MA3364 Tutorial Sheet 6^{1}

19 March 2008

1. (C\& T 3.2) AEP and mutual information. Let $\left(X_{i}, Y_{i}\right)$ be i.i.d with joint distributions $p(x, y)$. We form the \log likelhood ration of the hypothesis that X and Y are independent versus the hypothesis that they are dependent. What is the limit of

$$
\begin{equation*}
\frac{1}{n} \log \frac{p(\mathbf{X}) p(\mathbf{Y})}{p(\mathbf{X}, \mathbf{Y})} \tag{1}
\end{equation*}
$$

2. (C\& T 3.3) A piece of cake. A cake is sliced roughly in half and the largest piece selected each time, the other bits being discarded. Assume $p(2 / 3,1 / 3)=3 / 4$ and $p(2 / 5,3 / 5)=1 / 4$. How large, to the first order in the exponent, is the piece of cake after n cuts.
3. (C\& T 3.6) AEP-like limit. Let X_{1}, X_{2} and so on be i.i.d., drawn with distribution $p(x)$, what is

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[p\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]^{1 / n} \tag{2}
\end{equation*}
$$

For this you need to know the strong law of large numbers: to prove the AEP we used the weak law:

$$
\begin{equation*}
\frac{1}{n} \sum X_{i} \rightarrow E X \tag{3}
\end{equation*}
$$

in probability, the strong law states that it approaches it almost surely.
4. (C\& T 3.13) This requires a table, so you need to look at this problem in the book; however the table in the books has some errors, for example, for $k=15$ the middle figure should be .1616, not .5754 .

[^0]
[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

