MA3364 Tutorial Sheet 5¹

12 March 2010

- 1. (C&T 2.32) Fano. X and Y are two independent variables with $\mathcal{X} = \{1, 2, 3\}$ and $\mathcal{Y} = \{a, b, c\}$. p(1, a) = p(2, b) = p(3, c) = 1/6, all the other probabilities are 1/12. Let $\hat{X}(Y)$ be an estimator for X based on Y and let $P_e = Pr[\hat{X} \neq X]$.
 - (a) Find the minimum probability of error estimator $\hat{X}(Y)$ and the associated P_e .
 - (b) Evaluate Fano's inequality for this problem and compare.
- 2. (C&T 2.35 and 2.36). Consider two distributions over the set $\{a, b, c\}$: p(a) = 1/2and p(b) = p(c) = 1/4 and q(a) = q(b) = q(c) = 1/3. Find H(p), H(q), D(p||q) and D(q||p) and verify that in this case $D(p||q) \neq D(q||p)$. Conversely, give and example of a pair of distinct distributions on the set $\{0, 1\}$ where D(p||q) = D(q||p).
- 3. (C&T 2.37) Let X, Y and Z be three random variable with a joint probability distribution p(x, y, z). The relative entropy between the joint distribution and the product of the marginals is D(p(x, y, z) || p(x) p(y) p(z)); expand this in terms of entropies. When is it zero.
- 4. An alternative divergence is the λ -divergence,

$$D_{\lambda}(p||q) = \lambda D_{\mathrm{KL}}(p||\lambda p + (1-\lambda)q) + (1-\lambda)D_{\mathrm{KL}}(q||\lambda p + (1-\lambda)q)$$
(1)

Unlike the KL divergence, this is symmetric in p and q. According to Wikipedia this can be interpreted as the expected information gain about X from discovering which probability distribution X is drawn from, p or q, if they currently have probabilities λ and $(1 - \lambda)$ respectively. Explain this.

- 5. For $\lambda = 1/2$, the λ -divergence is known as Jensen-Shannon divergence. Show this satisfies
 - (a) $D_{\rm JS}(p_1, p_2) \ge 0$ with equality if and only if $p_1 = p_2$.
 - (b) $D_{\rm JS}(p_1, p_2) = D_{\rm JS}(p_2, p_1).$

However, it does not satisfy the triangular inequality and is therefore not a metric. Give an example of distributions p_1 , p_2 and p_3 such that

$$D_{\rm JS}(p_1, p_2) + D_{\rm JS}(p_2, p_3) < D_{\rm JS}(p_1, p_3)$$
(2)

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3364