MA3466 Tutorial Sheet 7¹

26 March 2008

- 1. (C& T 5.2) Let $p(S_i) = p_i$ for some set of outcomes $\{S_1, S_2, \ldots, S_n\}$. The S_i 's are uniquely encoded into strings from a *D*-symbol alphabet in a uniquely decodable manner. If n = 6 and the code word lengths are $(l_1, l_2, \ldots, l_n) = (1, 1, 2, 3, 2, 3)$ find a good lower bound on *D*.
- 2. (C& T 5.4) Slackness in the Kraft inequality. An instantaneous code has word lengths l_1 to l_m satisfying the strict inequality

$$\sum_{i=1}^{m} D^{-l_i} < 1 \tag{1}$$

Show there are arbitrarily long sequences of code symbols in \mathcal{D}^* which cannot be decoded into sequences of codewords: that is, not all sequences of symbols in D form a sentence.

- 3. Work out Huffman codes for
 - (a) p(A) = .5, p(B) = .2, p(C) = .1, p(D) = .1 and p(E) = .1 with D = 2.
 - (b) p(A) = .25, p(B) = .15, p(C) = .1, p(D) = .1, p(E) = .1, p(F) = .1, p(G) = .1, p(H) = .05 and p(I) = .05 with D = 2, D = 3 and D = 4.
 - (c) p(A) = .15, p(B) = .15, p(C) = .15, p(D) = .1, p(E) = .1, p(F) = .1, p(G) = .1, p(H) = .1 and p(I) = .05 with D = 2 and D = 5.

Work out the average code length and the entropy in each case.

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466