MA3466 Tutorial Sheet 7^{1}

26 March 2008

1. (C\& T 5.2) Let $p\left(S_{i}\right)=p_{i}$ for some set of outcomes $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$. The S_{i} 's are uniquely encoded into strings from a D-symbol alphabet in a uniquely decodable manner. If $n=6$ and the code word lengths are $\left(l_{1}, l_{2}, \ldots, l_{n}\right)=(1,1,2,3,2,3)$ find a good lower bound on D.
2. (C\& T 5.4) Slackness in the Kraft inequality. An instantaneous code has word lengths l_{1} to l_{m} satisfying the strict inequality

$$
\begin{equation*}
\sum_{i=1}^{m} D^{-l_{i}}<1 \tag{1}
\end{equation*}
$$

Show there are arbitrarily long sequences of code symbols in \mathcal{D}^{*} which cannot be decoded into sequences of codewords: that is, not all sequences of symbols in D form a sentence.
3. Work out Huffman codes for
(a) $p(A)=.5, p(B)=.2, p(C)=.1, p(D)=.1$ and $p(E)=.1$ with $D=2$.
(b) $p(A)=.25, p(B)=.15, p(C)=.1, p(D)=.1, p(E)=.1, p(F)=.1, p(G)=.1$, $p(H)=.05$ and $p(I)=.05$ with $D=2, D=3$ and $D=4$.
(c) $p(A)=.15, p(B)=.15, p(C)=.15, p(D)=.1, p(E)=.1, p(F)=.1, p(G)=.1$, $p(H)=.1$ and $p(I)=.05$ with $D=2$ and $D=5$.

Work out the average code length and the entropy in each case.

[^0]
[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

