MA3364 Tutorial Sheet 5^{1}

12 March 2010

1. (C\&T 2.32) Fano. X and Y are two independent variables with $\mathcal{X}=\{1,2,3\}$ and $\mathcal{Y}=\{a, b, c\} . p(1, a)=p(2, b)=p(3, c)=1 / 6$, all the other probabilities are $1 / 12$. Let $\hat{X}(Y)$ be an estimator for X based on Y and let $P_{e}=\operatorname{Pr}[\hat{X} \neq X]$.
(a) Find the minimum probability of error estimator $\hat{X}(Y)$ and the associated P_{e}.
(b) Evaluate Fano's inequality for this problem and compare.
2. (C\&T 2.35 and 2.36). Consider two distributions over the set $\{a, b, c\}: p(a)=1 / 2$ and $p(b)=p(c)=1 / 4$ and $q(a)=q(b)=q(c)=1 / 3$. Find $H(p), H(q), D(p \| q)$ and $D(q \| p)$ and verify that in this case $D(p \| q) \neq D(q \| p)$. Conversely, give and example of a pair of distinct distributions on the set $\{0,1\}$ where $D(p \| q)=D(q \| p)$.
3. (C\&T 2.37) Let X, Y and Z be three random variable with a joint probability distribution $p(x, y, z)$. The relative entropy between the joint distribution and the product of the marginals is $D(p(x, y, z) \| p(x) p(y) p(z))$; expand this in terms of entropies. When is it zero.
4. An alternative divergence is the λ-divergence,

$$
\begin{equation*}
D_{\lambda}(p \| q)=\lambda D_{\mathrm{KL}}(p \| \lambda p+(1-\lambda) q)+(1-\lambda) D_{\mathrm{KL}}(q \| \lambda p+(1-\lambda) q) \tag{1}
\end{equation*}
$$

Unlike the KL divergence, this is symmetric in p and q. According to Wikipedia this can be interpreted as the expected information gain about X from discovering which probability distribution X is drawn from, p or q, if they currently have probabilities λ and $(1-\lambda)$ respectively. Explain this.
5. For $\lambda=1 / 2$, the λ-divergence is known as Jensen-Shannon divergence. Show this satisfies
(a) $D_{\mathrm{JS}}\left(p_{1}, p_{2}\right) \geq 0$ with equality if and only if $p_{1}=p_{2}$.
(b) $D_{\mathrm{JS}}\left(p_{1}, p_{2}\right)=D_{\mathrm{JS}}\left(p_{2}, p_{1}\right)$.

However, it does not satisfy the triangular inequality and is therefore not a metric. Give an example of distributions p_{1}, p_{2} and p_{3} such that

$$
\begin{equation*}
D_{\mathrm{JS}}\left(p_{1}, p_{2}\right)+D_{\mathrm{JS}}\left(p_{2}, p_{3}\right)<D_{\mathrm{JS}}\left(p_{1}, p_{3}\right) \tag{2}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3364

