =\sum p_{Y_{2}, Y_{1}}\left(y_{2}, y_{1}\right) H\left(Y_{3} \mid Y_{2}=y_{2}, Y_{1}=y_{1}\right) \\
& =3\left(2 \frac{1}{8} \log 3+\frac{1}{12}\right)=\frac{1}{4}+\frac{3}{4} \log 3 \tag{15}
\end{align*}
$$

The punchline: $H\left(Y_{3}, Y_{2}, Y_{1}\right)$
So

$$
\begin{align*}
H\left(Y_{3}, Y_{2}, Y_{1}\right) & =H\left(Y_{3} \mid Y_{2}, Y_{1}\right)+H\left(Y_{2} \mid Y_{1}\right)+H\left(Y_{1}\right) \\
& =\frac{1}{4}+\frac{3}{4} \log 3+\frac{11}{4}-\frac{3}{4} \log 3+\log 3 \\
& =3+\log 3 \tag{16}
\end{align*}
$$

However, we also have $H(X)=\log 2 n$ where n is the number of coins. Hence

$$
\begin{equation*}
H(X)=\log 24=\log 2^{3} 3=3+\log 3=H\left(Y_{3}, Y_{2}, Y_{1}\right) \tag{17}
\end{equation*}
$$

Which is very cool.

[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/472

